/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "av1/common/enums.h" #include "test/acm_random.h" #include "test/function_equivalence_test.h" #include "test/register_state_check.h" #define WEDGE_WEIGHT_BITS 6 #define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS)) using libaom_test::ACMRandom; using libaom_test::FunctionEquivalenceTest; namespace { static const int16_t kInt13Max = (1 << 12) - 1; ////////////////////////////////////////////////////////////////////////////// // av1_wedge_sse_from_residuals - functionality ////////////////////////////////////////////////////////////////////////////// class WedgeUtilsSSEFuncTest : public testing::Test { protected: WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {} static const int kIterations = 1000; ACMRandom rng_; }; static void equiv_blend_residuals(int16_t *r, const int16_t *r0, const int16_t *r1, const uint8_t *m, int N) { for (int i = 0; i < N; i++) { const int32_t m0 = m[i]; const int32_t m1 = MAX_MASK_VALUE - m0; const int16_t R = m0 * r0[i] + m1 * r1[i]; // Note that this rounding is designed to match the result // you would get when actually blending the 2 predictors and computing // the residuals. r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); } } static uint64_t equiv_sse_from_residuals(const int16_t *r0, const int16_t *r1, const uint8_t *m, int N) { uint64_t acc = 0; for (int i = 0; i < N; i++) { const int32_t m0 = m[i]; const int32_t m1 = MAX_MASK_VALUE - m0; const int16_t R = m0 * r0[i] + m1 * r1[i]; const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); acc += r * r; } return acc; } TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) { DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_SB_SQUARE; ++i) { s[i] = rng_.Rand8(); m[i] = rng_(MAX_MASK_VALUE + 1); } const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); const int N = w * h; for (int j = 0; j < N; j++) { p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); } aom_blend_a64_mask(p, w, p0, w, p1, w, m, w, w, h, 0, 0); aom_subtract_block(h, w, r0, w, s, w, p0, w); aom_subtract_block(h, w, r1, w, s, w, p1, w); aom_subtract_block(h, w, r_ref, w, s, w, p, w); equiv_blend_residuals(r_tst, r0, r1, m, N); for (int i = 0; i < N; ++i) ASSERT_EQ(r_ref[i], r_tst[i]); uint64_t ref_sse = aom_sum_squares_i16(r_ref, N); uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N); ASSERT_EQ(ref_sse, tst_sse); } } static uint64_t sse_from_residuals(const int16_t *r0, const int16_t *r1, const uint8_t *m, int N) { uint64_t acc = 0; for (int i = 0; i < N; i++) { const int32_t m0 = m[i]; const int32_t m1 = MAX_MASK_VALUE - m0; const int32_t r = m0 * r0[i] + m1 * r1[i]; acc += r * r; } return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS); } TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) { DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_SB_SQUARE; ++i) { r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; m[i] = rng_(MAX_MASK_VALUE + 1); } const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); for (int i = 0; i < N; i++) r0[i] = r1[i] + d[i]; const uint64_t ref_res = sse_from_residuals(r0, r1, m, N); const uint64_t tst_res = av1_wedge_sse_from_residuals(r1, d, m, N); ASSERT_EQ(ref_res, tst_res); } } ////////////////////////////////////////////////////////////////////////////// // av1_wedge_sse_from_residuals - optimizations ////////////////////////////////////////////////////////////////////////////// typedef uint64_t (*FSSE)(const int16_t *r1, const int16_t *d, const uint8_t *m, int N); typedef libaom_test::FuncParam TestFuncsFSSE; class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest { protected: static const int kIterations = 10000; }; TEST_P(WedgeUtilsSSEOptTest, RandomValues) { DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_SB_SQUARE; ++i) { r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; d[i] = rng_(2 * kInt13Max + 1) - kInt13Max; m[i] = rng_(MAX_MASK_VALUE + 1); } const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); const uint64_t ref_res = params_.ref_func(r1, d, m, N); uint64_t tst_res; ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); ASSERT_EQ(ref_res, tst_res); } } TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) { DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { if (rng_(2)) { for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = kInt13Max; } else { for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = -kInt13Max; } if (rng_(2)) { for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = kInt13Max; } else { for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = -kInt13Max; } for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); const uint64_t ref_res = params_.ref_func(r1, d, m, N); uint64_t tst_res; ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); ASSERT_EQ(ref_res, tst_res); } } #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, WedgeUtilsSSEOptTest, ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c, av1_wedge_sse_from_residuals_sse2))); #endif // HAVE_SSE2 ////////////////////////////////////////////////////////////////////////////// // av1_wedge_sign_from_residuals ////////////////////////////////////////////////////////////////////////////// typedef int (*FSign)(const int16_t *ds, const uint8_t *m, int N, int64_t limit); typedef libaom_test::FuncParam TestFuncsFSign; class WedgeUtilsSignOptTest : public FunctionEquivalenceTest { protected: static const int kIterations = 10000; static const int kMaxSize = 8196; // Size limited by SIMD implementation. }; TEST_P(WedgeUtilsSignOptTest, RandomValues) { DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_SB_SQUARE; ++i) { r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max; r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; m[i] = rng_(MAX_MASK_VALUE + 1); } const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); const int N = 64 * (rng_(maxN / 64 - 1) + 1); int64_t limit; limit = (int64_t)aom_sum_squares_i16(r0, N); limit -= (int64_t)aom_sum_squares_i16(r1, N); limit *= (1 << WEDGE_WEIGHT_BITS) / 2; for (int i = 0; i < N; i++) ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); const int ref_res = params_.ref_func(ds, m, N, limit); int tst_res; ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); ASSERT_EQ(ref_res, tst_res); } } TEST_P(WedgeUtilsSignOptTest, ExtremeValues) { DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { switch (rng_(4)) { case 0: for (int i = 0; i < MAX_SB_SQUARE; ++i) { r0[i] = 0; r1[i] = kInt13Max; } break; case 1: for (int i = 0; i < MAX_SB_SQUARE; ++i) { r0[i] = kInt13Max; r1[i] = 0; } break; case 2: for (int i = 0; i < MAX_SB_SQUARE; ++i) { r0[i] = 0; r1[i] = -kInt13Max; } break; default: for (int i = 0; i < MAX_SB_SQUARE; ++i) { r0[i] = -kInt13Max; r1[i] = 0; } break; } for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); const int N = 64 * (rng_(maxN / 64 - 1) + 1); int64_t limit; limit = (int64_t)aom_sum_squares_i16(r0, N); limit -= (int64_t)aom_sum_squares_i16(r1, N); limit *= (1 << WEDGE_WEIGHT_BITS) / 2; for (int i = 0; i < N; i++) ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); const int ref_res = params_.ref_func(ds, m, N, limit); int tst_res; ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); ASSERT_EQ(ref_res, tst_res); } } #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, WedgeUtilsSignOptTest, ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c, av1_wedge_sign_from_residuals_sse2))); #endif // HAVE_SSE2 ////////////////////////////////////////////////////////////////////////////// // av1_wedge_compute_delta_squares ////////////////////////////////////////////////////////////////////////////// typedef void (*FDS)(int16_t *d, const int16_t *a, const int16_t *b, int N); typedef libaom_test::FuncParam TestFuncsFDS; class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest { protected: static const int kIterations = 10000; }; TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) { DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_SB_SQUARE; ++i) { a[i] = rng_.Rand16(); b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX; } const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); memset(&d_ref, INT16_MAX, sizeof(d_ref)); memset(&d_tst, INT16_MAX, sizeof(d_tst)); params_.ref_func(d_ref, a, b, N); ASM_REGISTER_STATE_CHECK(params_.tst_func(d_tst, a, b, N)); for (int i = 0; i < MAX_SB_SQUARE; ++i) ASSERT_EQ(d_ref[i], d_tst[i]); } } #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, WedgeUtilsDeltaSquaresOptTest, ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c, av1_wedge_compute_delta_squares_sse2))); #endif // HAVE_SSE2 } // namespace