/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_mem/aom_mem.h" #include "aom_ports/aom_timer.h" #include "aom_ports/mem.h" #include "av1/common/filter.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" namespace { static const unsigned int kMaxDimension = MAX_SB_SIZE; typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int filter_x_stride, const int16_t *filter_y, int filter_y_stride, int w, int h); struct ConvolveFunctions { ConvolveFunctions(ConvolveFunc copy, ConvolveFunc h8, ConvolveFunc v8, int bd) : copy_(copy), h8_(h8), v8_(v8), use_highbd_(bd) {} ConvolveFunc copy_; ConvolveFunc h8_; ConvolveFunc v8_; int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth. }; typedef ::testing::tuple ConvolveParam; #define ALL_SIZES_64(convolve_fn) \ make_tuple(4, 4, &convolve_fn), make_tuple(8, 4, &convolve_fn), \ make_tuple(4, 8, &convolve_fn), make_tuple(8, 8, &convolve_fn), \ make_tuple(16, 8, &convolve_fn), make_tuple(8, 16, &convolve_fn), \ make_tuple(16, 16, &convolve_fn), make_tuple(32, 16, &convolve_fn), \ make_tuple(16, 32, &convolve_fn), make_tuple(32, 32, &convolve_fn), \ make_tuple(64, 32, &convolve_fn), make_tuple(32, 64, &convolve_fn), \ make_tuple(64, 64, &convolve_fn) #define ALL_SIZES(convolve_fn) \ make_tuple(128, 64, &convolve_fn), make_tuple(64, 128, &convolve_fn), \ make_tuple(128, 128, &convolve_fn), ALL_SIZES_64(convolve_fn) // Reference 8-tap subpixel filter, slightly modified to fit into this test. #define AV1_FILTER_WEIGHT 128 #define AV1_FILTER_SHIFT 7 uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; } void filter_block2d_8_c(const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { // Between passes, we use an intermediate buffer whose height is extended to // have enough horizontally filtered values as input for the vertical pass. // This buffer is allocated to be big enough for the largest block type we // support. const int kInterp_Extend = 4; const unsigned int intermediate_height = (kInterp_Extend - 1) + output_height + kInterp_Extend; unsigned int i, j; assert(intermediate_height > 7); // Size of intermediate_buffer is max_intermediate_height * filter_max_width, // where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height // + kInterp_Extend // = 3 + 16 + 4 // = 23 // and filter_max_width = 16 // uint8_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension]; const int intermediate_next_stride = 1 - static_cast(intermediate_height * output_width); // Horizontal pass (src -> transposed intermediate). uint8_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + (AV1_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel(temp >> AV1_FILTER_SHIFT); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } // Vertical pass (transposed intermediate -> dst). src_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * VFilter[0]) + (src_ptr[1] * VFilter[1]) + (src_ptr[2] * VFilter[2]) + (src_ptr[3] * VFilter[3]) + (src_ptr[4] * VFilter[4]) + (src_ptr[5] * VFilter[5]) + (src_ptr[6] * VFilter[6]) + (src_ptr[7] * VFilter[7]) + (AV1_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel(temp >> AV1_FILTER_SHIFT); src_ptr += intermediate_height; } src_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } void block2d_average_c(uint8_t *src, unsigned int src_stride, uint8_t *output_ptr, unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void filter_average_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { uint8_t tmp[kMaxDimension * kMaxDimension]; assert(output_width <= kMaxDimension); assert(output_height <= kMaxDimension); filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, kMaxDimension, output_width, output_height); block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride, output_width, output_height); } void highbd_filter_block2d_8_c(const uint16_t *src_ptr, const unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint16_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int bd) { // Between passes, we use an intermediate buffer whose height is extended to // have enough horizontally filtered values as input for the vertical pass. // This buffer is allocated to be big enough for the largest block type we // support. const int kInterp_Extend = 4; const unsigned int intermediate_height = (kInterp_Extend - 1) + output_height + kInterp_Extend; /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height * + kInterp_Extend * = 3 + 16 + 4 * = 23 * and filter_max_width = 16 */ uint16_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension] = { 0 }; const int intermediate_next_stride = 1 - static_cast(intermediate_height * output_width); // Horizontal pass (src -> transposed intermediate). { uint16_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; unsigned int i, j; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + (AV1_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } } // Vertical pass (transposed intermediate -> dst). { const uint16_t *interm_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (interm_ptr[0] * VFilter[0]) + (interm_ptr[1] * VFilter[1]) + (interm_ptr[2] * VFilter[2]) + (interm_ptr[3] * VFilter[3]) + (interm_ptr[4] * VFilter[4]) + (interm_ptr[5] * VFilter[5]) + (interm_ptr[6] * VFilter[6]) + (interm_ptr[7] * VFilter[7]) + (AV1_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd); interm_ptr += intermediate_height; } interm_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } } void highbd_block2d_average_c(uint16_t *src, unsigned int src_stride, uint16_t *output_ptr, unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void highbd_filter_average_block2d_8_c( const uint16_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint16_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int bd) { uint16_t tmp[kMaxDimension * kMaxDimension]; assert(output_width <= kMaxDimension); assert(output_height <= kMaxDimension); highbd_filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, kMaxDimension, output_width, output_height, bd); highbd_block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride, output_width, output_height); } class ConvolveTest : public ::testing::TestWithParam { public: static void SetUpTestCase() { // Force input_ to be unaligned, output to be 16 byte aligned. input_ = reinterpret_cast( aom_memalign(kDataAlignment, kInputBufferSize + 1)) + 1; output_ = reinterpret_cast( aom_memalign(kDataAlignment, kOutputBufferSize)); output_ref_ = reinterpret_cast( aom_memalign(kDataAlignment, kOutputBufferSize)); input16_ = reinterpret_cast(aom_memalign( kDataAlignment, (kInputBufferSize + 1) * sizeof(uint16_t))) + 1; output16_ = reinterpret_cast( aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); output16_ref_ = reinterpret_cast( aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); } virtual void TearDown() { libaom_test::ClearSystemState(); } static void TearDownTestCase() { aom_free(input_ - 1); input_ = NULL; aom_free(output_); output_ = NULL; aom_free(output_ref_); output_ref_ = NULL; aom_free(input16_ - 1); input16_ = NULL; aom_free(output16_); output16_ = NULL; aom_free(output16_ref_); output16_ref_ = NULL; } protected: static const int kDataAlignment = 16; static const int kOuterBlockSize = 4 * kMaxDimension; static const int kInputStride = kOuterBlockSize; static const int kOutputStride = kOuterBlockSize; static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; int Width() const { return GET_PARAM(0); } int Height() const { return GET_PARAM(1); } int BorderLeft() const { const int center = (kOuterBlockSize - Width()) / 2; return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); } int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } bool IsIndexInBorder(int i) { return (i < BorderTop() * kOuterBlockSize || i >= (BorderTop() + Height()) * kOuterBlockSize || i % kOuterBlockSize < BorderLeft() || i % kOuterBlockSize >= (BorderLeft() + Width())); } virtual void SetUp() { UUT_ = GET_PARAM(2); if (UUT_->use_highbd_ != 0) mask_ = (1 << UUT_->use_highbd_) - 1; else mask_ = 255; /* Set up guard blocks for an inner block centered in the outer block */ for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) { output_[i] = 255; output16_[i] = mask_; } else { output_[i] = 0; output16_[i] = 0; } } ::libaom_test::ACMRandom prng; for (int i = 0; i < kInputBufferSize; ++i) { if (i & 1) { input_[i] = 255; input16_[i] = mask_; } else { input_[i] = prng.Rand8Extremes(); input16_[i] = prng.Rand16() & mask_; } } } void SetConstantInput(int value) { memset(input_, value, kInputBufferSize); aom_memset16(input16_, value, kInputBufferSize); } void CopyOutputToRef() { memcpy(output_ref_, output_, kOutputBufferSize); // Copy 16-bit pixels values. The effective number of bytes is double. memcpy(output16_ref_, output16_, sizeof(output16_[0]) * kOutputBufferSize); } void CheckGuardBlocks() { for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) { EXPECT_EQ(255, output_[i]); } } } uint8_t *input() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); if (UUT_->use_highbd_ == 0) { return input_ + offset; } else { return CONVERT_TO_BYTEPTR(input16_) + offset; } } uint8_t *output() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); if (UUT_->use_highbd_ == 0) { return output_ + offset; } else { return CONVERT_TO_BYTEPTR(output16_) + offset; } } uint8_t *output_ref() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); if (UUT_->use_highbd_ == 0) { return output_ref_ + offset; } else { return CONVERT_TO_BYTEPTR(output16_ref_) + offset; } } uint16_t lookup(uint8_t *list, int index) const { if (UUT_->use_highbd_ == 0) { return list[index]; } else { return CONVERT_TO_SHORTPTR(list)[index]; } } void assign_val(uint8_t *list, int index, uint16_t val) const { if (UUT_->use_highbd_ == 0) { list[index] = (uint8_t)val; } else { CONVERT_TO_SHORTPTR(list)[index] = val; } } void wrapper_filter_average_block2d_8_c( const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { if (UUT_->use_highbd_ == 0) { filter_average_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr, dst_stride, output_width, output_height); } else { highbd_filter_average_block2d_8_c( CONVERT_TO_SHORTPTR(src_ptr), src_stride, HFilter, VFilter, CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height, UUT_->use_highbd_); } } void wrapper_filter_block2d_8_c( const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { if (UUT_->use_highbd_ == 0) { filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr, dst_stride, output_width, output_height); } else { highbd_filter_block2d_8_c(CONVERT_TO_SHORTPTR(src_ptr), src_stride, HFilter, VFilter, CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height, UUT_->use_highbd_); } } const ConvolveFunctions *UUT_; static uint8_t *input_; static uint8_t *output_; static uint8_t *output_ref_; static uint16_t *input16_; static uint16_t *output16_; static uint16_t *output16_ref_; int mask_; }; uint8_t *ConvolveTest::input_ = NULL; uint8_t *ConvolveTest::output_ = NULL; uint8_t *ConvolveTest::output_ref_ = NULL; uint16_t *ConvolveTest::input16_ = NULL; uint16_t *ConvolveTest::output16_ = NULL; uint16_t *ConvolveTest::output16_ref_ = NULL; TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } TEST_P(ConvolveTest, Copy) { uint8_t *const in = input(); uint8_t *const out = output(); ASM_REGISTER_STATE_CHECK(UUT_->copy_(in, kInputStride, out, kOutputStride, NULL, 0, NULL, 0, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), lookup(in, y * kInputStride + x)) << "(" << x << "," << y << ")"; } const int kNumFilterBanks = SWITCHABLE_FILTERS; const int kNumFilters = 16; TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpFilter filter = (InterpFilter)filter_bank; const InterpKernel *filters = (const InterpKernel *)av1_get_interp_filter_kernel(filter); const InterpFilterParams filter_params = av1_get_interp_filter_params_with_block_size(filter, 8); if (filter_params.taps != SUBPEL_TAPS) continue; for (int i = 0; i < kNumFilters; i++) { const int p0 = filters[i][0] + filters[i][1]; const int p1 = filters[i][2] + filters[i][3]; const int p2 = filters[i][4] + filters[i][5]; const int p3 = filters[i][6] + filters[i][7]; EXPECT_LE(p0, 128); EXPECT_LE(p1, 128); EXPECT_LE(p2, 128); EXPECT_LE(p3, 128); EXPECT_LE(p0 + p3, 128); EXPECT_LE(p0 + p3 + p1, 128); EXPECT_LE(p0 + p3 + p1 + p2, 128); EXPECT_EQ(p0 + p1 + p2 + p3, 128); } } } const int16_t kInvalidFilter[8] = { 0 }; TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { uint8_t *const in = input(); uint8_t *const out = output(); uint8_t ref8[kOutputStride * kMaxDimension]; uint16_t ref16[kOutputStride * kMaxDimension]; uint8_t *ref; if (UUT_->use_highbd_ == 0) { ref = ref8; } else { ref = CONVERT_TO_BYTEPTR(ref16); } for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpFilter filter = (InterpFilter)filter_bank; const InterpKernel *filters = (const InterpKernel *)av1_get_interp_filter_kernel(filter); const InterpFilterParams filter_params = av1_get_interp_filter_params_with_block_size(filter, 8); if (filter_params.taps != SUBPEL_TAPS) continue; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height()); if (filter_x && filter_y) continue; else if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, 16, filters[filter_y], 16, Width(), Height())); else if (filter_x) ASM_REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, kInvalidFilter, 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK( UUT_->copy_(in, kInputStride, out, kOutputStride, kInvalidFilter, 0, kInvalidFilter, 0, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(ref, y * kOutputStride + x), lookup(out, y * kOutputStride + x)) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } TEST_P(ConvolveTest, FilterExtremes) { uint8_t *const in = input(); uint8_t *const out = output(); uint8_t ref8[kOutputStride * kMaxDimension]; uint16_t ref16[kOutputStride * kMaxDimension]; uint8_t *ref; if (UUT_->use_highbd_ == 0) { ref = ref8; } else { ref = CONVERT_TO_BYTEPTR(ref16); } // Populate ref and out with some random data ::libaom_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { uint16_t r; if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { r = prng.Rand8Extremes(); } else { r = prng.Rand16() & mask_; } assign_val(out, y * kOutputStride + x, r); assign_val(ref, y * kOutputStride + x, r); } } for (int axis = 0; axis < 2; axis++) { int seed_val = 0; while (seed_val < 256) { for (int y = 0; y < 8; ++y) { for (int x = 0; x < 8; ++x) { assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, ((seed_val >> (axis ? y : x)) & 1) * mask_); if (axis) seed_val++; } if (axis) seed_val -= 8; else seed_val++; } if (axis) seed_val += 8; for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpFilter filter = (InterpFilter)filter_bank; const InterpKernel *filters = (const InterpKernel *)av1_get_interp_filter_kernel(filter); const InterpFilterParams filter_params = av1_get_interp_filter_params_with_block_size(filter, 8); if (filter_params.taps != SUBPEL_TAPS) continue; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height()); if (filter_x && filter_y) continue; else if (filter_y) ASM_REGISTER_STATE_CHECK(UUT_->v8_( in, kInputStride, out, kOutputStride, kInvalidFilter, 16, filters[filter_y], 16, Width(), Height())); else if (filter_x) ASM_REGISTER_STATE_CHECK(UUT_->h8_( in, kInputStride, out, kOutputStride, filters[filter_x], 16, kInvalidFilter, 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK(UUT_->copy_( in, kInputStride, out, kOutputStride, kInvalidFilter, 0, kInvalidFilter, 0, Width(), Height())); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(ref, y * kOutputStride + x), lookup(out, y * kOutputStride + x)) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } } } TEST_P(ConvolveTest, DISABLED_Copy_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const int kNumTests = 5000000; const int width = Width(); const int height = Height(); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->copy_(in, kInputStride, out, kOutputStride, NULL, 0, NULL, 0, width, height); } aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("convolve_copy_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_Speed) { uint8_t *const in = input(); uint8_t *const out = output(); uint8_t ref8[kOutputStride * kMaxDimension]; uint16_t ref16[kOutputStride * kMaxDimension]; uint8_t *ref; if (UUT_->use_highbd_ == 0) { ref = ref8; } else { ref = CONVERT_TO_BYTEPTR(ref16); } // Populate ref and out with some random data ::libaom_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { uint16_t r; if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { r = prng.Rand8Extremes(); } else { r = prng.Rand16() & mask_; } assign_val(out, y * kOutputStride + x, r); assign_val(ref, y * kOutputStride + x, r); } } const InterpFilter filter = (InterpFilter)1; const InterpKernel *filters = (const InterpKernel *)av1_get_interp_filter_kernel(filter); wrapper_filter_average_block2d_8_c(in, kInputStride, filters[1], filters[1], out, kOutputStride, Width(), Height()); aom_usec_timer timer; int tests_num = 1000; aom_usec_timer_start(&timer); while (tests_num > 0) { for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpFilter filter = (InterpFilter)filter_bank; const InterpKernel *filters = (const InterpKernel *)av1_get_interp_filter_kernel(filter); const InterpFilterParams filter_params = av1_get_interp_filter_params_with_block_size(filter, 8); if (filter_params.taps != SUBPEL_TAPS) continue; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { if (filter_x && filter_y) continue; if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, 16, filters[filter_y], 16, Width(), Height())); else if (filter_x) ASM_REGISTER_STATE_CHECK(UUT_->h8_( in, kInputStride, out, kOutputStride, filters[filter_x], 16, kInvalidFilter, 16, Width(), Height())); } } } tests_num--; } aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer) / 1000); printf("%dx%d (bitdepth %d) time: %5d ms\n", Width(), Height(), UUT_->use_highbd_, elapsed_time); } using ::testing::make_tuple; #define WRAP(func, bd) \ static void wrap_##func##_##bd( \ const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ ptrdiff_t dst_stride, const int16_t *filter_x, int filter_x_stride, \ const int16_t *filter_y, int filter_y_stride, int w, int h) { \ aom_highbd_##func(src, src_stride, dst, dst_stride, filter_x, \ filter_x_stride, filter_y, filter_y_stride, w, h, bd); \ } #if HAVE_SSE2 && ARCH_X86_64 WRAP(convolve_copy_sse2, 8) WRAP(convolve_copy_sse2, 10) WRAP(convolve_copy_sse2, 12) WRAP(convolve8_horiz_sse2, 8) WRAP(convolve8_vert_sse2, 8) WRAP(convolve8_horiz_sse2, 10) WRAP(convolve8_vert_sse2, 10) WRAP(convolve8_horiz_sse2, 12) WRAP(convolve8_vert_sse2, 12) #endif // HAVE_SSE2 && ARCH_X86_64 WRAP(convolve_copy_c, 8) WRAP(convolve8_horiz_c, 8) WRAP(convolve8_vert_c, 8) WRAP(convolve_copy_c, 10) WRAP(convolve8_horiz_c, 10) WRAP(convolve8_vert_c, 10) WRAP(convolve_copy_c, 12) WRAP(convolve8_horiz_c, 12) WRAP(convolve8_vert_c, 12) #if HAVE_AVX2 WRAP(convolve_copy_avx2, 8) WRAP(convolve8_horiz_avx2, 8) WRAP(convolve8_vert_avx2, 8) WRAP(convolve_copy_avx2, 10) WRAP(convolve8_horiz_avx2, 10) WRAP(convolve8_vert_avx2, 10) WRAP(convolve_copy_avx2, 12) WRAP(convolve8_horiz_avx2, 12) WRAP(convolve8_vert_avx2, 12) #endif // HAVE_AVX2 #undef WRAP const ConvolveFunctions convolve8_c(wrap_convolve_copy_c_8, wrap_convolve8_horiz_c_8, wrap_convolve8_vert_c_8, 8); const ConvolveFunctions convolve10_c(wrap_convolve_copy_c_10, wrap_convolve8_horiz_c_10, wrap_convolve8_vert_c_10, 10); const ConvolveFunctions convolve12_c(wrap_convolve_copy_c_12, wrap_convolve8_horiz_c_12, wrap_convolve8_vert_c_12, 12); const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(convolve8_c), ALL_SIZES(convolve10_c), ALL_SIZES(convolve12_c) }; INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_c)); #if HAVE_SSE2 && ARCH_X86_64 const ConvolveFunctions convolve8_sse2(wrap_convolve_copy_sse2_8, wrap_convolve8_horiz_sse2_8, wrap_convolve8_vert_sse2_8, 8); const ConvolveFunctions convolve10_sse2(wrap_convolve_copy_sse2_10, wrap_convolve8_horiz_sse2_10, wrap_convolve8_vert_sse2_10, 10); const ConvolveFunctions convolve12_sse2(wrap_convolve_copy_sse2_12, wrap_convolve8_horiz_sse2_12, wrap_convolve8_vert_sse2_12, 12); const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2), ALL_SIZES(convolve10_sse2), ALL_SIZES(convolve12_sse2) }; INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_sse2)); #endif #if HAVE_SSSE3 const ConvolveFunctions convolve8_ssse3(aom_convolve_copy_c, aom_convolve8_horiz_ssse3, aom_convolve8_vert_ssse3, 0); const ConvolveParam kArrayConvolve8_ssse3[] = { ALL_SIZES(convolve8_ssse3) }; INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_ssse3)); #endif #if HAVE_AVX2 const ConvolveFunctions convolve8_avx2(wrap_convolve_copy_avx2_8, wrap_convolve8_horiz_avx2_8, wrap_convolve8_vert_avx2_8, 8); const ConvolveFunctions convolve10_avx2(wrap_convolve_copy_avx2_10, wrap_convolve8_horiz_avx2_10, wrap_convolve8_vert_avx2_10, 10); const ConvolveFunctions convolve12_avx2(wrap_convolve_copy_avx2_12, wrap_convolve8_horiz_avx2_12, wrap_convolve8_vert_avx2_12, 12); const ConvolveParam kArrayConvolve8_avx2[] = { ALL_SIZES_64(convolve8_avx2), ALL_SIZES_64(convolve10_avx2), ALL_SIZES_64(convolve12_avx2) }; INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_avx2)); #endif // HAVE_AVX2 } // namespace