/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/av1_rtcd.h" #include "aom_ports/aom_timer.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/common_data.h" namespace { const int kTestIters = 10; const int kPerfIters = 1000; const int kVPad = 32; const int kHPad = 32; const int kXStepQn = 16; const int kYStepQn = 20; using ::testing::make_tuple; using ::testing::tuple; using libaom_test::ACMRandom; enum NTaps { EIGHT_TAP, TEN_TAP, TWELVE_TAP }; int NTapsToInt(NTaps ntaps) { return 8 + static_cast(ntaps) * 2; } // A 16-bit filter with a configurable number of taps. class TestFilter { public: void set(NTaps ntaps, bool backwards); InterpFilterParams params_; private: std::vector coeffs_; }; void TestFilter::set(NTaps ntaps, bool backwards) { const int n = NTapsToInt(ntaps); assert(n >= 8 && n <= 12); // The filter has n * SUBPEL_SHIFTS proper elements and an extra 8 bogus // elements at the end so that convolutions can read off the end safely. coeffs_.resize(n * SUBPEL_SHIFTS + 8); // The coefficients are pretty much arbitrary, but convolutions shouldn't // over or underflow. For the first filter (subpels = 0), we use an // increasing or decreasing ramp (depending on the backwards parameter). We // don't want any zero coefficients, so we make it have an x-intercept at -1 // or n. To ensure absence of under/overflow, we normalise the area under the // ramp to be I = 1 << FILTER_BITS (so that convolving a constant function // gives the identity). // // When increasing, the function has the form: // // f(x) = A * (x + 1) // // Summing and rearranging for A gives A = 2 * I / (n * (n + 1)). If the // filter is reversed, we have the same A but with formula // // g(x) = A * (n - x) const int I = 1 << FILTER_BITS; const float A = 2.f * I / (n * (n + 1.f)); for (int i = 0; i < n; ++i) { coeffs_[i] = static_cast(A * (backwards ? (n - i) : (i + 1))); } // For the other filters, make them slightly different by swapping two // columns. Filter k will have the columns (k % n) and (7 * k) % n swapped. const size_t filter_size = sizeof(coeffs_[0] * n); int16_t *const filter0 = &coeffs_[0]; for (int k = 1; k < SUBPEL_SHIFTS; ++k) { int16_t *filterk = &coeffs_[k * n]; memcpy(filterk, filter0, filter_size); const int idx0 = k % n; const int idx1 = (7 * k) % n; const int16_t tmp = filterk[idx0]; filterk[idx0] = filterk[idx1]; filterk[idx1] = tmp; } // Finally, write some rubbish at the end to make sure we don't use it. for (int i = 0; i < 8; ++i) coeffs_[n * SUBPEL_SHIFTS + i] = 123 + i; // Fill in params params_.filter_ptr = &coeffs_[0]; params_.taps = n; // These are ignored by the functions being tested. Set them to whatever. params_.subpel_shifts = SUBPEL_SHIFTS; params_.interp_filter = EIGHTTAP_REGULAR; } template class TestImage { public: TestImage(int w, int h, int bd) : w_(w), h_(h), bd_(bd) { assert(bd < 16); assert(bd <= 8 * static_cast(sizeof(SrcPixel))); // Pad width by 2*kHPad and then round up to the next multiple of 16 // to get src_stride_. Add another 16 for dst_stride_ (to make sure // something goes wrong if we use the wrong one) src_stride_ = (w_ + 2 * kHPad + 15) & ~15; dst_stride_ = src_stride_ + 16; // Allocate image data src_data_.resize(2 * src_block_size()); dst_data_.resize(2 * dst_block_size()); dst_16_data_.resize(2 * dst_block_size()); } void Initialize(ACMRandom *rnd); void Check() const; int src_stride() const { return src_stride_; } int dst_stride() const { return dst_stride_; } int src_block_size() const { return (h_ + 2 * kVPad) * src_stride(); } int dst_block_size() const { return (h_ + 2 * kVPad) * dst_stride(); } const SrcPixel *GetSrcData(bool ref, bool borders) const { const SrcPixel *block = &src_data_[ref ? 0 : src_block_size()]; return borders ? block : block + kHPad + src_stride_ * kVPad; } SrcPixel *GetDstData(bool ref, bool borders) { SrcPixel *block = &dst_data_[ref ? 0 : dst_block_size()]; return borders ? block : block + kHPad + dst_stride_ * kVPad; } CONV_BUF_TYPE *GetDst16Data(bool ref, bool borders) { CONV_BUF_TYPE *block = &dst_16_data_[ref ? 0 : dst_block_size()]; return borders ? block : block + kHPad + dst_stride_ * kVPad; } private: int w_, h_, bd_; int src_stride_, dst_stride_; std::vector src_data_; std::vector dst_data_; std::vector dst_16_data_; }; template void FillEdge(ACMRandom *rnd, int num_pixels, int bd, bool trash, Pixel *data) { if (!trash) { memset(data, 0, sizeof(*data) * num_pixels); return; } const Pixel mask = (1 << bd) - 1; for (int i = 0; i < num_pixels; ++i) data[i] = rnd->Rand16() & mask; } template void PrepBuffers(ACMRandom *rnd, int w, int h, int stride, int bd, bool trash_edges, Pixel *data) { assert(rnd); const Pixel mask = (1 << bd) - 1; // Fill in the first buffer with random data // Top border FillEdge(rnd, stride * kVPad, bd, trash_edges, data); for (int r = 0; r < h; ++r) { Pixel *row_data = data + (kVPad + r) * stride; // Left border, contents, right border FillEdge(rnd, kHPad, bd, trash_edges, row_data); for (int c = 0; c < w; ++c) row_data[kHPad + c] = rnd->Rand16() & mask; FillEdge(rnd, kHPad, bd, trash_edges, row_data + kHPad + w); } // Bottom border FillEdge(rnd, stride * kVPad, bd, trash_edges, data + stride * (kVPad + h)); const int bpp = sizeof(*data); const int block_elts = stride * (h + 2 * kVPad); const int block_size = bpp * block_elts; // Now copy that to the second buffer memcpy(data + block_elts, data, block_size); } template void TestImage::Initialize(ACMRandom *rnd) { PrepBuffers(rnd, w_, h_, src_stride_, bd_, false, &src_data_[0]); PrepBuffers(rnd, w_, h_, dst_stride_, bd_, true, &dst_data_[0]); PrepBuffers(rnd, w_, h_, dst_stride_, bd_, true, &dst_16_data_[0]); } template void TestImage::Check() const { // If memcmp returns 0, there's nothing to do. const int num_pixels = dst_block_size(); const SrcPixel *ref_dst = &dst_data_[0]; const SrcPixel *tst_dst = &dst_data_[num_pixels]; const CONV_BUF_TYPE *ref_16_dst = &dst_16_data_[0]; const CONV_BUF_TYPE *tst_16_dst = &dst_16_data_[num_pixels]; if (0 == memcmp(ref_dst, tst_dst, sizeof(*ref_dst) * num_pixels)) { if (0 == memcmp(ref_16_dst, tst_16_dst, sizeof(*ref_16_dst) * num_pixels)) return; } // Otherwise, iterate through the buffer looking for differences (including // the edges) const int stride = dst_stride_; for (int r = 0; r < h_ + 2 * kVPad; ++r) { for (int c = 0; c < w_ + 2 * kHPad; ++c) { const int32_t ref_value = ref_dst[r * stride + c]; const int32_t tst_value = tst_dst[r * stride + c]; EXPECT_EQ(tst_value, ref_value) << "Error at row: " << (r - kVPad) << ", col: " << (c - kHPad); } } for (int r = 0; r < h_ + 2 * kVPad; ++r) { for (int c = 0; c < w_ + 2 * kHPad; ++c) { const int32_t ref_value = ref_16_dst[r * stride + c]; const int32_t tst_value = tst_16_dst[r * stride + c]; EXPECT_EQ(tst_value, ref_value) << "Error in 16 bit buffer " << "Error at row: " << (r - kVPad) << ", col: " << (c - kHPad); } } } typedef tuple BlockDimension; struct BaseParams { BaseParams(BlockDimension dims, NTaps ntaps_x, NTaps ntaps_y, bool avg) : dims(dims), ntaps_x(ntaps_x), ntaps_y(ntaps_y), avg(avg) {} BlockDimension dims; NTaps ntaps_x, ntaps_y; bool avg; }; template class ConvolveScaleTestBase : public ::testing::Test { public: ConvolveScaleTestBase() : image_(NULL) {} virtual ~ConvolveScaleTestBase() { delete image_; } virtual void TearDown() { libaom_test::ClearSystemState(); } // Implemented by subclasses (SetUp depends on the parameters passed // in and RunOne depends on the function to be tested. These can't // be templated for low/high bit depths because they have different // numbers of parameters) virtual void SetUp() = 0; virtual void RunOne(bool ref) = 0; protected: void SetParams(const BaseParams ¶ms, int bd) { width_ = ::testing::get<0>(params.dims); height_ = ::testing::get<1>(params.dims); ntaps_x_ = params.ntaps_x; ntaps_y_ = params.ntaps_y; bd_ = bd; avg_ = params.avg; filter_x_.set(ntaps_x_, false); filter_y_.set(ntaps_y_, true); convolve_params_ = get_conv_params_no_round(0, avg_ != false, 0, NULL, 0, 1, bd); delete image_; image_ = new TestImage(width_, height_, bd_); } void SetConvParamOffset(int i, int j, int is_compound, int do_average, int use_jnt_comp_avg) { if (i == -1 && j == -1) { convolve_params_.use_jnt_comp_avg = use_jnt_comp_avg; convolve_params_.is_compound = is_compound; convolve_params_.do_average = do_average; } else { convolve_params_.use_jnt_comp_avg = use_jnt_comp_avg; convolve_params_.fwd_offset = quant_dist_lookup_table[i][j][0]; convolve_params_.bck_offset = quant_dist_lookup_table[i][j][1]; convolve_params_.is_compound = is_compound; convolve_params_.do_average = do_average; } } void Run() { ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int i = 0; i < kTestIters; ++i) { int is_compound = 0; SetConvParamOffset(-1, -1, is_compound, 0, 0); Prep(&rnd); RunOne(true); RunOne(false); image_->Check(); is_compound = 1; for (int do_average = 0; do_average < 2; do_average++) { for (int use_jnt_comp_avg = 0; use_jnt_comp_avg < 2; use_jnt_comp_avg++) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 4; ++k) { SetConvParamOffset(j, k, is_compound, do_average, use_jnt_comp_avg); Prep(&rnd); RunOne(true); RunOne(false); image_->Check(); } } } } } } void SpeedTest() { ACMRandom rnd(ACMRandom::DeterministicSeed()); Prep(&rnd); aom_usec_timer ref_timer; aom_usec_timer_start(&ref_timer); for (int i = 0; i < kPerfIters; ++i) RunOne(true); aom_usec_timer_mark(&ref_timer); const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); aom_usec_timer tst_timer; aom_usec_timer_start(&tst_timer); for (int i = 0; i < kPerfIters; ++i) RunOne(false); aom_usec_timer_mark(&tst_timer); const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); std::cout << "[ ] C time = " << ref_time / 1000 << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; EXPECT_GT(ref_time, tst_time) << "Error: CDEFSpeedTest, SIMD slower than C.\n" << "C time: " << ref_time << " us\n" << "SIMD time: " << tst_time << " us\n"; } static int RandomSubpel(ACMRandom *rnd) { const uint8_t subpel_mode = rnd->Rand8(); if ((subpel_mode & 7) == 0) { return 0; } else if ((subpel_mode & 7) == 1) { return SCALE_SUBPEL_SHIFTS - 1; } else { return 1 + rnd->PseudoUniform(SCALE_SUBPEL_SHIFTS - 2); } } void Prep(ACMRandom *rnd) { assert(rnd); // Choose subpel_x_ and subpel_y_. They should be less than // SCALE_SUBPEL_SHIFTS; we also want to add extra weight to "interesting" // values: 0 and SCALE_SUBPEL_SHIFTS - 1 subpel_x_ = RandomSubpel(rnd); subpel_y_ = RandomSubpel(rnd); image_->Initialize(rnd); } int width_, height_, bd_; NTaps ntaps_x_, ntaps_y_; bool avg_; int subpel_x_, subpel_y_; TestFilter filter_x_, filter_y_; TestImage *image_; ConvolveParams convolve_params_; }; typedef tuple BlockDimension; typedef void (*LowbdConvolveFunc)(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, InterpFilterParams *filter_params_x, InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params); // Test parameter list: // typedef tuple LowBDParams; class LowBDConvolveScaleTest : public ConvolveScaleTestBase, public ::testing::WithParamInterface { public: virtual ~LowBDConvolveScaleTest() {} void SetUp() { tst_fun_ = GET_PARAM(0); const BlockDimension &block = GET_PARAM(1); const NTaps ntaps_x = GET_PARAM(2); const NTaps ntaps_y = GET_PARAM(3); const int bd = 8; const bool avg = GET_PARAM(4); SetParams(BaseParams(block, ntaps_x, ntaps_y, avg), bd); } void RunOne(bool ref) { const uint8_t *src = image_->GetSrcData(ref, false); uint8_t *dst = image_->GetDstData(ref, false); convolve_params_.dst = image_->GetDst16Data(ref, false); const int src_stride = image_->src_stride(); const int dst_stride = image_->dst_stride(); if (ref) { av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, width_, height_, &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn, subpel_y_, kYStepQn, &convolve_params_); } else { tst_fun_(src, src_stride, dst, dst_stride, width_, height_, &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn, subpel_y_, kYStepQn, &convolve_params_); } } private: LowbdConvolveFunc tst_fun_; }; const BlockDimension kBlockDim[] = { make_tuple(2, 2), make_tuple(2, 4), make_tuple(4, 4), make_tuple(4, 8), make_tuple(8, 4), make_tuple(8, 8), make_tuple(8, 16), make_tuple(16, 8), make_tuple(16, 16), make_tuple(16, 32), make_tuple(32, 16), make_tuple(32, 32), make_tuple(32, 64), make_tuple(64, 32), make_tuple(64, 64), make_tuple(64, 128), make_tuple(128, 64), make_tuple(128, 128), }; const NTaps kNTaps[] = { EIGHT_TAP }; TEST_P(LowBDConvolveScaleTest, Check) { Run(); } TEST_P(LowBDConvolveScaleTest, DISABLED_Speed) { SpeedTest(); } INSTANTIATE_TEST_CASE_P( SSE4_1, LowBDConvolveScaleTest, ::testing::Combine(::testing::Values(av1_convolve_2d_scale_sse4_1), ::testing::ValuesIn(kBlockDim), ::testing::ValuesIn(kNTaps), ::testing::ValuesIn(kNTaps), ::testing::Bool())); typedef void (*HighbdConvolveFunc)(const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, int h, InterpFilterParams *filter_params_x, InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params, int bd); // Test parameter list: // typedef tuple HighBDParams; class HighBDConvolveScaleTest : public ConvolveScaleTestBase, public ::testing::WithParamInterface { public: virtual ~HighBDConvolveScaleTest() {} void SetUp() { tst_fun_ = GET_PARAM(0); const BlockDimension &block = GET_PARAM(1); const NTaps ntaps_x = GET_PARAM(2); const NTaps ntaps_y = GET_PARAM(3); const bool avg = GET_PARAM(4); const int bd = GET_PARAM(5); SetParams(BaseParams(block, ntaps_x, ntaps_y, avg), bd); } void RunOne(bool ref) { const uint16_t *src = image_->GetSrcData(ref, false); uint16_t *dst = image_->GetDstData(ref, false); convolve_params_.dst = image_->GetDst16Data(ref, false); const int src_stride = image_->src_stride(); const int dst_stride = image_->dst_stride(); if (ref) { av1_highbd_convolve_2d_scale_c( src, src_stride, dst, dst_stride, width_, height_, &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn, subpel_y_, kYStepQn, &convolve_params_, bd_); } else { tst_fun_(src, src_stride, dst, dst_stride, width_, height_, &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn, subpel_y_, kYStepQn, &convolve_params_, bd_); } } private: HighbdConvolveFunc tst_fun_; }; const int kBDs[] = { 8, 10, 12 }; TEST_P(HighBDConvolveScaleTest, Check) { Run(); } TEST_P(HighBDConvolveScaleTest, DISABLED_Speed) { SpeedTest(); } INSTANTIATE_TEST_CASE_P( SSE4_1, HighBDConvolveScaleTest, ::testing::Combine(::testing::Values(av1_highbd_convolve_2d_scale_sse4_1), ::testing::ValuesIn(kBlockDim), ::testing::ValuesIn(kNTaps), ::testing::ValuesIn(kNTaps), ::testing::Bool(), ::testing::ValuesIn(kBDs))); } // namespace