/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Platform specific code to invoke XPCOM methods on native objects */ #include "xptcprivate.h" #include "mozilla/Compiler.h" #if !defined(__arm__) && !defined(LINUX) #error "This code is for Linux ARM only. Check that it works on your system, too.\nBeware that this code is highly compiler dependent." #endif #if MOZ_IS_GCC #if defined(__ARM_EABI__) && !defined(__ARM_PCS_VFP) && !defined(__ARM_PCS) #error "Can't identify floating point calling conventions.\nPlease ensure that your toolchain defines __ARM_PCS or __ARM_PCS_VFP." #endif #endif #ifndef __ARM_PCS_VFP /* This function copies a 64-bits word from dw to the given pointer in * a buffer delimited by start and end, possibly wrapping around the * buffer boundaries, and/or properly aligning the data at 64-bits word * boundaries (for EABI). * start and end are both assumed to be 64-bits aligned. * Returns a pointer to the second 32-bits word copied (to accomodate * the invoke_copy_to_stack loop). */ static uint32_t * copy_double_word(uint32_t *start, uint32_t *current, uint32_t *end, uint64_t *dw) { #ifdef __ARM_EABI__ /* Aligning the pointer for EABI */ current = (uint32_t *)(((uint32_t)current + 7) & ~7); /* Wrap when reaching the end of the buffer */ if (current == end) current = start; #else /* On non-EABI, 64-bits values are not aligned and when we reach the end * of the buffer, we need to write half of the data at the end, and the * other half at the beginning. */ if (current == end - 1) { *current = ((uint32_t*)dw)[0]; *start = ((uint32_t*)dw)[1]; return start; } #endif *((uint64_t*) current) = *dw; return current + 1; } /* See stack_space comment in NS_InvokeByIndex to see why this needs not to * be static on DEBUG builds. */ #ifndef DEBUG static #endif void invoke_copy_to_stack(uint32_t* stk, uint32_t *end, uint32_t paramCount, nsXPTCVariant* s) { /* The stack buffer is 64-bits aligned. The end argument points to its end. * The caller is assumed to create a stack buffer of at least four 32-bits * words. * We use the last three 32-bit words to store the values for r1, r2 and r3 * for the method call, i.e. the first words for arguments passing. */ uint32_t *d = end - 3; for(uint32_t i = 0; i < paramCount; i++, d++, s++) { /* Wrap when reaching the end of the stack buffer */ if (d == end) d = stk; NS_ASSERTION(d >= stk && d < end, "invoke_copy_to_stack is copying outside its given buffer"); if(s->IsPtrData()) { *((void**)d) = s->ptr; continue; } // According to the ARM EABI, integral types that are smaller than a word // are to be sign/zero-extended to a full word and treated as 4-byte values. switch(s->type) { case nsXPTType::T_I8 : *((int32_t*) d) = s->val.i8; break; case nsXPTType::T_I16 : *((int32_t*) d) = s->val.i16; break; case nsXPTType::T_I32 : *((int32_t*) d) = s->val.i32; break; case nsXPTType::T_I64 : d = copy_double_word(stk, d, end, (uint64_t *)&s->val.i64); break; case nsXPTType::T_U8 : *((uint32_t*)d) = s->val.u8; break; case nsXPTType::T_U16 : *((uint32_t*)d) = s->val.u16; break; case nsXPTType::T_U32 : *((uint32_t*)d) = s->val.u32; break; case nsXPTType::T_U64 : d = copy_double_word(stk, d, end, (uint64_t *)&s->val.u64); break; case nsXPTType::T_FLOAT : *((float*) d) = s->val.f; break; case nsXPTType::T_DOUBLE : d = copy_double_word(stk, d, end, (uint64_t *)&s->val.d); break; case nsXPTType::T_BOOL : *((int32_t*) d) = s->val.b; break; case nsXPTType::T_CHAR : *((int32_t*) d) = s->val.c; break; case nsXPTType::T_WCHAR : *((int32_t*) d) = s->val.wc; break; default: // all the others are plain pointer types *((void**)d) = s->val.p; break; } } } typedef nsresult (*vtable_func)(nsISupports *, uint32_t, uint32_t, uint32_t); // Avoid AddressSanitizer instrumentation for the next function because it // depends on __builtin_alloca behavior and alignment that cannot be relied on // once the function is compiled with a version of ASan that has dynamic-alloca // instrumentation enabled. MOZ_ASAN_BLACKLIST EXPORT_XPCOM_API(nsresult) NS_InvokeByIndex(nsISupports* that, uint32_t methodIndex, uint32_t paramCount, nsXPTCVariant* params) { /* This is to call a given method of class that. * The parameters are in params, the number is in paramCount. * The routine will issue calls to count the number of words * required for argument passing and to copy the arguments to * the stack. * ACPS passes the first 3 params in r1-r3 (with exceptions for 64-bits * arguments), and the remaining goes onto the stack. * We allocate a buffer on the stack for a "worst case" estimate of how much * stack might be needed for EABI, i.e. twice the number of parameters. * The end of this buffer will be used to store r1 to r3, so that the start * of the stack is the remaining parameters. * The magic here is to call the method with "that" and three 32-bits * arguments corresponding to r1-r3, so that the compiler generates the * proper function call. The stack will also contain the remaining arguments. * * !!! IMPORTANT !!! * This routine makes assumptions about the vtable layout of the c++ compiler. It's implemented * for arm-linux GNU g++ >= 2.8.1 (including egcs and gcc-2.95.[1-3])! * */ vtable_func *vtable, func; int base_size = (paramCount > 1) ? paramCount : 2; /* !!! IMPORTANT !!! * On DEBUG builds, the NS_ASSERTION used in invoke_copy_to_stack needs to use * the stack to pass the 5th argument to NS_DebugBreak. When invoke_copy_to_stack * is inlined, this can result, depending on the compiler and flags, in the * stack pointer not pointing at stack_space when the method is called at the * end of this function. More generally, any function call requiring stack * allocation of arguments is unsafe to be inlined in this function. */ uint32_t *stack_space = (uint32_t *) __builtin_alloca(base_size * 8); invoke_copy_to_stack(stack_space, &stack_space[base_size * 2], paramCount, params); vtable = *reinterpret_cast(that); func = vtable[methodIndex]; return func(that, stack_space[base_size * 2 - 3], stack_space[base_size * 2 - 2], stack_space[base_size * 2 - 1]); } #else /* __ARM_PCS_VFP */ /* "Procedure Call Standard for the ARM Architecture" document, sections * "5.5 Parameter Passing" and "6.1.2 Procedure Calling" contain all the * needed information. * * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf */ #if defined(__thumb__) && !defined(__thumb2__) #error "Thumb1 is not supported" #endif #ifndef __ARMEL__ #error "Only little endian compatibility was tested" #endif /* * Allocation of integer function arguments initially to registers r1-r3 * and then to stack. Handling of 'this' argument which goes to r0 registers * is handled separately and does not belong to these two inline functions. * * The doubleword arguments are allocated to even:odd * register pairs or get aligned at 8-byte boundary on stack. The "holes" * which may appear as a result of this realignment remain unused. * * 'ireg_args' - pointer to the current position in the buffer, * corresponding to the register arguments * 'stack_args' - pointer to the current position in the buffer, * corresponding to the arguments on stack * 'end' - pointer to the end of the registers argument * buffer (it is guaranteed to be 8-bytes aligned) */ static inline void copy_word(uint32_t* &ireg_args, uint32_t* &stack_args, uint32_t* end, uint32_t data) { if (ireg_args < end) { *ireg_args = data; ireg_args++; } else { *stack_args = data; stack_args++; } } static inline void copy_dword(uint32_t* &ireg_args, uint32_t* &stack_args, uint32_t* end, uint64_t data) { if (ireg_args + 1 < end) { if ((uint32_t)ireg_args & 4) { ireg_args++; } *(uint64_t *)ireg_args = data; ireg_args += 2; } else { ireg_args = end; if ((uint32_t)stack_args & 4) { stack_args++; } *(uint64_t *)stack_args = data; stack_args += 2; } } /* * Allocation of floating point arguments to VFP registers (s0-s15, d0-d7). * * Unlike integer registers allocation, "back-filling" needs to be * supported. For example, the third floating point argument in the * following function is going to be allocated to s1 register, back-filling * the "hole": * void f(float s0, double d1, float s1) * * Refer to the "Procedure Call Standard for the ARM Architecture" document * for more details. * * 'vfp_s_args' - pointer to the current position in the buffer with * the next unallocated single precision register * 'vfp_d_args' - pointer to the current position in the buffer with * the next unallocated double precision register, * it has the same value as 'vfp_s_args' when back-filling * is not used * 'end' - pointer to the end of the vfp registers argument * buffer (it is guaranteed to be 8-bytes aligned) * * Mozilla bugtracker has a test program attached which be used for * experimenting with VFP registers allocation code and testing its * correctness: * https://bugzilla.mozilla.org/show_bug.cgi?id=601914#c19 */ static inline bool copy_vfp_single(float* &vfp_s_args, double* &vfp_d_args, float* end, float data) { if (vfp_s_args >= end) return false; *vfp_s_args = data; vfp_s_args++; if (vfp_s_args < (float *)vfp_d_args) { // It was the case of back-filling, now the next free single precision // register should overlap with the next free double precision register vfp_s_args = (float *)vfp_d_args; } else if (vfp_s_args > (float *)vfp_d_args) { // also update the pointer to the next free double precision register vfp_d_args++; } return true; } static inline bool copy_vfp_double(float* &vfp_s_args, double* &vfp_d_args, float* end, double data) { if (vfp_d_args >= (double *)end) { // The back-filling continues only so long as no VFP CPRC has been // allocated to a slot on the stack. Basically no VFP registers can // be allocated after this point. vfp_s_args = end; return false; } if (vfp_s_args == (float *)vfp_d_args) { // also update the pointer to the next free single precision register vfp_s_args += 2; } *vfp_d_args = data; vfp_d_args++; return true; } static void invoke_copy_to_stack(uint32_t* stk, uint32_t *end, uint32_t paramCount, nsXPTCVariant* s) { uint32_t *ireg_args = end - 3; float *vfp_s_args = (float *)end; double *vfp_d_args = (double *)end; float *vfp_end = vfp_s_args + 16; for (uint32_t i = 0; i < paramCount; i++, s++) { if (s->IsPtrData()) { copy_word(ireg_args, stk, end, (uint32_t)s->ptr); continue; } // According to the ARM EABI, integral types that are smaller than a word // are to be sign/zero-extended to a full word and treated as 4-byte values switch (s->type) { case nsXPTType::T_FLOAT: if (!copy_vfp_single(vfp_s_args, vfp_d_args, vfp_end, s->val.f)) { copy_word(end, stk, end, reinterpret_cast(s->val.f)); } break; case nsXPTType::T_DOUBLE: if (!copy_vfp_double(vfp_s_args, vfp_d_args, vfp_end, s->val.d)) { copy_dword(end, stk, end, reinterpret_cast(s->val.d)); } break; case nsXPTType::T_I8: copy_word(ireg_args, stk, end, s->val.i8); break; case nsXPTType::T_I16: copy_word(ireg_args, stk, end, s->val.i16); break; case nsXPTType::T_I32: copy_word(ireg_args, stk, end, s->val.i32); break; case nsXPTType::T_I64: copy_dword(ireg_args, stk, end, s->val.i64); break; case nsXPTType::T_U8: copy_word(ireg_args, stk, end, s->val.u8); break; case nsXPTType::T_U16: copy_word(ireg_args, stk, end, s->val.u16); break; case nsXPTType::T_U32: copy_word(ireg_args, stk, end, s->val.u32); break; case nsXPTType::T_U64: copy_dword(ireg_args, stk, end, s->val.u64); break; case nsXPTType::T_BOOL: copy_word(ireg_args, stk, end, s->val.b); break; case nsXPTType::T_CHAR: copy_word(ireg_args, stk, end, s->val.c); break; case nsXPTType::T_WCHAR: copy_word(ireg_args, stk, end, s->val.wc); break; default: // all the others are plain pointer types copy_word(ireg_args, stk, end, reinterpret_cast(s->val.p)); break; } } } typedef uint32_t (*vtable_func)(nsISupports *, uint32_t, uint32_t, uint32_t); EXPORT_XPCOM_API(nsresult) NS_InvokeByIndex(nsISupports* that, uint32_t methodIndex, uint32_t paramCount, nsXPTCVariant* params) { vtable_func *vtable = *reinterpret_cast(that); vtable_func func = vtable[methodIndex]; // 'register uint32_t result asm("r0")' could be used here, but it does not // seem to be reliable in all cases: http://gcc.gnu.org/PR46164 nsresult result; asm ( "mov r3, sp\n" "mov %[stack_space_size], %[param_count_plus_2], lsl #3\n" "tst r3, #4\n" /* check stack alignment */ "add %[stack_space_size], #(4 * 16)\n" /* space for VFP registers */ "mov r3, %[params]\n" "it ne\n" "addne %[stack_space_size], %[stack_space_size], #4\n" "sub r0, sp, %[stack_space_size]\n" /* allocate space on stack */ "sub r2, %[param_count_plus_2], #2\n" "mov sp, r0\n" "add r1, r0, %[param_count_plus_2], lsl #3\n" "blx %[invoke_copy_to_stack]\n" "add ip, sp, %[param_count_plus_2], lsl #3\n" "mov r0, %[that]\n" "ldmdb ip, {r1, r2, r3}\n" "vldm ip, {d0, d1, d2, d3, d4, d5, d6, d7}\n" "blx %[func]\n" "add sp, sp, %[stack_space_size]\n" /* cleanup stack */ "mov %[stack_space_size], r0\n" /* it's actually 'result' variable */ : [stack_space_size] "=&r" (result) : [func] "r" (func), [that] "r" (that), [params] "r" (params), [param_count_plus_2] "r" (paramCount + 2), [invoke_copy_to_stack] "r" (invoke_copy_to_stack) : "cc", "memory", // Mark all the scratch registers as clobbered because they may be // modified by the functions, called from this inline assembly block "r0", "r1", "r2", "r3", "ip", "lr", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", // Also unconditionally mark d16-d31 registers as clobbered even though // they actually don't exist in vfpv2 and vfpv3-d16 variants. There is // no way to identify VFP variant using preprocessor at the momemnt // (see http://gcc.gnu.org/PR46128 for more details), but fortunately // current versions of gcc do not seem to complain about these registers // even when this code is compiled with '-mfpu=vfpv3-d16' option. // If gcc becomes more strict in the future and/or provides a way to // identify VFP variant, the following d16-d31 registers list needs // to be wrapped into some #ifdef "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31" ); return result; } #endif