/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "test/warp_filter_test_util.h" using std::tr1::tuple; using std::tr1::make_tuple; namespace libaom_test { namespace AV1WarpFilter { ::testing::internal::ParamGenerator BuildParams( warp_affine_func filter) { const WarpTestParam params[] = { make_tuple(4, 4, 100, filter), make_tuple(8, 8, 100, filter), make_tuple(64, 64, 100, filter), make_tuple(4, 16, 100, filter), make_tuple(32, 8, 100, filter), }; return ::testing::ValuesIn(params); } AV1WarpFilterTest::~AV1WarpFilterTest() {} void AV1WarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1WarpFilterTest::TearDown() { libaom_test::ClearSystemState(); } int32_t AV1WarpFilterTest::random_param(int bits) { // 1 in 8 chance of generating zero (arbitrarily chosen) if (((rnd_.Rand8()) & 7) == 0) return 0; // Otherwise, enerate uniform values in the range // [-(1 << bits), 1] U [1, 1<= (1 << WARPEDMODEL_PREC_BITS)) || (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS))) continue; *alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); // We have a valid model, so finish return; } } void AV1WarpFilterTest::RunCheckOutput(warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2); int i, j, sub_x, sub_y; uint8_t *input_ = new uint8_t[h * stride]; uint8_t *input = input_ + border; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint8_t *output = new uint8_t[output_n]; uint8_t *output2 = new uint8_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, 0); #if CONFIG_CONVOLVE_ROUND int32_t *dsta = new int32_t[output_n]; int32_t *dstb = new int32_t[output_n]; #endif for (i = 0; i < num_iters; ++i) { // Generate an input block and extend its borders horizontally for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8(); for (int r = 0; r < h; ++r) { memset(input + r * stride - border, input[r * stride], border); memset(input + r * stride + w, input[r * stride + (w - 1)], border); } #if CONFIG_CONVOLVE_ROUND const int use_no_round = rnd_.Rand8() & 1; #endif for (sub_x = 0; sub_x < 2; ++sub_x) for (sub_y = 0; sub_y < 2; ++sub_y) { generate_model(mat, &alpha, &beta, &gamma, &delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { // Prepare two copies of the destination for (j = 0; j < out_w * out_h; ++j) { int32_t v = rnd_.Rand16(); dsta[j] = v; dstb[j] = v; } conv_params = get_conv_params_no_round(0, 0, 0, dsta, out_w); } else { conv_params = get_conv_params(0, 0, 0); } #endif av1_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { conv_params = get_conv_params_no_round(0, 0, 0, dstb, out_w); } #endif test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(dsta[j], dstb[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } else { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } #else for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; #endif } } delete[] input_; delete[] output; delete[] output2; #if CONFIG_CONVOLVE_ROUND delete[] dsta; delete[] dstb; #endif } } // namespace AV1WarpFilter #if CONFIG_HIGHBITDEPTH namespace AV1HighbdWarpFilter { ::testing::internal::ParamGenerator GetDefaultParams() { const HighbdWarpTestParam defaultParams[] = { make_tuple(4, 4, 100, 8), make_tuple(8, 8, 100, 8), make_tuple(64, 64, 100, 8), make_tuple(4, 16, 100, 8), make_tuple(32, 8, 100, 8), make_tuple(4, 4, 100, 10), make_tuple(8, 8, 100, 10), make_tuple(64, 64, 100, 10), make_tuple(4, 16, 100, 10), make_tuple(32, 8, 100, 10), make_tuple(4, 4, 100, 12), make_tuple(8, 8, 100, 12), make_tuple(64, 64, 100, 12), make_tuple(4, 16, 100, 12), make_tuple(32, 8, 100, 12), }; return ::testing::ValuesIn(defaultParams); } AV1HighbdWarpFilterTest::~AV1HighbdWarpFilterTest() {} void AV1HighbdWarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HighbdWarpFilterTest::TearDown() { libaom_test::ClearSystemState(); } int32_t AV1HighbdWarpFilterTest::random_param(int bits) { // 1 in 8 chance of generating zero (arbitrarily chosen) if (((rnd_.Rand8()) & 7) == 0) return 0; // Otherwise, enerate uniform values in the range // [-(1 << bits), 1] U [1, 1<= (1 << WARPEDMODEL_PREC_BITS)) || (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS))) continue; *alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); // We have a valid model, so finish return; } } void AV1HighbdWarpFilterTest::RunCheckOutput( highbd_warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2); const int bd = GET_PARAM(3); const int mask = (1 << bd) - 1; int i, j, sub_x, sub_y; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint16_t *input_ = new uint16_t[h * stride]; uint16_t *input = input_ + border; uint16_t *output = new uint16_t[output_n]; uint16_t *output2 = new uint16_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, 0); #if CONFIG_CONVOLVE_ROUND int32_t *dsta = new int32_t[output_n]; int32_t *dstb = new int32_t[output_n]; #endif for (i = 0; i < num_iters; ++i) { // Generate an input block and extend its borders horizontally for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask; for (int r = 0; r < h; ++r) { for (int c = 0; c < border; ++c) { input[r * stride - border + c] = input[r * stride]; input[r * stride + w + c] = input[r * stride + (w - 1)]; } } #if CONFIG_CONVOLVE_ROUND const int use_no_round = rnd_.Rand8() & 1; #endif for (sub_x = 0; sub_x < 2; ++sub_x) for (sub_y = 0; sub_y < 2; ++sub_y) { generate_model(mat, &alpha, &beta, &gamma, &delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { // Prepare two copies of the destination for (j = 0; j < out_w * out_h; ++j) { int32_t v = rnd_.Rand16(); dsta[j] = v; dstb[j] = v; } conv_params = get_conv_params_no_round(0, 0, 0, dsta, out_w); } else { conv_params = get_conv_params(0, 0, 0); } #endif av1_highbd_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { // TODO(angiebird): Change this to test_impl once we have SIMD // implementation conv_params = get_conv_params_no_round(0, 0, 0, dstb, out_w); } #endif test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h, out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta); #if CONFIG_CONVOLVE_ROUND if (use_no_round) { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(dsta[j], dstb[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } else { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } #else for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; #endif } } delete[] input_; delete[] output; delete[] output2; #if CONFIG_CONVOLVE_ROUND delete[] dsta; delete[] dstb; #endif } } // namespace AV1HighbdWarpFilter #endif // CONFIG_HIGHBITDEPTH } // namespace libaom_test