/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <algorithm> #include <vector> #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem.h" #include "av1/common/filter.h" #include "av1/common/convolve.h" #include "test/acm_random.h" #include "test/util.h" using libaom_test::ACMRandom; namespace { using std::tr1::tuple; static void filter_block1d_horiz_c(const uint8_t *src_ptr, int src_stride, const int16_t *filter, int tap, uint8_t *dst_ptr, int dst_stride, int w, int h) { src_ptr -= tap / 2 - 1; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { int sum = 0; for (int i = 0; i < tap; ++i) { sum += src_ptr[c + i] * filter[i]; } dst_ptr[c] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } src_ptr += src_stride; dst_ptr += dst_stride; } } static void filter_block1d_vert_c(const uint8_t *src_ptr, int src_stride, const int16_t *filter, int tap, uint8_t *dst_ptr, int dst_stride, int w, int h) { src_ptr -= (tap / 2 - 1) * src_stride; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { int sum = 0; for (int i = 0; i < tap; ++i) { sum += src_ptr[c + i * src_stride] * filter[i]; } dst_ptr[c] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); } src_ptr += src_stride; dst_ptr += dst_stride; } } static int match(const uint8_t *out, int out_stride, const uint8_t *ref_out, int ref_out_stride, int w, int h) { for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { if (out[r * out_stride + c] != ref_out[r * ref_out_stride + c]) return 0; } } return 1; } typedef void (*ConvolveFunc)(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams filter_params, const int subpel_q4, int step_q4, ConvolveParams *conv_params); struct ConvolveFunctions { ConvolveFunctions(ConvolveFunc hf, ConvolveFunc vf) : hf_(hf), vf_(vf) {} ConvolveFunc hf_; ConvolveFunc vf_; }; typedef tuple<ConvolveFunctions *, InterpFilter /*filter_x*/, InterpFilter /*filter_y*/> ConvolveParam; class Av1ConvolveTest : public ::testing::TestWithParam<ConvolveParam> { public: virtual void SetUp() { rnd_(ACMRandom::DeterministicSeed()); cfs_ = GET_PARAM(0); interp_filter_ls_[0] = GET_PARAM(2); interp_filter_ls_[2] = interp_filter_ls_[0]; interp_filter_ls_[1] = GET_PARAM(1); interp_filter_ls_[3] = interp_filter_ls_[1]; } virtual void TearDown() { while (buf_ls_.size() > 0) { uint8_t *buf = buf_ls_.back(); aom_free(buf); buf_ls_.pop_back(); } } virtual uint8_t *add_input(int w, int h, int *stride) { uint8_t *buf = reinterpret_cast<uint8_t *>(aom_memalign(kDataAlignment, kBufferSize)); buf_ls_.push_back(buf); *stride = w + MAX_FILTER_TAP - 1; int offset = MAX_FILTER_TAP / 2 - 1; for (int r = 0; r < h + MAX_FILTER_TAP - 1; ++r) { for (int c = 0; c < w + MAX_FILTER_TAP - 1; ++c) { buf[r * (*stride) + c] = rnd_.Rand8(); } } return buf + offset * (*stride) + offset; } virtual uint8_t *add_output(int w, int /*h*/, int *stride) { uint8_t *buf = reinterpret_cast<uint8_t *>(aom_memalign(kDataAlignment, kBufferSize)); buf_ls_.push_back(buf); *stride = w; return buf; } virtual void random_init_buf(uint8_t *buf, int w, int h, int stride) { for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { buf[r * stride + c] = rnd_.Rand8(); } } } protected: static const int kDataAlignment = 16; static const int kOuterBlockSize = MAX_SB_SIZE + MAX_FILTER_TAP - 1; static const int kBufferSize = kOuterBlockSize * kOuterBlockSize; std::vector<uint8_t *> buf_ls_; InterpFilter interp_filter_ls_[4]; ConvolveFunctions *cfs_; ACMRandom rnd_; }; int bsize_ls[] = { 1, 2, 4, 8, 16, 32, 64, 3, 7, 15, 31, 63 }; int bsize_num = sizeof(bsize_ls) / sizeof(bsize_ls[0]); TEST_P(Av1ConvolveTest, av1_convolve_vert) { const int y_step_q4 = 16; ConvolveParams conv_params = get_conv_params(0, 0); int in_stride, out_stride, ref_out_stride, avg_out_stride, ref_avg_out_stride; uint8_t *in = add_input(MAX_SB_SIZE, MAX_SB_SIZE, &in_stride); uint8_t *out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &out_stride); uint8_t *ref_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_out_stride); uint8_t *avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &avg_out_stride); uint8_t *ref_avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_avg_out_stride); for (int hb_idx = 0; hb_idx < bsize_num; ++hb_idx) { for (int vb_idx = 0; vb_idx < bsize_num; ++vb_idx) { int w = bsize_ls[hb_idx]; int h = bsize_ls[vb_idx]; for (int subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; ++subpel_y_q4) { InterpFilter filter_y = interp_filter_ls_[0]; InterpFilterParams param_vert = av1_get_interp_filter_params(filter_y); const int16_t *filter_vert = av1_get_interp_filter_subpel_kernel(param_vert, subpel_y_q4); filter_block1d_vert_c(in, in_stride, filter_vert, param_vert.taps, ref_out, ref_out_stride, w, h); conv_params.ref = 0; cfs_->vf_(in, in_stride, out, out_stride, w, h, param_vert, subpel_y_q4, y_step_q4, &conv_params); EXPECT_EQ(match(out, out_stride, ref_out, ref_out_stride, w, h), 1) << " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_y " << filter_y << " subpel_y_q4 " << subpel_y_q4; random_init_buf(avg_out, w, h, avg_out_stride); for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { ref_avg_out[r * ref_avg_out_stride + c] = ROUND_POWER_OF_TWO( avg_out[r * avg_out_stride + c] + out[r * out_stride + c], 1); } } conv_params.ref = 1; cfs_->vf_(in, in_stride, avg_out, avg_out_stride, w, h, param_vert, subpel_y_q4, y_step_q4, &conv_params); EXPECT_EQ(match(avg_out, avg_out_stride, ref_avg_out, ref_avg_out_stride, w, h), 1) << " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_y " << filter_y << " subpel_y_q4 " << subpel_y_q4; } } } }; TEST_P(Av1ConvolveTest, av1_convolve_horiz) { const int x_step_q4 = 16; ConvolveParams conv_params = get_conv_params(0, 0); int in_stride, out_stride, ref_out_stride, avg_out_stride, ref_avg_out_stride; uint8_t *in = add_input(MAX_SB_SIZE, MAX_SB_SIZE, &in_stride); uint8_t *out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &out_stride); uint8_t *ref_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_out_stride); uint8_t *avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &avg_out_stride); uint8_t *ref_avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_avg_out_stride); for (int hb_idx = 0; hb_idx < bsize_num; ++hb_idx) { for (int vb_idx = 0; vb_idx < bsize_num; ++vb_idx) { int w = bsize_ls[hb_idx]; int h = bsize_ls[vb_idx]; for (int subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; ++subpel_x_q4) { InterpFilter filter_x = interp_filter_ls_[1]; InterpFilterParams param_horiz = av1_get_interp_filter_params(filter_x); const int16_t *filter_horiz = av1_get_interp_filter_subpel_kernel(param_horiz, subpel_x_q4); filter_block1d_horiz_c(in, in_stride, filter_horiz, param_horiz.taps, ref_out, ref_out_stride, w, h); conv_params.ref = 0; cfs_->hf_(in, in_stride, out, out_stride, w, h, param_horiz, subpel_x_q4, x_step_q4, &conv_params); EXPECT_EQ(match(out, out_stride, ref_out, ref_out_stride, w, h), 1) << " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_x " << filter_x << " subpel_x_q4 " << subpel_x_q4; random_init_buf(avg_out, w, h, avg_out_stride); for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { ref_avg_out[r * ref_avg_out_stride + c] = ROUND_POWER_OF_TWO( avg_out[r * avg_out_stride + c] + out[r * out_stride + c], 1); } } conv_params.ref = 1; cfs_->hf_(in, in_stride, avg_out, avg_out_stride, w, h, param_horiz, subpel_x_q4, x_step_q4, &conv_params); EXPECT_EQ(match(avg_out, avg_out_stride, ref_avg_out, ref_avg_out_stride, w, h), 1) << "hb_idx " << hb_idx << "vb_idx" << vb_idx << " filter_x " << filter_x << "subpel_x_q4 " << subpel_x_q4; } } } }; ConvolveFunctions convolve_functions_c(av1_convolve_horiz_c, av1_convolve_vert_c); InterpFilter filter_ls[] = { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH, MULTITAP_SHARP }; INSTANTIATE_TEST_CASE_P( C, Av1ConvolveTest, ::testing::Combine(::testing::Values(&convolve_functions_c), ::testing::ValuesIn(filter_ls), ::testing::ValuesIn(filter_ls))); #if CONFIG_HIGHBITDEPTH TEST(AV1ConvolveTest, av1_highbd_convolve) { ACMRandom rnd(ACMRandom::DeterministicSeed()); #if CONFIG_DUAL_FILTER InterpFilter interp_filter[4] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR, EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }; InterpFilterParams filter_params = av1_get_interp_filter_params(interp_filter[0]); #else InterpFilter interp_filter = EIGHTTAP_REGULAR; InterpFilterParams filter_params = av1_get_interp_filter_params(interp_filter); #endif int filter_size = filter_params.taps; int filter_center = filter_size / 2 - 1; uint16_t src[12 * 12]; int src_stride = filter_size; uint16_t dst[1] = { 0 }; int dst_stride = 1; int x_step_q4 = 16; int y_step_q4 = 16; int avg = 0; int bd = 10; int w = 1; int h = 1; int subpel_x_q4; int subpel_y_q4; for (int i = 0; i < filter_size * filter_size; i++) { src[i] = rnd.Rand16() % (1 << bd); } for (subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; subpel_x_q4++) { for (subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; subpel_y_q4++) { av1_highbd_convolve( CONVERT_TO_BYTEPTR(src + src_stride * filter_center + filter_center), src_stride, CONVERT_TO_BYTEPTR(dst), dst_stride, w, h, interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd); const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4); const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4); int temp[12]; int dst_ref = 0; for (int r = 0; r < filter_size; r++) { temp[r] = 0; for (int c = 0; c < filter_size; c++) { temp[r] += x_filter[c] * src[r * filter_size + c]; } temp[r] = clip_pixel_highbd(ROUND_POWER_OF_TWO(temp[r], FILTER_BITS), bd); dst_ref += temp[r] * y_filter[r]; } dst_ref = clip_pixel_highbd(ROUND_POWER_OF_TWO(dst_ref, FILTER_BITS), bd); EXPECT_EQ(dst[0], dst_ref); } } } TEST(AV1ConvolveTest, av1_highbd_convolve_avg) { ACMRandom rnd(ACMRandom::DeterministicSeed()); #if CONFIG_DUAL_FILTER InterpFilter interp_filter[4] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR, EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }; InterpFilterParams filter_params = av1_get_interp_filter_params(interp_filter[0]); #else InterpFilter interp_filter = EIGHTTAP_REGULAR; InterpFilterParams filter_params = av1_get_interp_filter_params(interp_filter); #endif int filter_size = filter_params.taps; int filter_center = filter_size / 2 - 1; uint16_t src0[12 * 12]; uint16_t src1[12 * 12]; int src_stride = filter_size; uint16_t dst0[1] = { 0 }; uint16_t dst1[1] = { 0 }; uint16_t dst[1] = { 0 }; int dst_stride = 1; int x_step_q4 = 16; int y_step_q4 = 16; int avg = 0; int bd = 10; int w = 1; int h = 1; int subpel_x_q4; int subpel_y_q4; for (int i = 0; i < filter_size * filter_size; i++) { src0[i] = rnd.Rand16() % (1 << bd); src1[i] = rnd.Rand16() % (1 << bd); } for (subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; subpel_x_q4++) { for (subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; subpel_y_q4++) { int offset = filter_size * filter_center + filter_center; avg = 0; av1_highbd_convolve(CONVERT_TO_BYTEPTR(src0 + offset), src_stride, CONVERT_TO_BYTEPTR(dst0), dst_stride, w, h, interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd); avg = 0; av1_highbd_convolve(CONVERT_TO_BYTEPTR(src1 + offset), src_stride, CONVERT_TO_BYTEPTR(dst1), dst_stride, w, h, interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd); avg = 0; av1_highbd_convolve(CONVERT_TO_BYTEPTR(src0 + offset), src_stride, CONVERT_TO_BYTEPTR(dst), dst_stride, w, h, interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd); avg = 1; av1_highbd_convolve(CONVERT_TO_BYTEPTR(src1 + offset), src_stride, CONVERT_TO_BYTEPTR(dst), dst_stride, w, h, interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd); EXPECT_EQ(dst[0], ROUND_POWER_OF_TWO(dst0[0] + dst1[0], 1)); } } } #endif // CONFIG_HIGHBITDEPTH #define CONVOLVE_SPEED_TEST 0 #if CONVOLVE_SPEED_TEST #define highbd_convolve_speed(func, block_size, frame_size) \ TEST(AV1ConvolveTest, func##_speed_##block_size##_##frame_size) { \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ InterpFilter interp_filter = EIGHTTAP; \ InterpFilterParams filter_params = \ av1_get_interp_filter_params(interp_filter); \ int filter_size = filter_params.tap; \ int filter_center = filter_size / 2 - 1; \ DECLARE_ALIGNED(16, uint16_t, \ src[(frame_size + 7) * (frame_size + 7)]) = { 0 }; \ int src_stride = frame_size + 7; \ DECLARE_ALIGNED(16, uint16_t, dst[frame_size * frame_size]) = { 0 }; \ int dst_stride = frame_size; \ int x_step_q4 = 16; \ int y_step_q4 = 16; \ int subpel_x_q4 = 8; \ int subpel_y_q4 = 6; \ int bd = 10; \ \ int w = block_size; \ int h = block_size; \ \ const int16_t *filter_x = \ av1_get_interp_filter_kernel(filter_params, subpel_x_q4); \ const int16_t *filter_y = \ av1_get_interp_filter_kernel(filter_params, subpel_y_q4); \ \ for (int i = 0; i < src_stride * src_stride; i++) { \ src[i] = rnd.Rand16() % (1 << bd); \ } \ \ int offset = filter_center * src_stride + filter_center; \ int row_offset = 0; \ int col_offset = 0; \ for (int i = 0; i < 100000; i++) { \ int src_total_offset = offset + col_offset * src_stride + row_offset; \ int dst_total_offset = col_offset * dst_stride + row_offset; \ func(CONVERT_TO_BYTEPTR(src + src_total_offset), src_stride, \ CONVERT_TO_BYTEPTR(dst + dst_total_offset), dst_stride, filter_x, \ x_step_q4, filter_y, y_step_q4, w, h, bd); \ if (offset + w + w < frame_size) { \ row_offset += w; \ } else { \ row_offset = 0; \ col_offset += h; \ } \ if (col_offset + h >= frame_size) { \ col_offset = 0; \ } \ } \ } #define lowbd_convolve_speed(func, block_size, frame_size) \ TEST(AV1ConvolveTest, func##_speed_l_##block_size##_##frame_size) { \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ InterpFilter interp_filter = EIGHTTAP; \ InterpFilterParams filter_params = \ av1_get_interp_filter_params(interp_filter); \ int filter_size = filter_params.tap; \ int filter_center = filter_size / 2 - 1; \ DECLARE_ALIGNED(16, uint8_t, src[(frame_size + 7) * (frame_size + 7)]); \ int src_stride = frame_size + 7; \ DECLARE_ALIGNED(16, uint8_t, dst[frame_size * frame_size]); \ int dst_stride = frame_size; \ int x_step_q4 = 16; \ int y_step_q4 = 16; \ int subpel_x_q4 = 8; \ int subpel_y_q4 = 6; \ int bd = 8; \ \ int w = block_size; \ int h = block_size; \ \ const int16_t *filter_x = \ av1_get_interp_filter_kernel(filter_params, subpel_x_q4); \ const int16_t *filter_y = \ av1_get_interp_filter_kernel(filter_params, subpel_y_q4); \ \ for (int i = 0; i < src_stride * src_stride; i++) { \ src[i] = rnd.Rand16() % (1 << bd); \ } \ \ int offset = filter_center * src_stride + filter_center; \ int row_offset = 0; \ int col_offset = 0; \ for (int i = 0; i < 100000; i++) { \ func(src + offset, src_stride, dst, dst_stride, filter_x, x_step_q4, \ filter_y, y_step_q4, w, h); \ if (offset + w + w < frame_size) { \ row_offset += w; \ } else { \ row_offset = 0; \ col_offset += h; \ } \ if (col_offset + h >= frame_size) { \ col_offset = 0; \ } \ } \ } // This experiment shows that when frame size is 64x64 // aom_highbd_convolve8_sse2 and aom_convolve8_sse2's speed are similar. // However when frame size becomes 1024x1024 // aom_highbd_convolve8_sse2 is around 50% slower than aom_convolve8_sse2 // we think the bottleneck is from memory IO highbd_convolve_speed(aom_highbd_convolve8_sse2, 8, 64); highbd_convolve_speed(aom_highbd_convolve8_sse2, 16, 64); highbd_convolve_speed(aom_highbd_convolve8_sse2, 32, 64); highbd_convolve_speed(aom_highbd_convolve8_sse2, 64, 64); lowbd_convolve_speed(aom_convolve8_sse2, 8, 64); lowbd_convolve_speed(aom_convolve8_sse2, 16, 64); lowbd_convolve_speed(aom_convolve8_sse2, 32, 64); lowbd_convolve_speed(aom_convolve8_sse2, 64, 64); highbd_convolve_speed(aom_highbd_convolve8_sse2, 8, 1024); highbd_convolve_speed(aom_highbd_convolve8_sse2, 16, 1024); highbd_convolve_speed(aom_highbd_convolve8_sse2, 32, 1024); highbd_convolve_speed(aom_highbd_convolve8_sse2, 64, 1024); lowbd_convolve_speed(aom_convolve8_sse2, 8, 1024); lowbd_convolve_speed(aom_convolve8_sse2, 16, 1024); lowbd_convolve_speed(aom_convolve8_sse2, 32, 1024); lowbd_convolve_speed(aom_convolve8_sse2, 64, 1024); #endif // CONVOLVE_SPEED_TEST } // namespace