/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsEscape.h" #include "nsString.h" #include "nsIURI.h" #include "nsUrlClassifierUtils.h" #include "nsTArray.h" #include "nsReadableUtils.h" #include "plbase64.h" #include "nsPrintfCString.h" #include "safebrowsing.pb.h" #include "mozilla/Sprintf.h" #include "mozilla/Mutex.h" #define DEFAULT_PROTOCOL_VERSION "2.2" static char int_to_hex_digit(int32_t i) { NS_ASSERTION((i >= 0) && (i <= 15), "int too big in int_to_hex_digit"); return static_cast<char>(((i < 10) ? (i + '0') : ((i - 10) + 'A'))); } static bool IsDecimal(const nsACString & num) { for (uint32_t i = 0; i < num.Length(); i++) { if (!isdigit(num[i])) { return false; } } return true; } static bool IsHex(const nsACString & num) { if (num.Length() < 3) { return false; } if (num[0] != '0' || !(num[1] == 'x' || num[1] == 'X')) { return false; } for (uint32_t i = 2; i < num.Length(); i++) { if (!isxdigit(num[i])) { return false; } } return true; } static bool IsOctal(const nsACString & num) { if (num.Length() < 2) { return false; } if (num[0] != '0') { return false; } for (uint32_t i = 1; i < num.Length(); i++) { if (!isdigit(num[i]) || num[i] == '8' || num[i] == '9') { return false; } } return true; } ///////////////////////////////////////////////////////////////// // SafeBrowsing V4 related utits. namespace mozilla { namespace safebrowsing { static PlatformType GetPlatformType() { #if defined(ANDROID) return ANDROID_PLATFORM; #elif defined(XP_MACOSX) return OSX_PLATFORM; #elif defined(XP_LINUX) return LINUX_PLATFORM; #elif defined(XP_WIN) return WINDOWS_PLATFORM; #else return PLATFORM_TYPE_UNSPECIFIED; #endif } typedef FetchThreatListUpdatesRequest_ListUpdateRequest ListUpdateRequest; typedef FetchThreatListUpdatesRequest_ListUpdateRequest_Constraints Constraints; static void InitListUpdateRequest(ThreatType aThreatType, const char* aStateBase64, ListUpdateRequest* aListUpdateRequest) { aListUpdateRequest->set_threat_type(aThreatType); aListUpdateRequest->set_platform_type(GetPlatformType()); aListUpdateRequest->set_threat_entry_type(URL); Constraints* contraints = new Constraints(); contraints->add_supported_compressions(RICE); aListUpdateRequest->set_allocated_constraints(contraints); // Only set non-empty state. if (aStateBase64[0] != '\0') { nsCString stateBinary; nsresult rv = Base64Decode(nsCString(aStateBase64), stateBinary); if (NS_SUCCEEDED(rv)) { aListUpdateRequest->set_state(stateBinary.get(), stateBinary.Length()); } } } static ClientInfo* CreateClientInfo() { ClientInfo* c = new ClientInfo(); nsCOMPtr<nsIPrefBranch> prefBranch = do_GetService(NS_PREFSERVICE_CONTRACTID); nsXPIDLCString clientId; nsresult rv = prefBranch->GetCharPref("browser.safebrowsing.id", getter_Copies(clientId)); if (NS_FAILED(rv)) { clientId = "Firefox"; // Use "Firefox" as fallback. } c->set_client_id(clientId.get()); return c; } } // end of namespace safebrowsing. } // end of namespace mozilla. nsUrlClassifierUtils::nsUrlClassifierUtils() : mEscapeCharmap(nullptr) , mProviderDictLock("nsUrlClassifierUtils.mProviderDictLock") { } nsresult nsUrlClassifierUtils::Init() { // Everything but alpha numerics, - and . mEscapeCharmap = new Charmap(0xffffffff, 0xfc009fff, 0xf8000001, 0xf8000001, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff); if (!mEscapeCharmap) return NS_ERROR_OUT_OF_MEMORY; // nsIUrlClassifierUtils is a thread-safe service so it's // allowed to use on non-main threads. However, building // the provider dictionary must be on the main thread. // We forcefully load nsUrlClassifierUtils in // nsUrlClassifierDBService::Init() to ensure we must // now be on the main thread. nsresult rv = ReadProvidersFromPrefs(mProviderDict); NS_ENSURE_SUCCESS(rv, rv); // Add an observer for shutdown nsCOMPtr<nsIObserverService> observerService = mozilla::services::GetObserverService(); if (!observerService) return NS_ERROR_FAILURE; observerService->AddObserver(this, "xpcom-shutdown-threads", false); Preferences::AddStrongObserver(this, "browser.safebrowsing"); return NS_OK; } NS_IMPL_ISUPPORTS(nsUrlClassifierUtils, nsIUrlClassifierUtils, nsIObserver) ///////////////////////////////////////////////////////////////////////////// // nsIUrlClassifierUtils NS_IMETHODIMP nsUrlClassifierUtils::GetKeyForURI(nsIURI * uri, nsACString & _retval) { nsCOMPtr<nsIURI> innerURI = NS_GetInnermostURI(uri); if (!innerURI) innerURI = uri; nsAutoCString host; innerURI->GetAsciiHost(host); if (host.IsEmpty()) { return NS_ERROR_MALFORMED_URI; } nsresult rv = CanonicalizeHostname(host, _retval); NS_ENSURE_SUCCESS(rv, rv); nsAutoCString path; rv = innerURI->GetPath(path); NS_ENSURE_SUCCESS(rv, rv); // strip out anchors int32_t ref = path.FindChar('#'); if (ref != kNotFound) path.SetLength(ref); nsAutoCString temp; rv = CanonicalizePath(path, temp); NS_ENSURE_SUCCESS(rv, rv); _retval.Append(temp); return NS_OK; } // We use "goog-*-proto" as the list name for v4, where "proto" indicates // it's updated (as well as hash completion) via protobuf. // // In the mozilla official build, we are allowed to use the // private phishing list (goog-phish-proto). See Bug 1288840. static const struct { const char* mListName; uint32_t mThreatType; } THREAT_TYPE_CONV_TABLE[] = { { "goog-malware-proto", MALWARE_THREAT}, // 1 { "googpub-phish-proto", SOCIAL_ENGINEERING_PUBLIC}, // 2 { "goog-unwanted-proto", UNWANTED_SOFTWARE}, // 3 { "goog-phish-proto", SOCIAL_ENGINEERING}, // 5 // For testing purpose. { "test-phish-proto", SOCIAL_ENGINEERING_PUBLIC}, // 2 { "test-unwanted-proto", UNWANTED_SOFTWARE}, // 3 }; NS_IMETHODIMP nsUrlClassifierUtils::ConvertThreatTypeToListNames(uint32_t aThreatType, nsACString& aListNames) { for (uint32_t i = 0; i < ArrayLength(THREAT_TYPE_CONV_TABLE); i++) { if (aThreatType == THREAT_TYPE_CONV_TABLE[i].mThreatType) { if (!aListNames.IsEmpty()) { aListNames.AppendLiteral(","); } aListNames += THREAT_TYPE_CONV_TABLE[i].mListName; } } return aListNames.IsEmpty() ? NS_ERROR_FAILURE : NS_OK; } NS_IMETHODIMP nsUrlClassifierUtils::ConvertListNameToThreatType(const nsACString& aListName, uint32_t* aThreatType) { for (uint32_t i = 0; i < ArrayLength(THREAT_TYPE_CONV_TABLE); i++) { if (aListName.EqualsASCII(THREAT_TYPE_CONV_TABLE[i].mListName)) { *aThreatType = THREAT_TYPE_CONV_TABLE[i].mThreatType; return NS_OK; } } return NS_ERROR_FAILURE; } NS_IMETHODIMP nsUrlClassifierUtils::GetProvider(const nsACString& aTableName, nsACString& aProvider) { MutexAutoLock lock(mProviderDictLock); nsCString* provider = nullptr; if (mProviderDict.Get(aTableName, &provider)) { aProvider = provider ? *provider : EmptyCString(); } else { aProvider = EmptyCString(); } return NS_OK; } NS_IMETHODIMP nsUrlClassifierUtils::GetProtocolVersion(const nsACString& aProvider, nsACString& aVersion) { nsCOMPtr<nsIPrefBranch> prefBranch = do_GetService(NS_PREFSERVICE_CONTRACTID); if (prefBranch) { nsPrintfCString prefName("browser.safebrowsing.provider.%s.pver", nsCString(aProvider).get()); nsXPIDLCString version; nsresult rv = prefBranch->GetCharPref(prefName.get(), getter_Copies(version)); aVersion = NS_SUCCEEDED(rv) ? version : DEFAULT_PROTOCOL_VERSION; } else { aVersion = DEFAULT_PROTOCOL_VERSION; } return NS_OK; } NS_IMETHODIMP nsUrlClassifierUtils::MakeUpdateRequestV4(const char** aListNames, const char** aStatesBase64, uint32_t aCount, nsACString &aRequest) { using namespace mozilla::safebrowsing; FetchThreatListUpdatesRequest r; r.set_allocated_client(CreateClientInfo()); for (uint32_t i = 0; i < aCount; i++) { nsCString listName(aListNames[i]); uint32_t threatType; nsresult rv = ConvertListNameToThreatType(listName, &threatType); if (NS_FAILED(rv)) { continue; // Unknown list name. } auto lur = r.mutable_list_update_requests()->Add(); InitListUpdateRequest(static_cast<ThreatType>(threatType), aStatesBase64[i], lur); } // Then serialize. std::string s; r.SerializeToString(&s); nsCString out; nsresult rv = Base64URLEncode(s.size(), (const uint8_t*)s.c_str(), Base64URLEncodePaddingPolicy::Include, out); NS_ENSURE_SUCCESS(rv, rv); aRequest = out; return NS_OK; } ////////////////////////////////////////////////////////// // nsIObserver NS_IMETHODIMP nsUrlClassifierUtils::Observe(nsISupports *aSubject, const char *aTopic, const char16_t *aData) { if (0 == strcmp(aTopic, NS_PREFBRANCH_PREFCHANGE_TOPIC_ID)) { MutexAutoLock lock(mProviderDictLock); return ReadProvidersFromPrefs(mProviderDict); } if (0 == strcmp(aTopic, "xpcom-shutdown-threads")) { nsCOMPtr<nsIPrefBranch> prefs = do_GetService(NS_PREFSERVICE_CONTRACTID); NS_ENSURE_TRUE(prefs, NS_ERROR_FAILURE); return prefs->RemoveObserver("browser.safebrowsing", this); } return NS_ERROR_UNEXPECTED; } ///////////////////////////////////////////////////////////////////////////// // non-interface methods nsresult nsUrlClassifierUtils::ReadProvidersFromPrefs(ProviderDictType& aDict) { MOZ_ASSERT(NS_IsMainThread(), "ReadProvidersFromPrefs must be on main thread"); nsCOMPtr<nsIPrefService> prefs = do_GetService(NS_PREFSERVICE_CONTRACTID); NS_ENSURE_TRUE(prefs, NS_ERROR_FAILURE); nsCOMPtr<nsIPrefBranch> prefBranch; nsresult rv = prefs->GetBranch("browser.safebrowsing.provider.", getter_AddRefs(prefBranch)); NS_ENSURE_SUCCESS(rv, rv); // We've got a pref branch for "browser.safebrowsing.provider.". // Enumerate all children prefs and parse providers. uint32_t childCount; char** childArray; rv = prefBranch->GetChildList("", &childCount, &childArray); NS_ENSURE_SUCCESS(rv, rv); // Collect providers from childArray. nsTHashtable<nsCStringHashKey> providers; for (uint32_t i = 0; i < childCount; i++) { nsCString child(childArray[i]); auto dotPos = child.FindChar('.'); if (dotPos < 0) { continue; } nsDependentCSubstring provider = Substring(child, 0, dotPos); providers.PutEntry(provider); } NS_FREE_XPCOM_ALLOCATED_POINTER_ARRAY(childCount, childArray); // Now we have all providers. Check which one owns |aTableName|. // e.g. The owning lists of provider "google" is defined in // "browser.safebrowsing.provider.google.lists". for (auto itr = providers.Iter(); !itr.Done(); itr.Next()) { auto entry = itr.Get(); nsCString provider(entry->GetKey()); nsPrintfCString owninListsPref("%s.lists", provider.get()); nsXPIDLCString owningLists; nsresult rv = prefBranch->GetCharPref(owninListsPref.get(), getter_Copies(owningLists)); if (NS_FAILED(rv)) { continue; } // We've got the owning lists (represented as string) of |provider|. // Build the dictionary for the owning list and the current provider. nsTArray<nsCString> tables; Classifier::SplitTables(owningLists, tables); for (auto tableName : tables) { aDict.Put(tableName, new nsCString(provider)); } } return NS_OK; } nsresult nsUrlClassifierUtils::CanonicalizeHostname(const nsACString & hostname, nsACString & _retval) { nsAutoCString unescaped; if (!NS_UnescapeURL(PromiseFlatCString(hostname).get(), PromiseFlatCString(hostname).Length(), 0, unescaped)) { unescaped.Assign(hostname); } nsAutoCString cleaned; CleanupHostname(unescaped, cleaned); nsAutoCString temp; ParseIPAddress(cleaned, temp); if (!temp.IsEmpty()) { cleaned.Assign(temp); } ToLowerCase(cleaned); SpecialEncode(cleaned, false, _retval); return NS_OK; } nsresult nsUrlClassifierUtils::CanonicalizePath(const nsACString & path, nsACString & _retval) { _retval.Truncate(); nsAutoCString decodedPath(path); nsAutoCString temp; while (NS_UnescapeURL(decodedPath.get(), decodedPath.Length(), 0, temp)) { decodedPath.Assign(temp); temp.Truncate(); } SpecialEncode(decodedPath, true, _retval); // XXX: lowercase the path? return NS_OK; } void nsUrlClassifierUtils::CleanupHostname(const nsACString & hostname, nsACString & _retval) { _retval.Truncate(); const char* curChar = hostname.BeginReading(); const char* end = hostname.EndReading(); char lastChar = '\0'; while (curChar != end) { unsigned char c = static_cast<unsigned char>(*curChar); if (c == '.' && (lastChar == '\0' || lastChar == '.')) { // skip } else { _retval.Append(*curChar); } lastChar = c; ++curChar; } // cut off trailing dots while (_retval.Length() > 0 && _retval[_retval.Length() - 1] == '.') { _retval.SetLength(_retval.Length() - 1); } } void nsUrlClassifierUtils::ParseIPAddress(const nsACString & host, nsACString & _retval) { _retval.Truncate(); nsACString::const_iterator iter, end; host.BeginReading(iter); host.EndReading(end); if (host.Length() <= 15) { // The Windows resolver allows a 4-part dotted decimal IP address to // have a space followed by any old rubbish, so long as the total length // of the string doesn't get above 15 characters. So, "10.192.95.89 xy" // is resolved to 10.192.95.89. // If the string length is greater than 15 characters, e.g. // "10.192.95.89 xy.wildcard.example.com", it will be resolved through // DNS. if (FindCharInReadable(' ', iter, end)) { end = iter; } } for (host.BeginReading(iter); iter != end; iter++) { if (!(isxdigit(*iter) || *iter == 'x' || *iter == 'X' || *iter == '.')) { // not an IP return; } } host.BeginReading(iter); nsTArray<nsCString> parts; ParseString(PromiseFlatCString(Substring(iter, end)), '.', parts); if (parts.Length() > 4) { return; } // If any potentially-octal numbers (start with 0 but not hex) have // non-octal digits, no part of the ip can be in octal // XXX: this came from the old javascript implementation, is it really // supposed to be like this? bool allowOctal = true; uint32_t i; for (i = 0; i < parts.Length(); i++) { const nsCString& part = parts[i]; if (part[0] == '0') { for (uint32_t j = 1; j < part.Length(); j++) { if (part[j] == 'x') { break; } if (part[j] == '8' || part[j] == '9') { allowOctal = false; break; } } } } for (i = 0; i < parts.Length(); i++) { nsAutoCString canonical; if (i == parts.Length() - 1) { CanonicalNum(parts[i], 5 - parts.Length(), allowOctal, canonical); } else { CanonicalNum(parts[i], 1, allowOctal, canonical); } if (canonical.IsEmpty()) { _retval.Truncate(); return; } if (_retval.IsEmpty()) { _retval.Assign(canonical); } else { _retval.Append('.'); _retval.Append(canonical); } } return; } void nsUrlClassifierUtils::CanonicalNum(const nsACString& num, uint32_t bytes, bool allowOctal, nsACString& _retval) { _retval.Truncate(); if (num.Length() < 1) { return; } uint32_t val; if (allowOctal && IsOctal(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), "%o", &val) != 1) { return; } } else if (IsDecimal(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), "%u", &val) != 1) { return; } } else if (IsHex(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), num[1] == 'X' ? "0X%x" : "0x%x", &val) != 1) { return; } } else { return; } while (bytes--) { char buf[20]; SprintfLiteral(buf, "%u", val & 0xff); if (_retval.IsEmpty()) { _retval.Assign(buf); } else { _retval = nsDependentCString(buf) + NS_LITERAL_CSTRING(".") + _retval; } val >>= 8; } } // This function will encode all "special" characters in typical url // encoding, that is %hh where h is a valid hex digit. It will also fold // any duplicated slashes. bool nsUrlClassifierUtils::SpecialEncode(const nsACString & url, bool foldSlashes, nsACString & _retval) { bool changed = false; const char* curChar = url.BeginReading(); const char* end = url.EndReading(); unsigned char lastChar = '\0'; while (curChar != end) { unsigned char c = static_cast<unsigned char>(*curChar); if (ShouldURLEscape(c)) { _retval.Append('%'); _retval.Append(int_to_hex_digit(c / 16)); _retval.Append(int_to_hex_digit(c % 16)); changed = true; } else if (foldSlashes && (c == '/' && lastChar == '/')) { // skip } else { _retval.Append(*curChar); } lastChar = c; curChar++; } return changed; } bool nsUrlClassifierUtils::ShouldURLEscape(const unsigned char c) const { return c <= 32 || c == '%' || c >=127; }