// Copied from upstream at revision 195c13743fe0ebc658714e2a9567d86529f20443. // mach_override.c semver:1.2.0 // Copyright (c) 2003-2012 Jonathan 'Wolf' Rentzsch: http://rentzsch.com // Some rights reserved: http://opensource.org/licenses/mit // https://github.com/rentzsch/mach_override #include "mach_override.h" #include <mach-o/dyld.h> #include <mach/mach_host.h> #include <mach/mach_init.h> #include <mach/vm_map.h> #include <sys/mman.h> #include <CoreServices/CoreServices.h> /************************** * * Constants * **************************/ #pragma mark - #pragma mark (Constants) #define kPageSize 4096 #if defined(__ppc__) || defined(__POWERPC__) long kIslandTemplate[] = { 0x9001FFFC, // stw r0,-4(SP) 0x3C00DEAD, // lis r0,0xDEAD 0x6000BEEF, // ori r0,r0,0xBEEF 0x7C0903A6, // mtctr r0 0x8001FFFC, // lwz r0,-4(SP) 0x60000000, // nop ; optionally replaced 0x4E800420 // bctr }; #define kAddressHi 3 #define kAddressLo 5 #define kInstructionHi 10 #define kInstructionLo 11 #elif defined(__i386__) #define kOriginalInstructionsSize 16 // On X86 we migh need to instert an add with a 32 bit immediate after the // original instructions. #define kMaxFixupSizeIncrease 5 unsigned char kIslandTemplate[] = { // kOriginalInstructionsSize nop instructions so that we // should have enough space to host original instructions 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // Now the real jump instruction 0xE9, 0xEF, 0xBE, 0xAD, 0xDE }; #define kInstructions 0 #define kJumpAddress kInstructions + kOriginalInstructionsSize + 1 #elif defined(__x86_64__) #define kOriginalInstructionsSize 32 // On X86-64 we never need to instert a new instruction. #define kMaxFixupSizeIncrease 0 #define kJumpAddress kOriginalInstructionsSize + 6 unsigned char kIslandTemplate[] = { // kOriginalInstructionsSize nop instructions so that we // should have enough space to host original instructions 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // Now the real jump instruction 0xFF, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; #endif /************************** * * Data Types * **************************/ #pragma mark - #pragma mark (Data Types) typedef struct { char instructions[sizeof(kIslandTemplate)]; } BranchIsland; /************************** * * Funky Protos * **************************/ #pragma mark - #pragma mark (Funky Protos) static mach_error_t allocateBranchIsland( BranchIsland **island, void *originalFunctionAddress); mach_error_t freeBranchIsland( BranchIsland *island ); #if defined(__ppc__) || defined(__POWERPC__) mach_error_t setBranchIslandTarget( BranchIsland *island, const void *branchTo, long instruction ); #endif #if defined(__i386__) || defined(__x86_64__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ); void atomic_mov64( uint64_t *targetAddress, uint64_t value ); static Boolean eatKnownInstructions( unsigned char *code, uint64_t *newInstruction, int *howManyEaten, char *originalInstructions, int *originalInstructionCount, uint8_t *originalInstructionSizes ); static void fixupInstructions( uint32_t offset, void *instructionsToFix, int instructionCount, uint8_t *instructionSizes ); #endif /******************************************************************************* * * Interface * *******************************************************************************/ #pragma mark - #pragma mark (Interface) #if defined(__i386__) || defined(__x86_64__) mach_error_t makeIslandExecutable(void *address) { mach_error_t err = err_none; uintptr_t page = (uintptr_t)address & ~(uintptr_t)(kPageSize-1); int e = err_none; e |= mprotect((void *)page, kPageSize, PROT_EXEC | PROT_READ | PROT_WRITE); e |= msync((void *)page, kPageSize, MS_INVALIDATE ); if (e) { err = err_cannot_override; } return err; } #endif mach_error_t mach_override_ptr( void *originalFunctionAddress, const void *overrideFunctionAddress, void **originalFunctionReentryIsland ) { assert( originalFunctionAddress ); assert( overrideFunctionAddress ); // this addresses overriding such functions as AudioOutputUnitStart() // test with modified DefaultOutputUnit project #if defined(__x86_64__) for(;;){ if(*(uint16_t*)originalFunctionAddress==0x25FF) // jmp qword near [rip+0x????????] originalFunctionAddress=*(void**)((char*)originalFunctionAddress+6+*(int32_t *)((uint16_t*)originalFunctionAddress+1)); else break; } #elif defined(__i386__) for(;;){ if(*(uint16_t*)originalFunctionAddress==0x25FF) // jmp *0x???????? originalFunctionAddress=**(void***)((uint16_t*)originalFunctionAddress+1); else break; } #endif long *originalFunctionPtr = (long*) originalFunctionAddress; mach_error_t err = err_none; #if defined(__ppc__) || defined(__POWERPC__) // Ensure first instruction isn't 'mfctr'. #define kMFCTRMask 0xfc1fffff #define kMFCTRInstruction 0x7c0903a6 long originalInstruction = *originalFunctionPtr; if( !err && ((originalInstruction & kMFCTRMask) == kMFCTRInstruction) ) err = err_cannot_override; #elif defined(__i386__) || defined(__x86_64__) int eatenCount = 0; int originalInstructionCount = 0; char originalInstructions[kOriginalInstructionsSize]; uint8_t originalInstructionSizes[kOriginalInstructionsSize]; uint64_t jumpRelativeInstruction = 0; // JMP Boolean overridePossible = eatKnownInstructions ((unsigned char *)originalFunctionPtr, &jumpRelativeInstruction, &eatenCount, originalInstructions, &originalInstructionCount, originalInstructionSizes ); if (eatenCount + kMaxFixupSizeIncrease > kOriginalInstructionsSize) { //printf ("Too many instructions eaten\n"); overridePossible = false; } if (!overridePossible) err = err_cannot_override; if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__); #endif // Make the original function implementation writable. if( !err ) { err = vm_protect( mach_task_self(), (vm_address_t) originalFunctionPtr, 8, false, (VM_PROT_ALL | VM_PROT_COPY) ); if( err ) err = vm_protect( mach_task_self(), (vm_address_t) originalFunctionPtr, 8, false, (VM_PROT_DEFAULT | VM_PROT_COPY) ); } if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__); // Allocate and target the escape island to the overriding function. BranchIsland *escapeIsland = NULL; if( !err ) err = allocateBranchIsland( &escapeIsland, originalFunctionAddress ); if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__); #if defined(__ppc__) || defined(__POWERPC__) if( !err ) err = setBranchIslandTarget( escapeIsland, overrideFunctionAddress, 0 ); // Build the branch absolute instruction to the escape island. long branchAbsoluteInstruction = 0; // Set to 0 just to silence warning. if( !err ) { long escapeIslandAddress = ((long) escapeIsland) & 0x3FFFFFF; branchAbsoluteInstruction = 0x48000002 | escapeIslandAddress; } #elif defined(__i386__) || defined(__x86_64__) if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__); if( !err ) err = setBranchIslandTarget_i386( escapeIsland, overrideFunctionAddress, 0 ); if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__); // Build the jump relative instruction to the escape island #endif #if defined(__i386__) || defined(__x86_64__) if (!err) { uint32_t addressOffset = ((char*)escapeIsland - (char*)originalFunctionPtr - 5); addressOffset = OSSwapInt32(addressOffset); jumpRelativeInstruction |= 0xE900000000000000LL; jumpRelativeInstruction |= ((uint64_t)addressOffset & 0xffffffff) << 24; jumpRelativeInstruction = OSSwapInt64(jumpRelativeInstruction); } #endif // Optionally allocate & return the reentry island. This may contain relocated // jmp instructions and so has all the same addressing reachability requirements // the escape island has to the original function, except the escape island is // technically our original function. BranchIsland *reentryIsland = NULL; if( !err && originalFunctionReentryIsland ) { err = allocateBranchIsland( &reentryIsland, escapeIsland); if( !err ) *originalFunctionReentryIsland = reentryIsland; } #if defined(__ppc__) || defined(__POWERPC__) // Atomically: // o If the reentry island was allocated: // o Insert the original instruction into the reentry island. // o Target the reentry island at the 2nd instruction of the // original function. // o Replace the original instruction with the branch absolute. if( !err ) { int escapeIslandEngaged = false; do { if( reentryIsland ) err = setBranchIslandTarget( reentryIsland, (void*) (originalFunctionPtr+1), originalInstruction ); if( !err ) { escapeIslandEngaged = CompareAndSwap( originalInstruction, branchAbsoluteInstruction, (UInt32*)originalFunctionPtr ); if( !escapeIslandEngaged ) { // Someone replaced the instruction out from under us, // re-read the instruction, make sure it's still not // 'mfctr' and try again. originalInstruction = *originalFunctionPtr; if( (originalInstruction & kMFCTRMask) == kMFCTRInstruction) err = err_cannot_override; } } } while( !err && !escapeIslandEngaged ); } #elif defined(__i386__) || defined(__x86_64__) // Atomically: // o If the reentry island was allocated: // o Insert the original instructions into the reentry island. // o Target the reentry island at the first non-replaced // instruction of the original function. // o Replace the original first instructions with the jump relative. // // Note that on i386, we do not support someone else changing the code under our feet if ( !err ) { uint32_t offset = (uintptr_t)originalFunctionPtr - (uintptr_t)reentryIsland; fixupInstructions(offset, originalInstructions, originalInstructionCount, originalInstructionSizes ); if( reentryIsland ) err = setBranchIslandTarget_i386( reentryIsland, (void*) ((char *)originalFunctionPtr+eatenCount), originalInstructions ); // try making islands executable before planting the jmp #if defined(__x86_64__) || defined(__i386__) if( !err ) err = makeIslandExecutable(escapeIsland); if( !err && reentryIsland ) err = makeIslandExecutable(reentryIsland); #endif if ( !err ) atomic_mov64((uint64_t *)originalFunctionPtr, jumpRelativeInstruction); } #endif // Clean up on error. if( err ) { if( reentryIsland ) freeBranchIsland( reentryIsland ); if( escapeIsland ) freeBranchIsland( escapeIsland ); } return err; } /******************************************************************************* * * Implementation * *******************************************************************************/ #pragma mark - #pragma mark (Implementation) static bool jump_in_range(intptr_t from, intptr_t to) { intptr_t field_value = to - from - 5; int32_t field_value_32 = field_value; return field_value == field_value_32; } /******************************************************************************* Implementation: Allocates memory for a branch island. @param island <- The allocated island. @result <- mach_error_t ***************************************************************************/ static mach_error_t allocateBranchIslandAux( BranchIsland **island, void *originalFunctionAddress, bool forward) { assert( island ); assert( sizeof( BranchIsland ) <= kPageSize ); vm_map_t task_self = mach_task_self(); vm_address_t original_address = (vm_address_t) originalFunctionAddress; vm_address_t address = original_address; for (;;) { vm_size_t vmsize = 0; memory_object_name_t object = 0; kern_return_t kr = 0; vm_region_flavor_t flavor = VM_REGION_BASIC_INFO; // Find the region the address is in. #if __WORDSIZE == 32 vm_region_basic_info_data_t info; mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT; kr = vm_region(task_self, &address, &vmsize, flavor, (vm_region_info_t)&info, &info_count, &object); #else vm_region_basic_info_data_64_t info; mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64; kr = vm_region_64(task_self, &address, &vmsize, flavor, (vm_region_info_t)&info, &info_count, &object); #endif if (kr != KERN_SUCCESS) return kr; assert((address & (kPageSize - 1)) == 0); // Go to the first page before or after this region vm_address_t new_address = forward ? address + vmsize : address - kPageSize; #if __WORDSIZE == 64 if(!jump_in_range(original_address, new_address)) break; #endif address = new_address; // Try to allocate this page. kr = vm_allocate(task_self, &address, kPageSize, 0); if (kr == KERN_SUCCESS) { *island = (BranchIsland*) address; return err_none; } if (kr != KERN_NO_SPACE) return kr; } return KERN_NO_SPACE; } static mach_error_t allocateBranchIsland( BranchIsland **island, void *originalFunctionAddress) { mach_error_t err = allocateBranchIslandAux(island, originalFunctionAddress, true); if (!err) return err; return allocateBranchIslandAux(island, originalFunctionAddress, false); } /******************************************************************************* Implementation: Deallocates memory for a branch island. @param island -> The island to deallocate. @result <- mach_error_t ***************************************************************************/ mach_error_t freeBranchIsland( BranchIsland *island ) { assert( island ); assert( (*(long*)&island->instructions[0]) == kIslandTemplate[0] ); assert( sizeof( BranchIsland ) <= kPageSize ); return vm_deallocate( mach_task_self(), (vm_address_t) island, kPageSize ); } /******************************************************************************* Implementation: Sets the branch island's target, with an optional instruction. @param island -> The branch island to insert target into. @param branchTo -> The address of the target. @param instruction -> Optional instruction to execute prior to branch. Set to zero for nop. @result <- mach_error_t ***************************************************************************/ #if defined(__ppc__) || defined(__POWERPC__) mach_error_t setBranchIslandTarget( BranchIsland *island, const void *branchTo, long instruction ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // Fill in the address. ((short*)island->instructions)[kAddressLo] = ((long) branchTo) & 0x0000FFFF; ((short*)island->instructions)[kAddressHi] = (((long) branchTo) >> 16) & 0x0000FFFF; // Fill in the (optional) instuction. if( instruction != 0 ) { ((short*)island->instructions)[kInstructionLo] = instruction & 0x0000FFFF; ((short*)island->instructions)[kInstructionHi] = (instruction >> 16) & 0x0000FFFF; } //MakeDataExecutable( island->instructions, sizeof( kIslandTemplate ) ); msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #endif #if defined(__i386__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // copy original instructions if (instructions) { bcopy (instructions, island->instructions + kInstructions, kOriginalInstructionsSize); } // Fill in the address. int32_t addressOffset = (char *)branchTo - (island->instructions + kJumpAddress + 4); *((int32_t *)(island->instructions + kJumpAddress)) = addressOffset; msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #elif defined(__x86_64__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // Copy original instructions. if (instructions) { bcopy (instructions, island->instructions, kOriginalInstructionsSize); } // Fill in the address. *((uint64_t *)(island->instructions + kJumpAddress)) = (uint64_t)branchTo; msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #endif #if defined(__i386__) || defined(__x86_64__) // simplistic instruction matching typedef struct { unsigned int length; // max 15 unsigned char mask[15]; // sequence of bytes in memory order unsigned char constraint[15]; // sequence of bytes in memory order } AsmInstructionMatch; #if defined(__i386__) static AsmInstructionMatch possibleInstructions[] = { { 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xE9, 0x00, 0x00, 0x00, 0x00} }, // jmp 0x???????? { 0x5, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0x55, 0x89, 0xe5, 0xc9, 0xc3} }, // push %ebp; mov %esp,%ebp; leave; ret { 0x1, {0xFF}, {0x90} }, // nop { 0x1, {0xFF}, {0x55} }, // push %esp { 0x2, {0xFF, 0xFF}, {0x89, 0xE5} }, // mov %esp,%ebp { 0x1, {0xFF}, {0x53} }, // push %ebx { 0x3, {0xFF, 0xFF, 0x00}, {0x83, 0xEC, 0x00} }, // sub 0x??, %esp { 0x6, {0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, {0x81, 0xEC, 0x00, 0x00, 0x00, 0x00} }, // sub 0x??, %esp with 32bit immediate { 0x1, {0xFF}, {0x57} }, // push %edi { 0x1, {0xFF}, {0x56} }, // push %esi { 0x2, {0xFF, 0xFF}, {0x31, 0xC0} }, // xor %eax, %eax { 0x3, {0xFF, 0x4F, 0x00}, {0x8B, 0x45, 0x00} }, // mov $imm(%ebp), %reg { 0x3, {0xFF, 0x4C, 0x00}, {0x8B, 0x40, 0x00} }, // mov $imm(%eax-%edx), %reg { 0x4, {0xFF, 0xFF, 0xFF, 0x00}, {0x8B, 0x4C, 0x24, 0x00} }, // mov $imm(%esp), %ecx { 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xB8, 0x00, 0x00, 0x00, 0x00} }, // mov $imm, %eax { 0x6, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xE8, 0x00, 0x00, 0x00, 0x00, 0x58} }, // call $imm; pop %eax { 0x0 } }; #elif defined(__x86_64__) static AsmInstructionMatch possibleInstructions[] = { { 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xE9, 0x00, 0x00, 0x00, 0x00} }, // jmp 0x???????? { 0x1, {0xFF}, {0x90} }, // nop { 0x1, {0xF8}, {0x50} }, // push %rX { 0x3, {0xFF, 0xFF, 0xFF}, {0x48, 0x89, 0xE5} }, // mov %rsp,%rbp { 0x4, {0xFF, 0xFF, 0xFF, 0x00}, {0x48, 0x83, 0xEC, 0x00} }, // sub 0x??, %rsp { 0x4, {0xFB, 0xFF, 0x00, 0x00}, {0x48, 0x89, 0x00, 0x00} }, // move onto rbp { 0x4, {0xFF, 0xFF, 0xFF, 0xFF}, {0x40, 0x0f, 0xbe, 0xce} }, // movsbl %sil, %ecx { 0x2, {0xFF, 0x00}, {0x41, 0x00} }, // push %rXX { 0x2, {0xFF, 0x00}, {0x85, 0x00} }, // test %rX,%rX { 0x5, {0xF8, 0x00, 0x00, 0x00, 0x00}, {0xB8, 0x00, 0x00, 0x00, 0x00} }, // mov $imm, %reg { 0x3, {0xFF, 0xFF, 0x00}, {0xFF, 0x77, 0x00} }, // pushq $imm(%rdi) { 0x2, {0xFF, 0xFF}, {0x31, 0xC0} }, // xor %eax, %eax { 0x2, {0xFF, 0xFF}, {0x89, 0xF8} }, // mov %edi, %eax //leaq offset(%rip),%rax { 0x7, {0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, {0x48, 0x8d, 0x05, 0x00, 0x00, 0x00, 0x00} }, { 0x0 } }; #endif static Boolean codeMatchesInstruction(unsigned char *code, AsmInstructionMatch* instruction) { Boolean match = true; size_t i; for (i=0; i<instruction->length; i++) { unsigned char mask = instruction->mask[i]; unsigned char constraint = instruction->constraint[i]; unsigned char codeValue = code[i]; match = ((codeValue & mask) == constraint); if (!match) break; } return match; } #if defined(__i386__) || defined(__x86_64__) static Boolean eatKnownInstructions( unsigned char *code, uint64_t *newInstruction, int *howManyEaten, char *originalInstructions, int *originalInstructionCount, uint8_t *originalInstructionSizes ) { Boolean allInstructionsKnown = true; int totalEaten = 0; unsigned char* ptr = code; int remainsToEat = 5; // a JMP instruction takes 5 bytes int instructionIndex = 0; if (howManyEaten) *howManyEaten = 0; if (originalInstructionCount) *originalInstructionCount = 0; while (remainsToEat > 0) { Boolean curInstructionKnown = false; // See if instruction matches one we know AsmInstructionMatch* curInstr = possibleInstructions; do { if ((curInstructionKnown = codeMatchesInstruction(ptr, curInstr))) break; curInstr++; } while (curInstr->length > 0); // if all instruction matches failed, we don't know current instruction then, stop here if (!curInstructionKnown) { allInstructionsKnown = false; fprintf(stderr, "mach_override: some instructions unknown! Need to update mach_override.c\n"); break; } // At this point, we've matched curInstr int eaten = curInstr->length; ptr += eaten; remainsToEat -= eaten; totalEaten += eaten; if (originalInstructionSizes) originalInstructionSizes[instructionIndex] = eaten; instructionIndex += 1; if (originalInstructionCount) *originalInstructionCount = instructionIndex; } if (howManyEaten) *howManyEaten = totalEaten; if (originalInstructions) { Boolean enoughSpaceForOriginalInstructions = (totalEaten < kOriginalInstructionsSize); if (enoughSpaceForOriginalInstructions) { memset(originalInstructions, 0x90 /* NOP */, kOriginalInstructionsSize); // fill instructions with NOP bcopy(code, originalInstructions, totalEaten); } else { // printf ("Not enough space in island to store original instructions. Adapt the island definition and kOriginalInstructionsSize\n"); return false; } } if (allInstructionsKnown) { // save last 3 bytes of first 64bits of codre we'll replace uint64_t currentFirst64BitsOfCode = *((uint64_t *)code); currentFirst64BitsOfCode = OSSwapInt64(currentFirst64BitsOfCode); // back to memory representation currentFirst64BitsOfCode &= 0x0000000000FFFFFFLL; // keep only last 3 instructions bytes, first 5 will be replaced by JMP instr *newInstruction &= 0xFFFFFFFFFF000000LL; // clear last 3 bytes *newInstruction |= (currentFirst64BitsOfCode & 0x0000000000FFFFFFLL); // set last 3 bytes } return allInstructionsKnown; } static void fixupInstructions( uint32_t offset, void *instructionsToFix, int instructionCount, uint8_t *instructionSizes ) { // The start of "leaq offset(%rip),%rax" static const uint8_t LeaqHeader[] = {0x48, 0x8d, 0x05}; int index; for (index = 0;index < instructionCount;index += 1) { if (*(uint8_t*)instructionsToFix == 0xE9) // 32-bit jump relative { uint32_t *jumpOffsetPtr = (uint32_t*)((uintptr_t)instructionsToFix + 1); *jumpOffsetPtr += offset; } // leaq offset(%rip),%rax if (memcmp(instructionsToFix, LeaqHeader, 3) == 0) { uint32_t *LeaqOffsetPtr = (uint32_t*)((uintptr_t)instructionsToFix + 3); *LeaqOffsetPtr += offset; } // 32-bit call relative to the next addr; pop %eax if (*(uint8_t*)instructionsToFix == 0xE8) { // Just this call is larger than the jump we use, so we // know this is the last instruction. assert(index == (instructionCount - 1)); assert(instructionSizes[index] == 6); // Insert "addl $offset, %eax" in the end so that when // we jump to the rest of the function %eax has the // value it would have if eip had been pushed by the // call in its original position. uint8_t *op = instructionsToFix; op += 6; *op = 0x05; // addl uint32_t *addImmPtr = (uint32_t*)(op + 1); *addImmPtr = offset; } instructionsToFix = (void*)((uintptr_t)instructionsToFix + instructionSizes[index]); } } #endif #if defined(__i386__) __asm( ".text;" ".align 2, 0x90;" "_atomic_mov64:;" " pushl %ebp;" " movl %esp, %ebp;" " pushl %esi;" " pushl %ebx;" " pushl %ecx;" " pushl %eax;" " pushl %edx;" // atomic push of value to an address // we use cmpxchg8b, which compares content of an address with // edx:eax. If they are equal, it atomically puts 64bit value // ecx:ebx in address. // We thus put contents of address in edx:eax to force ecx:ebx // in address " mov 8(%ebp), %esi;" // esi contains target address " mov 12(%ebp), %ebx;" " mov 16(%ebp), %ecx;" // ecx:ebx now contains value to put in target address " mov (%esi), %eax;" " mov 4(%esi), %edx;" // edx:eax now contains value currently contained in target address " lock; cmpxchg8b (%esi);" // atomic move. // restore registers " popl %edx;" " popl %eax;" " popl %ecx;" " popl %ebx;" " popl %esi;" " popl %ebp;" " ret" ); #elif defined(__x86_64__) void atomic_mov64( uint64_t *targetAddress, uint64_t value ) { *targetAddress = value; } #endif #endif