/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "./aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/onyxc_int.h" #include "av1/common/quant_common.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/picklpf.h" #if CONFIG_LPF_SB #if CONFIG_HIGHBITDEPTH static int compute_sb_y_sse_highbd(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm, int mi_row, int mi_col) { int sse = 0; const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET); const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET); const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows); const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols); const int row = mi_row_start * MI_SIZE; const int col = mi_col_start * MI_SIZE; const uint16_t *src_y = CONVERT_TO_SHORTPTR(src->y_buffer) + row * src->y_stride + col; const uint16_t *frame_y = CONVERT_TO_SHORTPTR(frame->y_buffer) + row * frame->y_stride + col; const int row_end = (mi_row_end - mi_row_start) * MI_SIZE; const int col_end = (mi_col_end - mi_col_start) * MI_SIZE; int x, y; for (y = 0; y < row_end; ++y) { for (x = 0; x < col_end; ++x) { const int diff = src_y[x] - frame_y[x]; sse += diff * diff; } src_y += src->y_stride; frame_y += frame->y_stride; } return sse; } #endif static int compute_sb_y_sse(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm, int mi_row, int mi_col) { int sse = 0; const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET); const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET); const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows); const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols); const int row = mi_row_start * MI_SIZE; const int col = mi_col_start * MI_SIZE; const uint8_t *src_y = src->y_buffer + row * src->y_stride + col; const uint8_t *frame_y = frame->y_buffer + row * frame->y_stride + col; const int row_end = (mi_row_end - mi_row_start) * MI_SIZE; const int col_end = (mi_col_end - mi_col_start) * MI_SIZE; int x, y; for (y = 0; y < row_end; ++y) { for (x = 0; x < col_end; ++x) { const int diff = src_y[x] - frame_y[x]; sse += diff * diff; } src_y += src->y_stride; frame_y += frame->y_stride; } return sse; } #endif // CONFIG_LPF_SB #if !CONFIG_LPF_SB static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc, YV12_BUFFER_CONFIG *dst_bc, int plane) { switch (plane) { case 0: aom_yv12_copy_y(src_bc, dst_bc); break; case 1: aom_yv12_copy_u(src_bc, dst_bc); break; case 2: aom_yv12_copy_v(src_bc, dst_bc); break; default: assert(plane >= 0 && plane <= 2); break; } } #endif // CONFIG_LPF_SB int av1_get_max_filter_level(const AV1_COMP *cpi) { if (cpi->oxcf.pass == 2) { return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4 : MAX_LOOP_FILTER; } else { return MAX_LOOP_FILTER; } } #if CONFIG_LPF_SB // TODO(chengchen): reduce memory usage by copy superblock instead of frame static int try_filter_superblock(const YV12_BUFFER_CONFIG *sd, AV1_COMP *const cpi, int filt_level, int partial_frame, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; int filt_err; #if CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_CB4X4 av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1, partial_frame, mi_row, mi_col); #else if (cpi->num_workers > 1) av1_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane, filt_level, 1, partial_frame, cpi->workers, cpi->num_workers, &cpi->lf_row_sync); else av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1, partial_frame); #endif #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { filt_err = compute_sb_y_sse_highbd(sd, cm->frame_to_show, cm, mi_row, mi_col); } else { filt_err = compute_sb_y_sse(sd, cm->frame_to_show, cm, mi_row, mi_col); } #else filt_err = compute_sb_y_sse(sd, cm->frame_to_show, cm, mi_row, mi_col); #endif // CONFIG_HIGHBITDEPTH // TODO(chengchen): Copy the superblock only // Re-instate the unfiltered frame aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); return filt_err; } static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, int partial_frame, double *best_cost_ret, int mi_row, int mi_col, int last_lvl) { assert(partial_frame == 1); assert(last_lvl >= 0); const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *x = &cpi->td.mb; int min_filter_level = AOMMAX(0, last_lvl - MAX_LPF_OFFSET); int max_filter_level = AOMMIN(av1_get_max_filter_level(cpi), last_lvl + MAX_LPF_OFFSET); // search a larger range for the start superblock if (mi_row == 0 && mi_col == 0) { min_filter_level = 0; max_filter_level = av1_get_max_filter_level(cpi); } // TODO(chengchen): Copy for superblock only // Make a copy of the unfiltered / processed recon buffer aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); int estimate_err = try_filter_superblock(sd, cpi, last_lvl, partial_frame, mi_row, mi_col); int best_err = estimate_err; int filt_best = last_lvl; int i; for (i = min_filter_level; i <= max_filter_level; i += LPF_STEP) { if (i == last_lvl) continue; int filt_err = try_filter_superblock(sd, cpi, i, partial_frame, mi_row, mi_col); if (filt_err < best_err) { best_err = filt_err; filt_best = i; } } // If previous sb filter level has similar filtering performance as current // best filter level, use previous level such that we can only send one bit // to indicate current filter level is the same as the previous. int threshold = 400; // ratio = the filtering area / a superblock size int ratio = 1; if (mi_row + MAX_MIB_SIZE > cm->mi_rows) { ratio *= (cm->mi_rows - mi_row); } else { if (mi_row == 0) { ratio *= (MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET); } else { ratio *= MAX_MIB_SIZE; } } if (mi_col + MAX_MIB_SIZE > cm->mi_cols) { ratio *= (cm->mi_cols - mi_col); } else { if (mi_col == 0) { ratio *= (MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET); } else { ratio *= MAX_MIB_SIZE; } } threshold = threshold * ratio / (MAX_MIB_SIZE * MAX_MIB_SIZE); const int diff = abs(estimate_err - best_err); const int percent_thresh = (int)((double)estimate_err * 0.01); threshold = AOMMAX(threshold, percent_thresh); if (diff < threshold) { best_err = estimate_err; filt_best = last_lvl; } // Compute rdcost to determine whether to reuse previous filter lvl if (filt_best != last_lvl) { } if (best_cost_ret) *best_cost_ret = RDCOST_DBL(x->rdmult, 0, best_err); return filt_best; } #else // CONFIG_LPF_SB static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd, AV1_COMP *const cpi, int filt_level, int partial_frame #if CONFIG_LOOPFILTER_LEVEL , int plane, int dir #endif ) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; #if CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_CB4X4 #if CONFIG_LOOPFILTER_LEVEL assert(plane >= 0 && plane <= 2); int filter_level[2] = { filt_level, filt_level }; if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1]; if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0]; av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level[0], filter_level[1], plane, partial_frame); #else av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1, partial_frame); #endif // CONFIG_LOOPFILTER_LEVEL #else if (cpi->num_workers > 1) av1_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane, filt_level, 1, partial_frame, cpi->workers, cpi->num_workers, &cpi->lf_row_sync); else av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1, partial_frame); #endif int highbd = 0; #if CONFIG_HIGHBITDEPTH highbd = cm->use_highbitdepth; #endif // CONFIG_HIGHBITDEPTH #if CONFIG_LOOPFILTER_LEVEL filt_err = aom_get_sse_plane(sd, cm->frame_to_show, plane, highbd); // Re-instate the unfiltered frame yv12_copy_plane(&cpi->last_frame_uf, cm->frame_to_show, plane); #else filt_err = aom_get_sse_plane(sd, cm->frame_to_show, 0, highbd); // Re-instate the unfiltered frame yv12_copy_plane(&cpi->last_frame_uf, cm->frame_to_show, 0); #endif // CONFIG_LOOPFILTER_LEVEL return filt_err; } static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, int partial_frame, double *best_cost_ret #if CONFIG_LOOPFILTER_LEVEL , int plane, int dir #endif ) { const AV1_COMMON *const cm = &cpi->common; const struct loopfilter *const lf = &cm->lf; const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); int filt_direction = 0; int64_t best_err; int filt_best; MACROBLOCK *x = &cpi->td.mb; // Start the search at the previous frame filter level unless it is now out of // range. #if CONFIG_LOOPFILTER_LEVEL int lvl; switch (plane) { case 0: lvl = (dir == 1) ? lf->filter_level[1] : lf->filter_level[0]; break; case 1: lvl = lf->filter_level_u; break; case 2: lvl = lf->filter_level_v; break; default: assert(plane >= 0 && plane <= 2); return 0; } int filt_mid = clamp(lvl, min_filter_level, max_filter_level); #else int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level); #endif // CONFIG_LOOPFILTER_LEVEL int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; // Sum squared error at each filter level int64_t ss_err[MAX_LOOP_FILTER + 1]; // Set each entry to -1 memset(ss_err, 0xFF, sizeof(ss_err)); #if CONFIG_LOOPFILTER_LEVEL yv12_copy_plane(cm->frame_to_show, &cpi->last_frame_uf, plane); #else // Make a copy of the unfiltered / processed recon buffer aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); #endif // CONFIG_LOOPFILTER_LEVEL #if CONFIG_LOOPFILTER_LEVEL best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir); #else best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame); #endif // CONFIG_LOOPFILTER_LEVEL filt_best = filt_mid; ss_err[filt_mid] = best_err; while (filter_step > 0) { const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level); const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level); // Bias against raising loop filter in favor of lowering it. int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20)) bias = (bias * cpi->twopass.section_intra_rating) / 20; // yx, bias less for large block size if (cm->tx_mode != ONLY_4X4) bias >>= 1; if (filt_direction <= 0 && filt_low != filt_mid) { // Get Low filter error score if (ss_err[filt_low] < 0) { #if CONFIG_LOOPFILTER_LEVEL ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir); #else ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame); #endif // CONFIG_LOOPFILTER_LEVEL } // If value is close to the best so far then bias towards a lower loop // filter value. if (ss_err[filt_low] < (best_err + bias)) { // Was it actually better than the previous best? if (ss_err[filt_low] < best_err) { best_err = ss_err[filt_low]; } filt_best = filt_low; } } // Now look at filt_high if (filt_direction >= 0 && filt_high != filt_mid) { if (ss_err[filt_high] < 0) { #if CONFIG_LOOPFILTER_LEVEL ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir); #else ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame); #endif // CONFIG_LOOPFILTER_LEVEL } // If value is significantly better than previous best, bias added against // raising filter value if (ss_err[filt_high] < (best_err - bias)) { best_err = ss_err[filt_high]; filt_best = filt_high; } } // Half the step distance if the best filter value was the same as last time if (filt_best == filt_mid) { filter_step /= 2; filt_direction = 0; } else { filt_direction = (filt_best < filt_mid) ? -1 : 1; filt_mid = filt_best; } } // Update best error best_err = ss_err[filt_best]; if (best_cost_ret) *best_cost_ret = RDCOST_DBL(x->rdmult, 0, best_err); return filt_best; } #endif // CONFIG_LPF_SB void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, LPF_PICK_METHOD method) { AV1_COMMON *const cm = &cpi->common; struct loopfilter *const lf = &cm->lf; lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness; if (method == LPF_PICK_MINIMAL_LPF) { #if CONFIG_LOOPFILTER_LEVEL lf->filter_level[0] = 0; lf->filter_level[1] = 0; #else lf->filter_level = 0; #endif } else if (method >= LPF_PICK_FROM_Q) { const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); const int q = av1_ac_quant(cm->base_qindex, 0, cm->bit_depth); // These values were determined by linear fitting the result of the // searched level, filt_guess = q * 0.316206 + 3.87252 #if CONFIG_HIGHBITDEPTH int filt_guess; switch (cm->bit_depth) { case AOM_BITS_8: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); break; case AOM_BITS_10: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); break; case AOM_BITS_12: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 " "or AOM_BITS_12"); return; } #else int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); #endif // CONFIG_HIGHBITDEPTH if (cm->frame_type == KEY_FRAME) filt_guess -= 4; #if CONFIG_LOOPFILTER_LEVEL lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level); lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level); #else lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level); #endif } else { #if CONFIG_LPF_SB int mi_row, mi_col; // TODO(chengchen): init last_lvl using previous frame's info? int last_lvl = 0; // TODO(chengchen): if the frame size makes the last superblock very small, // consider merge it to the previous superblock to save bits. // Example, if frame size 1080x720, then in the last row of superblock, // there're (FILT_BOUNDAR_OFFSET + 16) pixels. for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MAX_MIB_SIZE) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { int lvl = search_filter_level(sd, cpi, 1, NULL, mi_row, mi_col, last_lvl); av1_loop_filter_sb_level_init(cm, mi_row, mi_col, lvl); // For the superblock at row start, its previous filter level should be // the one above it, not the one at the end of last row if (mi_col + MAX_MIB_SIZE >= cm->mi_cols) { last_lvl = cm->mi_grid_visible[mi_row * cm->mi_stride]->mbmi.filt_lvl; } else { last_lvl = lvl; } } } #else // CONFIG_LPF_SB #if CONFIG_LOOPFILTER_LEVEL lf->filter_level[0] = lf->filter_level[1] = search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 2); lf->filter_level[0] = search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 0); lf->filter_level[1] = search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 1); lf->filter_level_u = search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 1, 0); lf->filter_level_v = search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 2, 0); #else lf->filter_level = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL); #endif // CONFIG_LOOPFILTER_LEVEL #endif // CONFIG_LPF_SB } }