/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <limits.h> #include <math.h> #include <stdio.h> #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/common.h" #include "av1/common/mvref_common.h" #include "av1/common/onyxc_int.h" #include "av1/common/reconinter.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" // #define NEW_DIAMOND_SEARCH static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf, const MV *mv) { return &buf->buf[mv->row * buf->stride + mv->col]; } void av1_set_mv_search_range(MvLimits *mv_limits, const MV *mv) { int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0); int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0); int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL; int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL; col_min = AOMMAX(col_min, (MV_LOW >> 3) + 1); row_min = AOMMAX(row_min, (MV_LOW >> 3) + 1); col_max = AOMMIN(col_max, (MV_UPP >> 3) - 1); row_max = AOMMIN(row_max, (MV_UPP >> 3) - 1); // Get intersection of UMV window and valid MV window to reduce # of checks // in diamond search. if (mv_limits->col_min < col_min) mv_limits->col_min = col_min; if (mv_limits->col_max > col_max) mv_limits->col_max = col_max; if (mv_limits->row_min < row_min) mv_limits->row_min = row_min; if (mv_limits->row_max > row_max) mv_limits->row_max = row_max; } static void set_subpel_mv_search_range(const MvLimits *mv_limits, int *col_min, int *col_max, int *row_min, int *row_max, const MV *ref_mv) { const int max_mv = MAX_FULL_PEL_VAL * 8; const int minc = AOMMAX(mv_limits->col_min * 8, ref_mv->col - max_mv); const int maxc = AOMMIN(mv_limits->col_max * 8, ref_mv->col + max_mv); const int minr = AOMMAX(mv_limits->row_min * 8, ref_mv->row - max_mv); const int maxr = AOMMIN(mv_limits->row_max * 8, ref_mv->row + max_mv); *col_min = AOMMAX(MV_LOW + 1, minc); *col_max = AOMMIN(MV_UPP - 1, maxc); *row_min = AOMMAX(MV_LOW + 1, minr); *row_max = AOMMIN(MV_UPP - 1, maxr); } int av1_init_search_range(int size) { int sr = 0; // Minimum search size no matter what the passed in value. size = AOMMAX(16, size); while ((size << sr) < MAX_FULL_PEL_VAL) sr++; sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2); return sr; } static INLINE int mv_cost(const MV *mv, const int *joint_cost, int *const comp_cost[2]) { return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] + comp_cost[1][mv->col]; } int av1_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost, int *mvcost[2], int weight) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7); } #define PIXEL_TRANSFORM_ERROR_SCALE 4 static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost, int *mvcost[2], int error_per_bit) { if (mvcost) { const MV diff = { mv->row - ref->row, mv->col - ref->col }; return (int)ROUND_POWER_OF_TWO_64( (int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit, RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT + PIXEL_TRANSFORM_ERROR_SCALE); } return 0; } static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref, int sad_per_bit) { const MV diff = { (mv->row - ref->row) * 8, (mv->col - ref->col) * 8 }; return ROUND_POWER_OF_TWO( (unsigned)mv_cost(&diff, x->nmvjointcost, x->mvcost) * sad_per_bit, AV1_PROB_COST_SHIFT); } void av1_init_dsmotion_compensation(search_site_config *cfg, int stride) { int len, ss_count = 1; cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0; cfg->ss[0].offset = 0; for (len = MAX_FIRST_STEP; len > 0; len /= 2) { // Generate offsets for 4 search sites per step. const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } }; int i; for (i = 0; i < 4; ++i) { search_site *const ss = &cfg->ss[ss_count++]; ss->mv = ss_mvs[i]; ss->offset = ss->mv.row * stride + ss->mv.col; } } cfg->ss_count = ss_count; cfg->searches_per_step = 4; } void av1_init3smotion_compensation(search_site_config *cfg, int stride) { int len, ss_count = 1; cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0; cfg->ss[0].offset = 0; for (len = MAX_FIRST_STEP; len > 0; len /= 2) { // Generate offsets for 8 search sites per step. const MV ss_mvs[8] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len }, { -len, -len }, { -len, len }, { len, -len }, { len, len } }; int i; for (i = 0; i < 8; ++i) { search_site *const ss = &cfg->ss[ss_count++]; ss->mv = ss_mvs[i]; ss->offset = ss->mv.row * stride + ss->mv.col; } } cfg->ss_count = ss_count; cfg->searches_per_step = 8; } /* * To avoid the penalty for crossing cache-line read, preload the reference * area in a small buffer, which is aligned to make sure there won't be crossing * cache-line read while reading from this buffer. This reduced the cpu * cycles spent on reading ref data in sub-pixel filter functions. * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we * could reduce the area. */ // convert motion vector component to offset for sv[a]f calc static INLINE int sp(int x) { return x & 7; } static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) { const int offset = (r >> 3) * stride + (c >> 3); return buf + offset; } /* checks if (r, c) has better score than previous best */ #define CHECK_BETTER(v, r, c) \ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ MV this_mv = { r, c }; \ v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \ if (second_pred == NULL) { \ thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ src_address, src_stride, &sse); \ } else if (mask) { \ thismse = vfp->msvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ src_address, src_stride, second_pred, mask, \ mask_stride, invert_mask, &sse); \ } else { \ if (xd->jcp_param.use_jnt_comp_avg) \ thismse = vfp->jsvaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ src_address, src_stride, &sse, second_pred, \ &xd->jcp_param); \ else \ thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ src_address, src_stride, &sse, second_pred); \ } \ v += thismse; \ if (v < besterr) { \ besterr = v; \ br = r; \ bc = c; \ *distortion = thismse; \ *sse1 = sse; \ } \ } else { \ v = INT_MAX; \ } #define CHECK_BETTER0(v, r, c) CHECK_BETTER(v, r, c) /* checks if (r, c) has better score than previous best */ #define CHECK_BETTER1(v, r, c) \ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ MV this_mv = { r, c }; \ thismse = upsampled_pref_error( \ xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, \ pre(y, y_stride, r, c), y_stride, sp(c), sp(r), second_pred, mask, \ mask_stride, invert_mask, w, h, &sse, use_accurate_subpel_search); \ v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \ v += thismse; \ if (v < besterr) { \ besterr = v; \ br = r; \ bc = c; \ *distortion = thismse; \ *sse1 = sse; \ } \ } else { \ v = INT_MAX; \ } #define FIRST_LEVEL_CHECKS \ { \ unsigned int left, right, up, down, diag; \ CHECK_BETTER(left, tr, tc - hstep); \ CHECK_BETTER(right, tr, tc + hstep); \ CHECK_BETTER(up, tr - hstep, tc); \ CHECK_BETTER(down, tr + hstep, tc); \ whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); \ switch (whichdir) { \ case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \ case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \ case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \ case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \ } \ } #define SECOND_LEVEL_CHECKS \ { \ int kr, kc; \ unsigned int second; \ if (tr != br && tc != bc) { \ kr = br - tr; \ kc = bc - tc; \ CHECK_BETTER(second, tr + kr, tc + 2 * kc); \ CHECK_BETTER(second, tr + 2 * kr, tc + kc); \ } else if (tr == br && tc != bc) { \ kc = bc - tc; \ CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \ CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \ switch (whichdir) { \ case 0: \ case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \ case 2: \ case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \ } \ } else if (tr != br && tc == bc) { \ kr = br - tr; \ CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \ CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \ switch (whichdir) { \ case 0: \ case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \ case 1: \ case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \ } \ } \ } // TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of // SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten // later in the same way. #define SECOND_LEVEL_CHECKS_BEST(k) \ { \ unsigned int second; \ int br0 = br; \ int bc0 = bc; \ assert(tr == br || tc == bc); \ if (tr == br && tc != bc) { \ kc = bc - tc; \ } else if (tr != br && tc == bc) { \ kr = br - tr; \ } \ CHECK_BETTER##k(second, br0 + kr, bc0); \ CHECK_BETTER##k(second, br0, bc0 + kc); \ if (br0 != br || bc0 != bc) { \ CHECK_BETTER##k(second, br0 + kr, bc0 + kc); \ } \ } #define SETUP_SUBPEL_SEARCH \ const uint8_t *const src_address = x->plane[0].src.buf; \ const int src_stride = x->plane[0].src.stride; \ const MACROBLOCKD *xd = &x->e_mbd; \ unsigned int besterr = INT_MAX; \ unsigned int sse; \ unsigned int whichdir; \ int thismse; \ MV *bestmv = &x->best_mv.as_mv; \ const unsigned int halfiters = iters_per_step; \ const unsigned int quarteriters = iters_per_step; \ const unsigned int eighthiters = iters_per_step; \ const int y_stride = xd->plane[0].pre[0].stride; \ const int offset = bestmv->row * y_stride + bestmv->col; \ const uint8_t *const y = xd->plane[0].pre[0].buf; \ \ int br = bestmv->row * 8; \ int bc = bestmv->col * 8; \ int hstep = 4; \ int minc, maxc, minr, maxr; \ int tr = br; \ int tc = bc; \ \ set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, \ ref_mv); \ \ bestmv->row *= 8; \ bestmv->col *= 8; static unsigned int setup_center_error( const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv, int error_per_bit, const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, const int src_stride, const uint8_t *const y, int y_stride, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int offset, int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion) { unsigned int besterr; if (second_pred != NULL) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, comp_pred16[MAX_SB_SQUARE]); uint8_t *comp_pred = CONVERT_TO_BYTEPTR(comp_pred16); if (mask) { aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, y_stride, mask, mask_stride, invert_mask); } else { if (xd->jcp_param.use_jnt_comp_avg) aom_highbd_jnt_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride, &xd->jcp_param); else aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride); } besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); } else { DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]); if (mask) { aom_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, y_stride, mask, mask_stride, invert_mask); } else { if (xd->jcp_param.use_jnt_comp_avg) aom_jnt_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride, &xd->jcp_param); else aom_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride); } besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); } } else { besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1); } *distortion = besterr; besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); return besterr; } static INLINE int divide_and_round(int n, int d) { return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d); } static INLINE int is_cost_list_wellbehaved(int *cost_list) { return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] && cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4]; } // Returns surface minima estimate at given precision in 1/2^n bits. // Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C // For a given set of costs S0, S1, S2, S3, S4 at points // (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively, // the solution for the location of the minima (x0, y0) is given by: // x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0), // y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0). // The code below is an integerized version of that. static void get_cost_surf_min(int *cost_list, int *ir, int *ic, int bits) { *ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)), (cost_list[1] - 2 * cost_list[0] + cost_list[3])); *ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)), (cost_list[4] - 2 * cost_list[0] + cost_list[2])); } int av1_find_best_sub_pixel_tree_pruned_evenmore( MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { SETUP_SUBPEL_SEARCH; besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, src_address, src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, h, offset, mvjcost, mvcost, sse1, distortion); (void)halfiters; (void)quarteriters; (void)eighthiters; (void)whichdir; (void)allow_hp; (void)forced_stop; (void)hstep; (void)use_accurate_subpel_search; (void)cm; (void)mi_row; (void)mi_col; if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { int ir, ic; unsigned int minpt; get_cost_surf_min(cost_list, &ir, &ic, 2); if (ir != 0 || ic != 0) { CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic); } } else { FIRST_LEVEL_CHECKS; if (halfiters > 1) { SECOND_LEVEL_CHECKS; } tr = br; tc = bc; // Each subsequent iteration checks at least one point in common with // the last iteration could be 2 ( if diag selected) 1/4 pel // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only if (forced_stop != 2) { hstep >>= 1; FIRST_LEVEL_CHECKS; if (quarteriters > 1) { SECOND_LEVEL_CHECKS; } } } tr = br; tc = bc; if (allow_hp && forced_stop == 0) { hstep >>= 1; FIRST_LEVEL_CHECKS; if (eighthiters > 1) { SECOND_LEVEL_CHECKS; } } bestmv->row = br; bestmv->col = bc; return besterr; } int av1_find_best_sub_pixel_tree_pruned_more( MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { SETUP_SUBPEL_SEARCH; (void)use_accurate_subpel_search; (void)cm; (void)mi_row; (void)mi_col; besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, src_address, src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, h, offset, mvjcost, mvcost, sse1, distortion); if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { unsigned int minpt; int ir, ic; get_cost_surf_min(cost_list, &ir, &ic, 1); if (ir != 0 || ic != 0) { CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep); } } else { FIRST_LEVEL_CHECKS; if (halfiters > 1) { SECOND_LEVEL_CHECKS; } } // Each subsequent iteration checks at least one point in common with // the last iteration could be 2 ( if diag selected) 1/4 pel // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only if (forced_stop != 2) { tr = br; tc = bc; hstep >>= 1; FIRST_LEVEL_CHECKS; if (quarteriters > 1) { SECOND_LEVEL_CHECKS; } } if (allow_hp && forced_stop == 0) { tr = br; tc = bc; hstep >>= 1; FIRST_LEVEL_CHECKS; if (eighthiters > 1) { SECOND_LEVEL_CHECKS; } } // These lines insure static analysis doesn't warn that // tr and tc aren't used after the above point. (void)tr; (void)tc; bestmv->row = br; bestmv->col = bc; return besterr; } int av1_find_best_sub_pixel_tree_pruned( MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { SETUP_SUBPEL_SEARCH; (void)use_accurate_subpel_search; (void)cm; (void)mi_row; (void)mi_col; besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, src_address, src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, h, offset, mvjcost, mvcost, sse1, distortion); if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && cost_list[4] != INT_MAX) { unsigned int left, right, up, down, diag; whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) + (cost_list[2] < cost_list[4] ? 0 : 2); switch (whichdir) { case 0: CHECK_BETTER(left, tr, tc - hstep); CHECK_BETTER(down, tr + hstep, tc); CHECK_BETTER(diag, tr + hstep, tc - hstep); break; case 1: CHECK_BETTER(right, tr, tc + hstep); CHECK_BETTER(down, tr + hstep, tc); CHECK_BETTER(diag, tr + hstep, tc + hstep); break; case 2: CHECK_BETTER(left, tr, tc - hstep); CHECK_BETTER(up, tr - hstep, tc); CHECK_BETTER(diag, tr - hstep, tc - hstep); break; case 3: CHECK_BETTER(right, tr, tc + hstep); CHECK_BETTER(up, tr - hstep, tc); CHECK_BETTER(diag, tr - hstep, tc + hstep); break; } } else { FIRST_LEVEL_CHECKS; if (halfiters > 1) { SECOND_LEVEL_CHECKS; } } tr = br; tc = bc; // Each subsequent iteration checks at least one point in common with // the last iteration could be 2 ( if diag selected) 1/4 pel // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only if (forced_stop != 2) { hstep >>= 1; FIRST_LEVEL_CHECKS; if (quarteriters > 1) { SECOND_LEVEL_CHECKS; } tr = br; tc = bc; } if (allow_hp && forced_stop == 0) { hstep >>= 1; FIRST_LEVEL_CHECKS; if (eighthiters > 1) { SECOND_LEVEL_CHECKS; } tr = br; tc = bc; } // These lines insure static analysis doesn't warn that // tr and tc aren't used after the above point. (void)tr; (void)tc; bestmv->row = br; bestmv->col = bc; return besterr; } /* clang-format off */ static const MV search_step_table[12] = { // left, right, up, down { 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 }, { 0, -2 }, { 0, 2 }, { -2, 0 }, { 2, 0 }, { 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 } }; /* clang-format on */ static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, const int src_stride, const uint8_t *const y, int y_stride, int subpel_x_q3, int subpel_y_q3, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, unsigned int *sse, int subpel_search) { unsigned int besterr; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]); uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred16); if (second_pred != NULL) { if (mask) { aom_highbd_comp_mask_upsampled_pred( xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, mask, mask_stride, invert_mask, xd->bd, subpel_search); } else { if (xd->jcp_param.use_jnt_comp_avg) aom_highbd_jnt_comp_avg_upsampled_pred( xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, &xd->jcp_param, subpel_search); else aom_highbd_comp_avg_upsampled_pred( xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, subpel_search); } } else { aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred8, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, subpel_search); } besterr = vfp->vf(pred8, w, src, src_stride, sse); } else { DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]); if (second_pred != NULL) { if (mask) { aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, mask, mask_stride, invert_mask, subpel_search); } else { if (xd->jcp_param.use_jnt_comp_avg) aom_jnt_comp_avg_upsampled_pred( xd, cm, mi_row, mi_col, mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, &xd->jcp_param, subpel_search); else aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, subpel_search); } } else { aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, subpel_search); } besterr = vfp->vf(pred, w, src, src_stride, sse); } return besterr; } static unsigned int upsampled_setup_center_error( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *bestmv, const MV *ref_mv, int error_per_bit, const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, const int src_stride, const uint8_t *const y, int y_stride, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int offset, int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion, int subpel_search) { unsigned int besterr = upsampled_pref_error(xd, cm, mi_row, mi_col, bestmv, vfp, src, src_stride, y + offset, y_stride, 0, 0, second_pred, mask, mask_stride, invert_mask, w, h, sse1, subpel_search); *distortion = besterr; besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); return besterr; } // when use_accurate_subpel_search == 0 static INLINE unsigned int estimate_upsampled_pref_error( MACROBLOCKD *xd, const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, const int src_stride, const uint8_t *const pre, int y_stride, int subpel_x_q3, int subpel_y_q3, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, unsigned int *sse) { if (second_pred == NULL) { return vfp->svf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, sse); } else if (mask) { return vfp->msvf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, second_pred, mask, mask_stride, invert_mask, sse); } else { if (xd->jcp_param.use_jnt_comp_avg) return vfp->jsvaf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, sse, second_pred, &xd->jcp_param); else return vfp->svaf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, sse, second_pred); } } int av1_find_best_sub_pixel_tree( MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { const uint8_t *const src_address = x->plane[0].src.buf; const int src_stride = x->plane[0].src.stride; MACROBLOCKD *xd = &x->e_mbd; unsigned int besterr = INT_MAX; unsigned int sse; unsigned int thismse; const int y_stride = xd->plane[0].pre[0].stride; MV *bestmv = &x->best_mv.as_mv; const int offset = bestmv->row * y_stride + bestmv->col; const uint8_t *const y = xd->plane[0].pre[0].buf; int br = bestmv->row * 8; int bc = bestmv->col * 8; int hstep = 4; int iter, round = 3 - forced_stop; int tr = br; int tc = bc; const MV *search_step = search_step_table; int idx, best_idx = -1; unsigned int cost_array[5]; int kr, kc; int minc, maxc, minr, maxr; set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, ref_mv); if (!allow_hp) if (round == 3) round = 2; bestmv->row *= 8; bestmv->col *= 8; if (use_accurate_subpel_search) besterr = upsampled_setup_center_error( xd, cm, mi_row, mi_col, bestmv, ref_mv, error_per_bit, vfp, src_address, src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, h, offset, mvjcost, mvcost, sse1, distortion, use_accurate_subpel_search); else besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, src_address, src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, h, offset, mvjcost, mvcost, sse1, distortion); (void)cost_list; // to silence compiler warning for (iter = 0; iter < round; ++iter) { // Check vertical and horizontal sub-pixel positions. for (idx = 0; idx < 4; ++idx) { tr = br + search_step[idx].row; tc = bc + search_step[idx].col; if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { MV this_mv = { tr, tc }; if (use_accurate_subpel_search) { thismse = upsampled_pref_error( xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask, w, h, &sse, use_accurate_subpel_search); } else { thismse = estimate_upsampled_pref_error( xd, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask, &sse); } cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); if (cost_array[idx] < besterr) { best_idx = idx; besterr = cost_array[idx]; *distortion = thismse; *sse1 = sse; } } else { cost_array[idx] = INT_MAX; } } // Check diagonal sub-pixel position kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep); kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep); tc = bc + kc; tr = br + kr; if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { MV this_mv = { tr, tc }; if (use_accurate_subpel_search) { thismse = upsampled_pref_error( xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask, w, h, &sse, use_accurate_subpel_search); } else { thismse = estimate_upsampled_pref_error( xd, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, invert_mask, &sse); } cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); if (cost_array[4] < besterr) { best_idx = 4; besterr = cost_array[4]; *distortion = thismse; *sse1 = sse; } } else { cost_array[idx] = INT_MAX; } if (best_idx < 4 && best_idx >= 0) { br += search_step[best_idx].row; bc += search_step[best_idx].col; } else if (best_idx == 4) { br = tr; bc = tc; } if (iters_per_step > 1 && best_idx != -1) { if (use_accurate_subpel_search) { SECOND_LEVEL_CHECKS_BEST(1); } else { SECOND_LEVEL_CHECKS_BEST(0); } } search_step += 4; hstep >>= 1; best_idx = -1; } // These lines insure static analysis doesn't warn that // tr and tc aren't used after the above point. (void)tr; (void)tc; bestmv->row = br; bestmv->col = bc; return besterr; } #undef PRE #undef CHECK_BETTER unsigned int av1_compute_motion_cost(const AV1_COMP *cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, int mi_col, const MV *this_mv) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; const uint8_t *const src = x->plane[0].src.buf; const int src_stride = x->plane[0].src.stride; uint8_t *const dst = xd->plane[0].dst.buf; const int dst_stride = xd->plane[0].dst.stride; const aom_variance_fn_ptr_t *vfp = &cpi->fn_ptr[bsize]; const int_mv ref_mv = av1_get_ref_mv(x, 0); unsigned int mse; unsigned int sse; av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize); mse = vfp->vf(dst, dst_stride, src, src_stride, &sse); mse += mv_err_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost, x->mvcost, x->errorperbit); return mse; } // Refine MV in a small range unsigned int av1_refine_warped_mv(const AV1_COMP *cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, int mi_col, int *pts0, int *pts_inref0, int total_samples) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -2 }, { 2, 0 }, { 0, 2 }, { -2, 0 } }; const int_mv ref_mv = av1_get_ref_mv(x, 0); int16_t br = mbmi->mv[0].as_mv.row; int16_t bc = mbmi->mv[0].as_mv.col; int16_t *tr = &mbmi->mv[0].as_mv.row; int16_t *tc = &mbmi->mv[0].as_mv.col; WarpedMotionParams best_wm_params = mbmi->wm_params; int best_num_proj_ref = mbmi->num_proj_ref; unsigned int bestmse; int minc, maxc, minr, maxr; const int start = cm->allow_high_precision_mv ? 0 : 4; int ite; set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, &ref_mv.as_mv); // Calculate the center position's error assert(bc >= minc && bc <= maxc && br >= minr && br <= maxr); bestmse = av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col, &mbmi->mv[0].as_mv); // MV search for (ite = 0; ite < 2; ++ite) { int best_idx = -1; int idx; for (idx = start; idx < start + 4; ++idx) { unsigned int thismse; *tr = br + neighbors[idx].row; *tc = bc + neighbors[idx].col; if (*tc >= minc && *tc <= maxc && *tr >= minr && *tr <= maxr) { MV this_mv = { *tr, *tc }; int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); if (total_samples > 1) mbmi->num_proj_ref = selectSamples(&this_mv, pts, pts_inref, total_samples, bsize); if (!find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, *tr, *tc, &mbmi->wm_params, mi_row, mi_col)) { thismse = av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col, &this_mv); if (thismse < bestmse) { best_idx = idx; best_wm_params = mbmi->wm_params; best_num_proj_ref = mbmi->num_proj_ref; bestmse = thismse; } } } } if (best_idx == -1) break; if (best_idx >= 0) { br += neighbors[best_idx].row; bc += neighbors[best_idx].col; } } *tr = br; *tc = bc; mbmi->wm_params = best_wm_params; mbmi->num_proj_ref = best_num_proj_ref; return bestmse; } static INLINE int check_bounds(const MvLimits *mv_limits, int row, int col, int range) { return ((row - range) >= mv_limits->row_min) & ((row + range) <= mv_limits->row_max) & ((col - range) >= mv_limits->col_min) & ((col + range) <= mv_limits->col_max); } static INLINE int is_mv_in(const MvLimits *mv_limits, const MV *mv) { return (mv->col >= mv_limits->col_min) && (mv->col <= mv_limits->col_max) && (mv->row >= mv_limits->row_min) && (mv->row <= mv_limits->row_max); } #define CHECK_BETTER \ { \ if (thissad < bestsad) { \ if (use_mvcost) \ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \ if (thissad < bestsad) { \ bestsad = thissad; \ best_site = i; \ } \ } \ } #define MAX_PATTERN_SCALES 11 #define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale #define PATTERN_CANDIDATES_REF 3 // number of refinement candidates // Calculate and return a sad+mvcost list around an integer best pel. static INLINE void calc_int_cost_list(const MACROBLOCK *x, const MV *const ref_mv, int sadpb, const aom_variance_fn_ptr_t *fn_ptr, const MV *best_mv, int *cost_list) { static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0]; const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; const int br = best_mv->row; const int bc = best_mv->col; int i; unsigned int sse; const MV this_mv = { br, bc }; cost_list[0] = fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride, &sse) + mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb); if (check_bounds(&x->mv_limits, br, bc, 1)) { for (i = 0; i < 4; i++) { const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &neighbor_mv), in_what->stride, &sse) + mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmvjointcost, x->mvcost, x->errorperbit); } } else { for (i = 0; i < 4; i++) { const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; if (!is_mv_in(&x->mv_limits, &neighbor_mv)) cost_list[i + 1] = INT_MAX; else cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &neighbor_mv), in_what->stride, &sse) + mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmvjointcost, x->mvcost, x->errorperbit); } } } static INLINE void calc_int_sad_list(const MACROBLOCK *x, const MV *const ref_mv, int sadpb, const aom_variance_fn_ptr_t *fn_ptr, const MV *best_mv, int *cost_list, const int use_mvcost, const int bestsad) { static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0]; const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; int i; const int br = best_mv->row; const int bc = best_mv->col; if (cost_list[0] == INT_MAX) { cost_list[0] = bestsad; if (check_bounds(&x->mv_limits, br, bc, 1)) { for (i = 0; i < 4; i++) { const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; cost_list[i + 1] = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); } } else { for (i = 0; i < 4; i++) { const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) cost_list[i + 1] = INT_MAX; else cost_list[i + 1] = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); } } } else { if (use_mvcost) { for (i = 0; i < 4; i++) { const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; if (cost_list[i + 1] != INT_MAX) { cost_list[i + 1] += mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb); } } } } } // Generic pattern search function that searches over multiple scales. // Each scale can have a different number of candidates and shape of // candidates as indicated in the num_candidates and candidates arrays // passed into this function // static int pattern_search( MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit, int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv, const int num_candidates[MAX_PATTERN_SCALES], const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) { const MACROBLOCKD *const xd = &x->e_mbd; static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, }; int i, s, t; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const int last_is_4 = num_candidates[0] == 4; int br, bc; int bestsad = INT_MAX; int thissad; int k = -1; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; assert(search_param < MAX_MVSEARCH_STEPS); int best_init_s = search_param_to_steps[search_param]; // adjust ref_mv to make sure it is within MV range clamp_mv(start_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); br = start_mv->row; bc = start_mv->col; if (cost_list != NULL) { cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; } // Work out the start point for the search bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, start_mv), in_what->stride) + mvsad_err_cost(x, start_mv, &fcenter_mv, sad_per_bit); // Search all possible scales upto the search param around the center point // pick the scale of the point that is best as the starting scale of // further steps around it. if (do_init_search) { s = best_init_s; best_init_s = -1; for (t = 0; t <= s; ++t) { int best_site = -1; if (check_bounds(&x->mv_limits, br, bc, 1 << t)) { for (i = 0; i < num_candidates[t]; i++) { const MV this_mv = { br + candidates[t][i].row, bc + candidates[t][i].col }; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } else { for (i = 0; i < num_candidates[t]; i++) { const MV this_mv = { br + candidates[t][i].row, bc + candidates[t][i].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) continue; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } if (best_site == -1) { continue; } else { best_init_s = t; k = best_site; } } if (best_init_s != -1) { br += candidates[best_init_s][k].row; bc += candidates[best_init_s][k].col; } } // If the center point is still the best, just skip this and move to // the refinement step. if (best_init_s != -1) { const int last_s = (last_is_4 && cost_list != NULL); int best_site = -1; s = best_init_s; for (; s >= last_s; s--) { // No need to search all points the 1st time if initial search was used if (!do_init_search || s != best_init_s) { if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { for (i = 0; i < num_candidates[s]; i++) { const MV this_mv = { br + candidates[s][i].row, bc + candidates[s][i].col }; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } else { for (i = 0; i < num_candidates[s]; i++) { const MV this_mv = { br + candidates[s][i].row, bc + candidates[s][i].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) continue; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } if (best_site == -1) { continue; } else { br += candidates[s][best_site].row; bc += candidates[s][best_site].col; k = best_site; } } do { int next_chkpts_indices[PATTERN_CANDIDATES_REF]; best_site = -1; next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; next_chkpts_indices[1] = k; next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { const MV this_mv = { br + candidates[s][next_chkpts_indices[i]].row, bc + candidates[s][next_chkpts_indices[i]].col }; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } else { for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { const MV this_mv = { br + candidates[s][next_chkpts_indices[i]].row, bc + candidates[s][next_chkpts_indices[i]].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) continue; thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } if (best_site != -1) { k = next_chkpts_indices[best_site]; br += candidates[s][k].row; bc += candidates[s][k].col; } } while (best_site != -1); } // Note: If we enter the if below, then cost_list must be non-NULL. if (s == 0) { cost_list[0] = bestsad; if (!do_init_search || s != best_init_s) { if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { for (i = 0; i < num_candidates[s]; i++) { const MV this_mv = { br + candidates[s][i].row, bc + candidates[s][i].col }; cost_list[i + 1] = thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } else { for (i = 0; i < num_candidates[s]; i++) { const MV this_mv = { br + candidates[s][i].row, bc + candidates[s][i].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) continue; cost_list[i + 1] = thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } if (best_site != -1) { br += candidates[s][best_site].row; bc += candidates[s][best_site].col; k = best_site; } } while (best_site != -1) { int next_chkpts_indices[PATTERN_CANDIDATES_REF]; best_site = -1; next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; next_chkpts_indices[1] = k; next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; cost_list[((k + 2) % 4) + 1] = cost_list[0]; cost_list[0] = bestsad; if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { const MV this_mv = { br + candidates[s][next_chkpts_indices[i]].row, bc + candidates[s][next_chkpts_indices[i]].col }; cost_list[next_chkpts_indices[i] + 1] = thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } else { for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { const MV this_mv = { br + candidates[s][next_chkpts_indices[i]].row, bc + candidates[s][next_chkpts_indices[i]].col }; if (!is_mv_in(&x->mv_limits, &this_mv)) { cost_list[next_chkpts_indices[i] + 1] = INT_MAX; continue; } cost_list[next_chkpts_indices[i] + 1] = thissad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), in_what->stride); CHECK_BETTER } } if (best_site != -1) { k = next_chkpts_indices[best_site]; br += candidates[s][k].row; bc += candidates[s][k].col; } } } } // Returns the one-away integer pel cost/sad around the best as follows: // cost_list[0]: cost/sad at the best integer pel // cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel // cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel // cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel // cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel if (cost_list) { const MV best_int_mv = { br, bc }; if (last_is_4) { calc_int_sad_list(x, center_mv, sad_per_bit, vfp, &best_int_mv, cost_list, use_mvcost, bestsad); } else { calc_int_cost_list(x, center_mv, sad_per_bit, vfp, &best_int_mv, cost_list); } } x->best_mv.as_mv.row = br; x->best_mv.as_mv.col = bc; return bestsad; } int av1_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv, const MV *center_mv, const aom_variance_fn_ptr_t *vfp, int use_mvcost) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const MV mv = { best_mv->row * 8, best_mv->col * 8 }; unsigned int unused; return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), in_what->stride, &unused) + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, x->errorperbit) : 0); } int av1_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv, const MV *center_mv, const uint8_t *second_pred, const aom_variance_fn_ptr_t *vfp, int use_mvcost) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const MV mv = { best_mv->row * 8, best_mv->col * 8 }; unsigned int unused; if (xd->jcp_param.use_jnt_comp_avg) return vfp->jsvaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0, what->buf, what->stride, &unused, second_pred, &xd->jcp_param) + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, x->errorperbit) : 0); else return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0, what->buf, what->stride, &unused, second_pred) + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, x->errorperbit) : 0); } int av1_get_mvpred_mask_var(const MACROBLOCK *x, const MV *best_mv, const MV *center_mv, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, const aom_variance_fn_ptr_t *vfp, int use_mvcost) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const MV mv = { best_mv->row * 8, best_mv->col * 8 }; unsigned int unused; return vfp->msvf(what->buf, what->stride, 0, 0, get_buf_from_mv(in_what, best_mv), in_what->stride, second_pred, mask, mask_stride, invert_mask, &unused) + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, x->errorperbit) : 0); } int av1_hex_search(MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit, int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv) { // First scale has 8-closest points, the rest have 6 points in hex shape // at increasing scales static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }; // Note that the largest candidate step at each scale is 2^scale /* clang-format off */ static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } }, { { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } }, { { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } }, { { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } }, { { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } }, { { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 }, { -32, 0 } }, { { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 }, { -64, 0 } }, { { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 }, { -128, 0 } }, { { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 }, { -256, 0 } }, { { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 }, { -512, 0 } }, { { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 }, { -512, 1024 }, { -1024, 0 } }, }; /* clang-format on */ return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, center_mv, hex_num_candidates, hex_candidates); } static int bigdia_search(MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit, int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv) { // First scale has 4-closest points, the rest have 8 points in diamond // shape at increasing scales static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = { 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; // Note that the largest candidate step at each scale is 2^scale /* clang-format off */ static const MV bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }, { { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 }, { -1, 1 }, { -2, 0 } }, { { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 }, { -2, 2 }, { -4, 0 } }, { { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 }, { -4, 4 }, { -8, 0 } }, { { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 }, { -8, 8 }, { -16, 0 } }, { { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 }, { 0, 32 }, { -16, 16 }, { -32, 0 } }, { { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 }, { 0, 64 }, { -32, 32 }, { -64, 0 } }, { { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 }, { 0, 128 }, { -64, 64 }, { -128, 0 } }, { { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 }, { 0, 256 }, { -128, 128 }, { -256, 0 } }, { { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 }, { 0, 512 }, { -256, 256 }, { -512, 0 } }, { { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 }, { 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } }, }; /* clang-format on */ return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, center_mv, bigdia_num_candidates, bigdia_candidates); } static int square_search(MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit, int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv) { // All scales have 8 closest points in square shape static const int square_num_candidates[MAX_PATTERN_SCALES] = { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; // Note that the largest candidate step at each scale is 2^scale /* clang-format off */ static const MV square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } }, { { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 }, { -2, 2 }, { -2, 0 } }, { { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 }, { -4, 4 }, { -4, 0 } }, { { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 }, { -8, 8 }, { -8, 0 } }, { { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 }, { 0, 16 }, { -16, 16 }, { -16, 0 } }, { { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 }, { 0, 32 }, { -32, 32 }, { -32, 0 } }, { { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 }, { 0, 64 }, { -64, 64 }, { -64, 0 } }, { { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 }, { 0, 128 }, { -128, 128 }, { -128, 0 } }, { { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 }, { 0, 256 }, { -256, 256 }, { -256, 0 } }, { { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 }, { 0, 512 }, { -512, 512 }, { -512, 0 } }, { { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 }, { 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } }, }; /* clang-format on */ return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, center_mv, square_num_candidates, square_candidates); } static int fast_hex_search(MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit, int do_init_search, // must be zero for fast_hex int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv) { return av1_hex_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, center_mv); } static int fast_dia_search(MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit, int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, int use_mvcost, const MV *center_mv) { return bigdia_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param), sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, center_mv); } #undef CHECK_BETTER // Exhuastive motion search around a given centre position with a given // step size. static int exhuastive_mesh_search(MACROBLOCK *x, MV *ref_mv, MV *best_mv, int range, int step, int sad_per_bit, const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; MV fcenter_mv = { center_mv->row, center_mv->col }; unsigned int best_sad = INT_MAX; int r, c, i; int start_col, end_col, start_row, end_row; int col_step = (step > 1) ? step : 4; assert(step >= 1); clamp_mv(&fcenter_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); *best_mv = fcenter_mv; best_sad = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) + mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit); start_row = AOMMAX(-range, x->mv_limits.row_min - fcenter_mv.row); start_col = AOMMAX(-range, x->mv_limits.col_min - fcenter_mv.col); end_row = AOMMIN(range, x->mv_limits.row_max - fcenter_mv.row); end_col = AOMMIN(range, x->mv_limits.col_max - fcenter_mv.col); for (r = start_row; r <= end_row; r += step) { for (c = start_col; c <= end_col; c += col_step) { // Step > 1 means we are not checking every location in this pass. if (step > 1) { const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c }; unsigned int sad = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride); if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); if (sad < best_sad) { best_sad = sad; x->second_best_mv.as_mv = *best_mv; *best_mv = mv; } } } else { // 4 sads in a single call if we are checking every location if (c + 3 <= end_col) { unsigned int sads[4]; const uint8_t *addrs[4]; for (i = 0; i < 4; ++i) { const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; addrs[i] = get_buf_from_mv(in_what, &mv); } fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads); for (i = 0; i < 4; ++i) { if (sads[i] < best_sad) { const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; const unsigned int sad = sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); if (sad < best_sad) { best_sad = sad; x->second_best_mv.as_mv = *best_mv; *best_mv = mv; } } } } else { for (i = 0; i < end_col - c; ++i) { const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; unsigned int sad = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride); if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); if (sad < best_sad) { best_sad = sad; x->second_best_mv.as_mv = *best_mv; *best_mv = mv; } } } } } } } return best_sad; } int av1_diamond_search_sad_c(MACROBLOCK *x, const search_site_config *cfg, MV *ref_mv, MV *best_mv, int search_param, int sad_per_bit, int *num00, const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv) { int i, j, step; const MACROBLOCKD *const xd = &x->e_mbd; uint8_t *what = x->plane[0].src.buf; const int what_stride = x->plane[0].src.stride; const uint8_t *in_what; const int in_what_stride = xd->plane[0].pre[0].stride; const uint8_t *best_address; unsigned int bestsad = INT_MAX; int best_site = 0; int last_site = 0; int ref_row; int ref_col; // search_param determines the length of the initial step and hence the number // of iterations. // 0 = initial step (MAX_FIRST_STEP) pel // 1 = (MAX_FIRST_STEP/2) pel, // 2 = (MAX_FIRST_STEP/4) pel... const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step]; const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); ref_row = ref_mv->row; ref_col = ref_mv->col; *num00 = 0; best_mv->row = ref_row; best_mv->col = ref_col; // Work out the start point for the search in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col; best_address = in_what; // Check the starting position bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit); i = 1; for (step = 0; step < tot_steps; step++) { int all_in = 1, t; // All_in is true if every one of the points we are checking are within // the bounds of the image. all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_limits.row_min); all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_limits.row_max); all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_limits.col_min); all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_limits.col_max); // If all the pixels are within the bounds we don't check whether the // search point is valid in this loop, otherwise we check each point // for validity.. if (all_in) { unsigned int sad_array[4]; for (j = 0; j < cfg->searches_per_step; j += 4) { unsigned char const *block_offset[4]; for (t = 0; t < 4; t++) block_offset[t] = ss[i + t].offset + best_address; fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, sad_array); for (t = 0; t < 4; t++, i++) { if (sad_array[t] < bestsad) { const MV this_mv = { best_mv->row + ss[i].mv.row, best_mv->col + ss[i].mv.col }; sad_array[t] += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); if (sad_array[t] < bestsad) { bestsad = sad_array[t]; best_site = i; } } } } } else { for (j = 0; j < cfg->searches_per_step; j++) { // Trap illegal vectors const MV this_mv = { best_mv->row + ss[i].mv.row, best_mv->col + ss[i].mv.col }; if (is_mv_in(&x->mv_limits, &this_mv)) { const uint8_t *const check_here = ss[i].offset + best_address; unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); if (thissad < bestsad) { thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); if (thissad < bestsad) { bestsad = thissad; best_site = i; } } } i++; } } if (best_site != last_site) { x->second_best_mv.as_mv = *best_mv; best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; last_site = best_site; #if defined(NEW_DIAMOND_SEARCH) while (1) { const MV this_mv = { best_mv->row + ss[best_site].mv.row, best_mv->col + ss[best_site].mv.col }; if (is_mv_in(&x->mv_limits, &this_mv)) { const uint8_t *const check_here = ss[best_site].offset + best_address; unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); if (thissad < bestsad) { thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; continue; } } } break; } #endif } else if (best_address == in_what) { (*num00)++; } } return bestsad; } /* do_refine: If last step (1-away) of n-step search doesn't pick the center point as the best match, we will do a final 1-away diamond refining search */ static int full_pixel_diamond(const AV1_COMP *const cpi, MACROBLOCK *x, MV *mvp_full, int step_param, int sadpb, int further_steps, int do_refine, int *cost_list, const aom_variance_fn_ptr_t *fn_ptr, const MV *ref_mv) { MV temp_mv; int thissme, n, num00 = 0; int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, step_param, sadpb, &n, fn_ptr, ref_mv); if (bestsme < INT_MAX) bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); x->best_mv.as_mv = temp_mv; // If there won't be more n-step search, check to see if refining search is // needed. if (n > further_steps) do_refine = 0; while (n < further_steps) { ++n; if (num00) { num00--; } else { thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, step_param + n, sadpb, &num00, fn_ptr, ref_mv); if (thissme < INT_MAX) thissme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); // check to see if refining search is needed. if (num00 > further_steps - n) do_refine = 0; if (thissme < bestsme) { bestsme = thissme; x->best_mv.as_mv = temp_mv; } } } // final 1-away diamond refining search if (do_refine) { const int search_range = 8; MV best_mv = x->best_mv.as_mv; thissme = av1_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr, ref_mv); if (thissme < INT_MAX) thissme = av1_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1); if (thissme < bestsme) { bestsme = thissme; x->best_mv.as_mv = best_mv; } } // Return cost list. if (cost_list) { calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, &x->best_mv.as_mv, cost_list); } return bestsme; } #define MIN_RANGE 7 #define MAX_RANGE 256 #define MIN_INTERVAL 1 // Runs an limited range exhaustive mesh search using a pattern set // according to the encode speed profile. static int full_pixel_exhaustive(const AV1_COMP *const cpi, MACROBLOCK *x, const MV *centre_mv_full, int sadpb, int *cost_list, const aom_variance_fn_ptr_t *fn_ptr, const MV *ref_mv, MV *dst_mv) { const SPEED_FEATURES *const sf = &cpi->sf; MV temp_mv = { centre_mv_full->row, centre_mv_full->col }; MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; int bestsme; int i; int interval = sf->mesh_patterns[0].interval; int range = sf->mesh_patterns[0].range; int baseline_interval_divisor; // Keep track of number of exhaustive calls (this frame in this thread). ++(*x->ex_search_count_ptr); // Trap illegal values for interval and range for this function. if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) || (interval > range)) return INT_MAX; baseline_interval_divisor = range / interval; // Check size of proposed first range against magnitude of the centre // value used as a starting point. range = AOMMAX(range, (5 * AOMMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4); range = AOMMIN(range, MAX_RANGE); interval = AOMMAX(interval, range / baseline_interval_divisor); // initial search bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval, sadpb, fn_ptr, &temp_mv); if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) { // Progressive searches with range and step size decreasing each time // till we reach a step size of 1. Then break out. for (i = 1; i < MAX_MESH_STEP; ++i) { // First pass with coarser step and longer range bestsme = exhuastive_mesh_search( x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range, sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv); if (sf->mesh_patterns[i].interval == 1) break; } } if (bestsme < INT_MAX) bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); *dst_mv = temp_mv; // Return cost list. if (cost_list) { calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list); } return bestsme; } int av1_refining_search_sad(MACROBLOCK *x, MV *ref_mv, int error_per_bit, int search_range, const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv) { const MACROBLOCKD *const xd = &x->e_mbd; const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv); unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); int i, j; for (i = 0; i < search_range; i++) { int best_site = -1; const int all_in = ((ref_mv->row - 1) > x->mv_limits.row_min) & ((ref_mv->row + 1) < x->mv_limits.row_max) & ((ref_mv->col - 1) > x->mv_limits.col_min) & ((ref_mv->col + 1) < x->mv_limits.col_max); if (all_in) { unsigned int sads[4]; const uint8_t *const positions[4] = { best_address - in_what->stride, best_address - 1, best_address + 1, best_address + in_what->stride }; fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads); for (j = 0; j < 4; ++j) { if (sads[j] < best_sad) { const MV mv = { ref_mv->row + neighbors[j].row, ref_mv->col + neighbors[j].col }; sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); if (sads[j] < best_sad) { best_sad = sads[j]; best_site = j; } } } } else { for (j = 0; j < 4; ++j) { const MV mv = { ref_mv->row + neighbors[j].row, ref_mv->col + neighbors[j].col }; if (is_mv_in(&x->mv_limits, &mv)) { unsigned int sad = fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride); if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); if (sad < best_sad) { best_sad = sad; best_site = j; } } } } } if (best_site == -1) { break; } else { x->second_best_mv.as_mv = *ref_mv; ref_mv->row += neighbors[best_site].row; ref_mv->col += neighbors[best_site].col; best_address = get_buf_from_mv(in_what, ref_mv); } } return best_sad; } // This function is called when we do joint motion search in comp_inter_inter // mode, or when searching for one component of an ext-inter compound mode. int av1_refining_search_8p_c(MACROBLOCK *x, int error_per_bit, int search_range, const aom_variance_fn_ptr_t *fn_ptr, const uint8_t *mask, int mask_stride, int invert_mask, const MV *center_mv, const uint8_t *second_pred) { static const search_neighbors neighbors[8] = { { { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 }, { { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 }, { { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 }, { { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 }, { { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 }, { { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 }, { { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 }, { { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 } }; const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const what = &x->plane[0].src; const struct buf_2d *const in_what = &xd->plane[0].pre[0]; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; MV *best_mv = &x->best_mv.as_mv; unsigned int best_sad = INT_MAX; int i, j; uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P * SEARCH_GRID_STRIDE_8P] = { 0 }; int grid_center = SEARCH_GRID_CENTER_8P; int grid_coord = grid_center; clamp_mv(best_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); if (mask) { best_sad = fn_ptr->msdf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), in_what->stride, second_pred, mask, mask_stride, invert_mask) + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); } else { if (xd->jcp_param.use_jnt_comp_avg) best_sad = fn_ptr->jsdaf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), in_what->stride, second_pred, &xd->jcp_param) + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); else best_sad = fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), in_what->stride, second_pred) + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); } do_refine_search_grid[grid_coord] = 1; for (i = 0; i < search_range; ++i) { int best_site = -1; for (j = 0; j < 8; ++j) { grid_coord = grid_center + neighbors[j].coord_offset; if (do_refine_search_grid[grid_coord] == 1) { continue; } const MV mv = { best_mv->row + neighbors[j].coord.row, best_mv->col + neighbors[j].coord.col }; do_refine_search_grid[grid_coord] = 1; if (is_mv_in(&x->mv_limits, &mv)) { unsigned int sad; if (mask) { sad = fn_ptr->msdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride, second_pred, mask, mask_stride, invert_mask); } else { if (xd->jcp_param.use_jnt_comp_avg) sad = fn_ptr->jsdaf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride, second_pred, &xd->jcp_param); else sad = fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), in_what->stride, second_pred); } if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); if (sad < best_sad) { best_sad = sad; best_site = j; } } } } if (best_site == -1) { break; } else { best_mv->row += neighbors[best_site].coord.row; best_mv->col += neighbors[best_site].coord.col; grid_center += neighbors[best_site].coord_offset; } } return best_sad; } #define MIN_EX_SEARCH_LIMIT 128 static int is_exhaustive_allowed(const AV1_COMP *const cpi, MACROBLOCK *x) { const SPEED_FEATURES *const sf = &cpi->sf; const int max_ex = AOMMAX(MIN_EX_SEARCH_LIMIT, (*x->m_search_count_ptr * sf->max_exaustive_pct) / 100); return sf->allow_exhaustive_searches && (sf->exhaustive_searches_thresh < INT_MAX) && (*x->ex_search_count_ptr <= max_ex) && !cpi->rc.is_src_frame_alt_ref; } int av1_full_pixel_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MV *mvp_full, int step_param, int method, int run_mesh_search, int error_per_bit, int *cost_list, const MV *ref_mv, int var_max, int rd, int x_pos, int y_pos, int intra) { const SPEED_FEATURES *const sf = &cpi->sf; const aom_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize]; int var = 0; if (cost_list) { cost_list[0] = INT_MAX; cost_list[1] = INT_MAX; cost_list[2] = INT_MAX; cost_list[3] = INT_MAX; cost_list[4] = INT_MAX; } // Keep track of number of searches (this frame in this thread). ++(*x->m_search_count_ptr); switch (method) { case FAST_DIAMOND: var = fast_dia_search(x, mvp_full, step_param, error_per_bit, 0, cost_list, fn_ptr, 1, ref_mv); break; case FAST_HEX: var = fast_hex_search(x, mvp_full, step_param, error_per_bit, 0, cost_list, fn_ptr, 1, ref_mv); break; case HEX: var = av1_hex_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, fn_ptr, 1, ref_mv); break; case SQUARE: var = square_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, fn_ptr, 1, ref_mv); break; case BIGDIA: var = bigdia_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, fn_ptr, 1, ref_mv); break; case NSTEP: var = full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit, MAX_MVSEARCH_STEPS - 1 - step_param, 1, cost_list, fn_ptr, ref_mv); // Should we allow a follow on exhaustive search? if (is_exhaustive_allowed(cpi, x)) { int exhuastive_thr = sf->exhaustive_searches_thresh; exhuastive_thr >>= 10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); // Threshold variance for an exhaustive full search. if (var > exhuastive_thr) { int var_ex; MV tmp_mv_ex; var_ex = full_pixel_exhaustive(cpi, x, &x->best_mv.as_mv, error_per_bit, cost_list, fn_ptr, ref_mv, &tmp_mv_ex); if (var_ex < var) { var = var_ex; x->best_mv.as_mv = tmp_mv_ex; } } } break; default: assert(0 && "Invalid search method."); } // Should we allow a follow on exhaustive search? if (!run_mesh_search) { if (method == NSTEP) { if (is_exhaustive_allowed(cpi, x)) { int exhuastive_thr = sf->exhaustive_searches_thresh; exhuastive_thr >>= 10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); // Threshold variance for an exhaustive full search. if (var > exhuastive_thr) run_mesh_search = 1; } } } if (run_mesh_search) { int var_ex; MV tmp_mv_ex; var_ex = full_pixel_exhaustive(cpi, x, &x->best_mv.as_mv, error_per_bit, cost_list, fn_ptr, ref_mv, &tmp_mv_ex); if (var_ex < var) { var = var_ex; x->best_mv.as_mv = tmp_mv_ex; } } if (method != NSTEP && rd && var < var_max) var = av1_get_mvpred_var(x, &x->best_mv.as_mv, ref_mv, fn_ptr, 1); do { if (!intra || !av1_use_hash_me(&cpi->common)) break; // already single ME // get block size and original buffer of current block const int block_height = block_size_high[bsize]; const int block_width = block_size_wide[bsize]; if (block_height == block_width && x_pos >= 0 && y_pos >= 0) { if (block_width == 4 || block_width == 8 || block_width == 16 || block_width == 32 || block_width == 64 || block_width == 128) { uint8_t *what = x->plane[0].src.buf; const int what_stride = x->plane[0].src.stride; uint32_t hash_value1, hash_value2; MV best_hash_mv; int best_hash_cost = INT_MAX; // for the hashMap hash_table *ref_frame_hash = intra ? &cpi->common.cur_frame->hash_table : av1_get_ref_frame_hash_map(cpi, x->e_mbd.mi[0]->ref_frame[0]); av1_get_block_hash_value( what, what_stride, block_width, &hash_value1, &hash_value2, x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, x); const int count = av1_hash_table_count(ref_frame_hash, hash_value1); // for intra, at lest one matching can be found, itself. if (count <= (intra ? 1 : 0)) { break; } Iterator iterator = av1_hash_get_first_iterator(ref_frame_hash, hash_value1); for (int i = 0; i < count; i++, iterator_increment(&iterator)) { block_hash ref_block_hash = *(block_hash *)(iterator_get(&iterator)); if (hash_value2 == ref_block_hash.hash_value2) { // For intra, make sure the prediction is from valid area. if (intra) { const int mi_col = x_pos / MI_SIZE; const int mi_row = y_pos / MI_SIZE; const MV dv = { 8 * (ref_block_hash.y - y_pos), 8 * (ref_block_hash.x - x_pos) }; if (!av1_is_dv_valid(dv, &cpi->common, &x->e_mbd, mi_row, mi_col, bsize, cpi->common.seq_params.mib_size_log2)) continue; } MV hash_mv; hash_mv.col = ref_block_hash.x - x_pos; hash_mv.row = ref_block_hash.y - y_pos; if (!is_mv_in(&x->mv_limits, &hash_mv)) continue; const int refCost = av1_get_mvpred_var(x, &hash_mv, ref_mv, fn_ptr, 1); if (refCost < best_hash_cost) { best_hash_cost = refCost; best_hash_mv = hash_mv; } } } if (best_hash_cost < var) { x->second_best_mv = x->best_mv; x->best_mv.as_mv = best_hash_mv; var = best_hash_cost; } } } } while (0); return var; } /* returns subpixel variance error function */ #define DIST(r, c) \ vfp->osvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, mask, &sse) /* checks if (r, c) has better score than previous best */ #define MVC(r, c) \ (unsigned int)(mvcost \ ? ((mvjcost[((r) != rr) * 2 + ((c) != rc)] + \ mvcost[0][((r)-rr)] + (int64_t)mvcost[1][((c)-rc)]) * \ error_per_bit + \ 4096) >> \ 13 \ : 0) #define CHECK_BETTER(v, r, c) \ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ thismse = (DIST(r, c)); \ if ((v = MVC(r, c) + thismse) < besterr) { \ besterr = v; \ br = r; \ bc = c; \ *distortion = thismse; \ *sse1 = sse; \ } \ } else { \ v = INT_MAX; \ } #undef CHECK_BETTER0 #define CHECK_BETTER0(v, r, c) CHECK_BETTER(v, r, c) #undef CHECK_BETTER1 #define CHECK_BETTER1(v, r, c) \ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ MV this_mv = { r, c }; \ thismse = upsampled_obmc_pref_error(xd, cm, mi_row, mi_col, &this_mv, \ mask, vfp, z, pre(y, y_stride, r, c), \ y_stride, sp(c), sp(r), w, h, &sse, \ use_accurate_subpel_search); \ if ((v = MVC(r, c) + thismse) < besterr) { \ besterr = v; \ br = r; \ bc = c; \ *distortion = thismse; \ *sse1 = sse; \ } \ } else { \ v = INT_MAX; \ } static unsigned int setup_obmc_center_error( const int32_t *mask, const MV *bestmv, const MV *ref_mv, int error_per_bit, const aom_variance_fn_ptr_t *vfp, const int32_t *const wsrc, const uint8_t *const y, int y_stride, int offset, int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion) { unsigned int besterr; besterr = vfp->ovf(y + offset, y_stride, wsrc, mask, sse1); *distortion = besterr; besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); return besterr; } static int upsampled_obmc_pref_error( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, const int32_t *mask, const aom_variance_fn_ptr_t *vfp, const int32_t *const wsrc, const uint8_t *const y, int y_stride, int subpel_x_q3, int subpel_y_q3, int w, int h, unsigned int *sse, int subpel_search) { unsigned int besterr; DECLARE_ALIGNED(16, uint8_t, pred[2 * MAX_SB_SQUARE]); if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred); aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred8, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, subpel_search); besterr = vfp->ovf(pred8, w, wsrc, mask, sse); } else { aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3, subpel_y_q3, y, y_stride, subpel_search); besterr = vfp->ovf(pred, w, wsrc, mask, sse); } return besterr; } static unsigned int upsampled_setup_obmc_center_error( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const int32_t *mask, const MV *bestmv, const MV *ref_mv, int error_per_bit, const aom_variance_fn_ptr_t *vfp, const int32_t *const wsrc, const uint8_t *const y, int y_stride, int w, int h, int offset, int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion, int subpel_search) { unsigned int besterr = upsampled_obmc_pref_error( xd, cm, mi_row, mi_col, bestmv, mask, vfp, wsrc, y + offset, y_stride, 0, 0, w, h, sse1, subpel_search); *distortion = besterr; besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); return besterr; } int av1_find_best_obmc_sub_pixel_tree_up( MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, MV *bestmv, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, int is_second, int use_accurate_subpel_search) { const int32_t *wsrc = x->wsrc_buf; const int32_t *mask = x->mask_buf; const int *const z = wsrc; const int *const src_address = z; MACROBLOCKD *xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[0]; MB_MODE_INFO *mbmi = xd->mi[0]; unsigned int besterr = INT_MAX; unsigned int sse; unsigned int thismse; int rr = ref_mv->row; int rc = ref_mv->col; int br = bestmv->row * 8; int bc = bestmv->col * 8; int hstep = 4; int iter; int round = 3 - forced_stop; int tr = br; int tc = bc; const MV *search_step = search_step_table; int idx, best_idx = -1; unsigned int cost_array[5]; int kr, kc; const int w = block_size_wide[mbmi->sb_type]; const int h = block_size_high[mbmi->sb_type]; int offset; int y_stride; const uint8_t *y; int minc, maxc, minr, maxr; set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, ref_mv); y = pd->pre[is_second].buf; y_stride = pd->pre[is_second].stride; offset = bestmv->row * y_stride + bestmv->col; if (!allow_hp) if (round == 3) round = 2; bestmv->row *= 8; bestmv->col *= 8; // use_accurate_subpel_search can be 0 or 1 or 2 if (use_accurate_subpel_search) besterr = upsampled_setup_obmc_center_error( xd, cm, mi_row, mi_col, mask, bestmv, ref_mv, error_per_bit, vfp, z, y, y_stride, w, h, offset, mvjcost, mvcost, sse1, distortion, use_accurate_subpel_search); else besterr = setup_obmc_center_error(mask, bestmv, ref_mv, error_per_bit, vfp, z, y, y_stride, offset, mvjcost, mvcost, sse1, distortion); for (iter = 0; iter < round; ++iter) { // Check vertical and horizontal sub-pixel positions. for (idx = 0; idx < 4; ++idx) { tr = br + search_step[idx].row; tc = bc + search_step[idx].col; if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { MV this_mv = { tr, tc }; if (use_accurate_subpel_search) { thismse = upsampled_obmc_pref_error( xd, cm, mi_row, mi_col, &this_mv, mask, vfp, src_address, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), w, h, &sse, use_accurate_subpel_search); } else { thismse = vfp->osvf(pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), src_address, mask, &sse); } cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); if (cost_array[idx] < besterr) { best_idx = idx; besterr = cost_array[idx]; *distortion = thismse; *sse1 = sse; } } else { cost_array[idx] = INT_MAX; } } // Check diagonal sub-pixel position kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep); kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep); tc = bc + kc; tr = br + kr; if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { MV this_mv = { tr, tc }; if (use_accurate_subpel_search) { thismse = upsampled_obmc_pref_error( xd, cm, mi_row, mi_col, &this_mv, mask, vfp, src_address, pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), w, h, &sse, use_accurate_subpel_search); } else { thismse = vfp->osvf(pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), src_address, mask, &sse); } cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); if (cost_array[4] < besterr) { best_idx = 4; besterr = cost_array[4]; *distortion = thismse; *sse1 = sse; } } else { cost_array[idx] = INT_MAX; } if (best_idx < 4 && best_idx >= 0) { br += search_step[best_idx].row; bc += search_step[best_idx].col; } else if (best_idx == 4) { br = tr; bc = tc; } if (iters_per_step > 1 && best_idx != -1) { if (use_accurate_subpel_search) { SECOND_LEVEL_CHECKS_BEST(1); } else { SECOND_LEVEL_CHECKS_BEST(0); } } tr = br; tc = bc; search_step += 4; hstep >>= 1; best_idx = -1; } // These lines insure static analysis doesn't warn that // tr and tc aren't used after the above point. (void)tr; (void)tc; bestmv->row = br; bestmv->col = bc; return besterr; } #undef DIST #undef MVC #undef CHECK_BETTER static int get_obmc_mvpred_var(const MACROBLOCK *x, const int32_t *wsrc, const int32_t *mask, const MV *best_mv, const MV *center_mv, const aom_variance_fn_ptr_t *vfp, int use_mvcost, int is_second) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; const MV mv = { best_mv->row * 8, best_mv->col * 8 }; unsigned int unused; return vfp->ovf(get_buf_from_mv(in_what, best_mv), in_what->stride, wsrc, mask, &unused) + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, x->errorperbit) : 0); } int obmc_refining_search_sad(const MACROBLOCK *x, const int32_t *wsrc, const int32_t *mask, MV *ref_mv, int error_per_bit, int search_range, const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv, int is_second) { const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; unsigned int best_sad = fn_ptr->osdf(get_buf_from_mv(in_what, ref_mv), in_what->stride, wsrc, mask) + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); int i, j; for (i = 0; i < search_range; i++) { int best_site = -1; for (j = 0; j < 4; j++) { const MV mv = { ref_mv->row + neighbors[j].row, ref_mv->col + neighbors[j].col }; if (is_mv_in(&x->mv_limits, &mv)) { unsigned int sad = fn_ptr->osdf(get_buf_from_mv(in_what, &mv), in_what->stride, wsrc, mask); if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); if (sad < best_sad) { best_sad = sad; best_site = j; } } } } if (best_site == -1) { break; } else { ref_mv->row += neighbors[best_site].row; ref_mv->col += neighbors[best_site].col; } } return best_sad; } int obmc_diamond_search_sad(const MACROBLOCK *x, const search_site_config *cfg, const int32_t *wsrc, const int32_t *mask, MV *ref_mv, MV *best_mv, int search_param, int sad_per_bit, int *num00, const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv, int is_second) { const MACROBLOCKD *const xd = &x->e_mbd; const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; // search_param determines the length of the initial step and hence the number // of iterations // 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 = // (MAX_FIRST_STEP/4) pel... etc. const search_site *const ss = &cfg->ss[search_param * cfg->searches_per_step]; const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param; const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; const uint8_t *best_address, *in_what_ref; int best_sad = INT_MAX; int best_site = 0; int last_site = 0; int i, j, step; clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); in_what_ref = in_what->buf + ref_mv->row * in_what->stride + ref_mv->col; best_address = in_what_ref; *num00 = 0; *best_mv = *ref_mv; // Check the starting position best_sad = fn_ptr->osdf(best_address, in_what->stride, wsrc, mask) + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit); i = 1; for (step = 0; step < tot_steps; step++) { for (j = 0; j < cfg->searches_per_step; j++) { const MV mv = { best_mv->row + ss[i].mv.row, best_mv->col + ss[i].mv.col }; if (is_mv_in(&x->mv_limits, &mv)) { int sad = fn_ptr->osdf(best_address + ss[i].offset, in_what->stride, wsrc, mask); if (sad < best_sad) { sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit); if (sad < best_sad) { best_sad = sad; best_site = i; } } } i++; } if (best_site != last_site) { best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; last_site = best_site; #if defined(NEW_DIAMOND_SEARCH) while (1) { const MV this_mv = { best_mv->row + ss[best_site].mv.row, best_mv->col + ss[best_site].mv.col }; if (is_mv_in(&x->mv_limits, &this_mv)) { int sad = fn_ptr->osdf(best_address + ss[best_site].offset, in_what->stride, wsrc, mask); if (sad < best_sad) { sad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); if (sad < best_sad) { best_sad = sad; best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; continue; } } } break; } #endif } else if (best_address == in_what_ref) { (*num00)++; } } return best_sad; } static int obmc_full_pixel_diamond(const AV1_COMP *cpi, MACROBLOCK *x, MV *mvp_full, int step_param, int sadpb, int further_steps, int do_refine, const aom_variance_fn_ptr_t *fn_ptr, const MV *ref_mv, MV *dst_mv, int is_second) { const int32_t *wsrc = x->wsrc_buf; const int32_t *mask = x->mask_buf; MV temp_mv; int thissme, n, num00 = 0; int bestsme = obmc_diamond_search_sad(x, &cpi->ss_cfg, wsrc, mask, mvp_full, &temp_mv, step_param, sadpb, &n, fn_ptr, ref_mv, is_second); if (bestsme < INT_MAX) bestsme = get_obmc_mvpred_var(x, wsrc, mask, &temp_mv, ref_mv, fn_ptr, 1, is_second); *dst_mv = temp_mv; // If there won't be more n-step search, check to see if refining search is // needed. if (n > further_steps) do_refine = 0; while (n < further_steps) { ++n; if (num00) { num00--; } else { thissme = obmc_diamond_search_sad(x, &cpi->ss_cfg, wsrc, mask, mvp_full, &temp_mv, step_param + n, sadpb, &num00, fn_ptr, ref_mv, is_second); if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(x, wsrc, mask, &temp_mv, ref_mv, fn_ptr, 1, is_second); // check to see if refining search is needed. if (num00 > further_steps - n) do_refine = 0; if (thissme < bestsme) { bestsme = thissme; *dst_mv = temp_mv; } } } // final 1-away diamond refining search if (do_refine) { const int search_range = 8; MV best_mv = *dst_mv; thissme = obmc_refining_search_sad(x, wsrc, mask, &best_mv, sadpb, search_range, fn_ptr, ref_mv, is_second); if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(x, wsrc, mask, &best_mv, ref_mv, fn_ptr, 1, is_second); if (thissme < bestsme) { bestsme = thissme; *dst_mv = best_mv; } } return bestsme; } int av1_obmc_full_pixel_search(const AV1_COMP *cpi, MACROBLOCK *x, MV *mvp_full, int step_param, int sadpb, int further_steps, int do_refine, const aom_variance_fn_ptr_t *fn_ptr, const MV *ref_mv, MV *dst_mv, int is_second) { if (cpi->sf.obmc_full_pixel_search_level == 0) { return obmc_full_pixel_diamond(cpi, x, mvp_full, step_param, sadpb, further_steps, do_refine, fn_ptr, ref_mv, dst_mv, is_second); } else { const int32_t *wsrc = x->wsrc_buf; const int32_t *mask = x->mask_buf; const int search_range = 8; *dst_mv = *mvp_full; clamp_mv(dst_mv, x->mv_limits.col_min, x->mv_limits.col_max, x->mv_limits.row_min, x->mv_limits.row_max); int thissme = obmc_refining_search_sad( x, wsrc, mask, dst_mv, sadpb, search_range, fn_ptr, ref_mv, is_second); if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(x, wsrc, mask, dst_mv, ref_mv, fn_ptr, 1, is_second); return thissme; } } // Note(yunqingwang): The following 2 functions are only used in the motion // vector unit test, which return extreme motion vectors allowed by the MV // limits. #define COMMON_MV_TEST \ SETUP_SUBPEL_SEARCH; \ \ (void)error_per_bit; \ (void)vfp; \ (void)src_address; \ (void)src_stride; \ (void)y; \ (void)y_stride; \ (void)second_pred; \ (void)w; \ (void)h; \ (void)use_accurate_subpel_search; \ (void)offset; \ (void)mvjcost; \ (void)mvcost; \ (void)sse1; \ (void)distortion; \ \ (void)halfiters; \ (void)quarteriters; \ (void)eighthiters; \ (void)whichdir; \ (void)forced_stop; \ (void)hstep; \ \ (void)tr; \ (void)tc; \ (void)sse; \ (void)thismse; \ (void)cost_list; // Return the maximum MV. int av1_return_max_sub_pixel_mv(MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { COMMON_MV_TEST; (void)mask; (void)mask_stride; (void)invert_mask; (void)minr; (void)minc; (void)cm; (void)mi_row; (void)mi_col; bestmv->row = maxr; bestmv->col = maxc; besterr = 0; // In the sub-pel motion search, if hp is not used, then the last bit of mv // has to be 0. lower_mv_precision(bestmv, allow_hp, 0); return besterr; } // Return the minimum MV. int av1_return_min_sub_pixel_mv(MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *ref_mv, int allow_hp, int error_per_bit, const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, int use_accurate_subpel_search) { COMMON_MV_TEST; (void)maxr; (void)maxc; (void)mask; (void)mask_stride; (void)invert_mask; (void)cm; (void)mi_row; (void)mi_col; bestmv->row = minr; bestmv->col = minc; besterr = 0; // In the sub-pel motion search, if hp is not used, then the last bit of mv // has to be 0. lower_mv_precision(bestmv, allow_hp, 0); return besterr; }