/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <limits.h> #include <math.h> #include <stdio.h> #include "./aom_config.h" #include "av1/common/alloccommon.h" #if CONFIG_CDEF #include "av1/common/cdef.h" #include "av1/common/clpf.h" #endif // CONFIG_CDEF #include "av1/common/filter.h" #include "av1/common/idct.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/resize.h" #include "av1/common/tile_common.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/bitstream.h" #if CONFIG_ANS #include "aom_dsp/buf_ans.h" #endif #include "av1/encoder/context_tree.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #if CONFIG_LV_MAP #include "av1/encoder/encodetxb.h" #endif #include "av1/encoder/ethread.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/mbgraph.h" #include "av1/encoder/picklpf.h" #if CONFIG_LOOP_RESTORATION #include "av1/encoder/pickrst.h" #endif // CONFIG_LOOP_RESTORATION #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/speed_features.h" #include "av1/encoder/temporal_filter.h" #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "aom_dsp/psnr.h" #if CONFIG_INTERNAL_STATS #include "aom_dsp/ssim.h" #endif #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_ports/aom_timer.h" #include "aom_ports/mem.h" #include "aom_ports/system_state.h" #include "aom_scale/aom_scale.h" #if CONFIG_BITSTREAM_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG #if CONFIG_ENTROPY_STATS FRAME_COUNTS aggregate_fc; #endif // CONFIG_ENTROPY_STATS #define AM_SEGMENT_ID_INACTIVE 7 #define AM_SEGMENT_ID_ACTIVE 0 #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ #define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv // for altref computation. #define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision // mv. Choose a very high value for // now so that HIGH_PRECISION is always // chosen. // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_DENOISED FILE *yuv_denoised_file = NULL; #endif #ifdef OUTPUT_YUV_SKINMAP FILE *yuv_skinmap_file = NULL; #endif #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #define FILE_NAME_LEN 100 #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif #if CONFIG_CFL CFL_CTX NULL_CFL; #endif #if CONFIG_INTERNAL_STATS typedef enum { Y, U, V, ALL } STAT_TYPE; #endif // CONFIG_INTERNAL_STATS static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) { switch (mode) { case NORMAL: *hr = 1; *hs = 1; break; case FOURFIVE: *hr = 4; *hs = 5; break; case THREEFIVE: *hr = 3; *hs = 5; break; case ONETWO: *hr = 1; *hs = 2; break; default: *hr = 1; *hs = 1; assert(0); break; } } // Mark all inactive blocks as active. Other segmentation features may be set // so memset cannot be used, instead only inactive blocks should be reset. static void suppress_active_map(AV1_COMP *cpi) { unsigned char *const seg_map = cpi->segmentation_map; int i; if (cpi->active_map.enabled || cpi->active_map.update) for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) if (seg_map[i] == AM_SEGMENT_ID_INACTIVE) seg_map[i] = AM_SEGMENT_ID_ACTIVE; } static void apply_active_map(AV1_COMP *cpi) { struct segmentation *const seg = &cpi->common.seg; unsigned char *const seg_map = cpi->segmentation_map; const unsigned char *const active_map = cpi->active_map.map; int i; assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE); if (frame_is_intra_only(&cpi->common)) { cpi->active_map.enabled = 0; cpi->active_map.update = 1; } if (cpi->active_map.update) { if (cpi->active_map.enabled) { for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i]; av1_enable_segmentation(seg); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); // Setting the data to -MAX_LOOP_FILTER will result in the computed loop // filter level being zero regardless of the value of seg->abs_delta. av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF, -MAX_LOOP_FILTER); } else { av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); if (seg->enabled) { seg->update_data = 1; seg->update_map = 1; } } cpi->active_map.update = 0; } } int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols) { if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { unsigned char *const active_map_8x8 = cpi->active_map.map; const int mi_rows = cpi->common.mi_rows; const int mi_cols = cpi->common.mi_cols; const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2; const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2; cpi->active_map.update = 1; if (new_map_16x16) { int r, c; for (r = 0; r < mi_rows; ++r) { for (c = 0; c < mi_cols; ++c) { active_map_8x8[r * mi_cols + c] = new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] ? AM_SEGMENT_ID_ACTIVE : AM_SEGMENT_ID_INACTIVE; } } cpi->active_map.enabled = 1; } else { cpi->active_map.enabled = 0; } return 0; } else { return -1; } } int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols) { if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols && new_map_16x16) { unsigned char *const seg_map_8x8 = cpi->segmentation_map; const int mi_rows = cpi->common.mi_rows; const int mi_cols = cpi->common.mi_cols; const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2; const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2; memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); if (cpi->active_map.enabled) { int r, c; for (r = 0; r < mi_rows; ++r) { for (c = 0; c < mi_cols; ++c) { // Cyclic refresh segments are considered active despite not having // AM_SEGMENT_ID_ACTIVE new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] |= seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE; } } } return 0; } else { return -1; } } void av1_set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv) { MACROBLOCK *const mb = &cpi->td.mb; cpi->common.allow_high_precision_mv = allow_high_precision_mv; #if CONFIG_REF_MV if (cpi->common.allow_high_precision_mv) { int i; for (i = 0; i < NMV_CONTEXTS; ++i) { mb->mv_cost_stack[i] = mb->nmvcost_hp[i]; mb->mvsadcost = mb->nmvsadcost_hp; } } else { int i; for (i = 0; i < NMV_CONTEXTS; ++i) { mb->mv_cost_stack[i] = mb->nmvcost[i]; mb->mvsadcost = mb->nmvsadcost; } } #else if (cpi->common.allow_high_precision_mv) { mb->mvcost = mb->nmvcost_hp; mb->mvsadcost = mb->nmvcost_hp; } else { mb->mvcost = mb->nmvcost; mb->mvsadcost = mb->nmvcost; } #endif } static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) { #if CONFIG_EXT_PARTITION if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64) return BLOCK_64X64; if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128) return BLOCK_128X128; assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC); assert(IMPLIES(cpi->common.tile_cols > 1, cpi->common.tile_width % MAX_MIB_SIZE == 0)); assert(IMPLIES(cpi->common.tile_rows > 1, cpi->common.tile_height % MAX_MIB_SIZE == 0)); // TODO(any): Possibly could improve this with a heuristic. return BLOCK_128X128; #else (void)cpi; return BLOCK_64X64; #endif // CONFIG_EXT_PARTITION } static void setup_frame(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; // Set up entropy context depending on frame type. The decoder mandates // the use of the default context, index 0, for keyframes and inter // frames where the error_resilient_mode or intra_only flag is set. For // other inter-frames the encoder currently uses only two contexts; // context 1 for ALTREF frames and context 0 for the others. if (frame_is_intra_only(cm) || cm->error_resilient_mode) { av1_setup_past_independence(cm); } else { #if CONFIG_EXT_REFS const GF_GROUP *gf_group = &cpi->twopass.gf_group; if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) cm->frame_context_idx = EXT_ARF_FRAME; else if (cpi->refresh_alt_ref_frame) cm->frame_context_idx = ARF_FRAME; #else if (cpi->refresh_alt_ref_frame) cm->frame_context_idx = ARF_FRAME; #endif // CONFIG_EXT_REFS else if (cpi->rc.is_src_frame_alt_ref) cm->frame_context_idx = OVERLAY_FRAME; else if (cpi->refresh_golden_frame) cm->frame_context_idx = GLD_FRAME; #if CONFIG_EXT_REFS else if (cpi->refresh_bwd_ref_frame) cm->frame_context_idx = BRF_FRAME; #endif // CONFIG_EXT_REFS else cm->frame_context_idx = REGULAR_FRAME; } if (cm->frame_type == KEY_FRAME) { cpi->refresh_golden_frame = 1; cpi->refresh_alt_ref_frame = 1; av1_zero(cpi->interp_filter_selected); } else { *cm->fc = cm->frame_contexts[cm->frame_context_idx]; av1_zero(cpi->interp_filter_selected[0]); } #if CONFIG_EXT_REFS #if CONFIG_LOWDELAY_COMPOUND // No change to bitstream if (cpi->sf.recode_loop == DISALLOW_RECODE) { cpi->refresh_bwd_ref_frame = cpi->refresh_last_frame; cpi->rc.is_bipred_frame = 1; } #endif #endif cpi->vaq_refresh = 0; set_sb_size(cm, select_sb_size(cpi)); } static void av1_enc_setup_mi(AV1_COMMON *cm) { int i; cm->mi = cm->mip + cm->mi_stride + 1; memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip)); cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; // Clear top border row memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride); // Clear left border column for (i = 1; i < cm->mi_rows + 1; ++i) memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip)); cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; memset(cm->mi_grid_base, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base)); } static int av1_enc_alloc_mi(AV1_COMMON *cm, int mi_size) { cm->mip = aom_calloc(mi_size, sizeof(*cm->mip)); if (!cm->mip) return 1; cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip)); if (!cm->prev_mip) return 1; cm->mi_alloc_size = mi_size; cm->mi_grid_base = (MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *)); if (!cm->mi_grid_base) return 1; cm->prev_mi_grid_base = (MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *)); if (!cm->prev_mi_grid_base) return 1; return 0; } static void av1_enc_free_mi(AV1_COMMON *cm) { aom_free(cm->mip); cm->mip = NULL; aom_free(cm->prev_mip); cm->prev_mip = NULL; aom_free(cm->mi_grid_base); cm->mi_grid_base = NULL; aom_free(cm->prev_mi_grid_base); cm->prev_mi_grid_base = NULL; } static void av1_swap_mi_and_prev_mi(AV1_COMMON *cm) { // Current mip will be the prev_mip for the next frame. MODE_INFO **temp_base = cm->prev_mi_grid_base; MODE_INFO *temp = cm->prev_mip; cm->prev_mip = cm->mip; cm->mip = temp; // Update the upper left visible macroblock ptrs. cm->mi = cm->mip + cm->mi_stride + 1; cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; cm->prev_mi_grid_base = cm->mi_grid_base; cm->mi_grid_base = temp_base; cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; } void av1_initialize_enc(void) { static volatile int init_done = 0; if (!init_done) { av1_rtcd(); aom_dsp_rtcd(); aom_scale_rtcd(); av1_init_intra_predictors(); av1_init_me_luts(); #if !CONFIG_XIPHRC av1_rc_init_minq_luts(); #endif av1_entropy_mv_init(); av1_encode_token_init(); #if CONFIG_EXT_INTER av1_init_wedge_masks(); #endif init_done = 1; } } static void dealloc_compressor_data(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int i; aom_free(cpi->mbmi_ext_base); cpi->mbmi_ext_base = NULL; #if CONFIG_PVQ if (cpi->oxcf.pass != 1) { const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tile_col, tile_row; for (tile_row = 0; tile_row < tile_rows; ++tile_row) for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileDataEnc *tile_data = &cpi->tile_data[tile_row * tile_cols + tile_col]; aom_free(tile_data->pvq_q.buf); } } #endif aom_free(cpi->tile_data); cpi->tile_data = NULL; // Delete sementation map aom_free(cpi->segmentation_map); cpi->segmentation_map = NULL; av1_cyclic_refresh_free(cpi->cyclic_refresh); cpi->cyclic_refresh = NULL; aom_free(cpi->active_map.map); cpi->active_map.map = NULL; // Free up-sampled reference buffers. for (i = 0; i < (REF_FRAMES + 1); i++) aom_free_frame_buffer(&cpi->upsampled_ref_bufs[i].buf); av1_free_ref_frame_buffers(cm->buffer_pool); #if CONFIG_LV_MAP av1_free_txb_buf(cpi); #endif av1_free_context_buffers(cm); aom_free_frame_buffer(&cpi->last_frame_uf); #if CONFIG_LOOP_RESTORATION av1_free_restoration_buffers(cm); aom_free_frame_buffer(&cpi->last_frame_db); aom_free_frame_buffer(&cpi->trial_frame_rst); aom_free(cpi->extra_rstbuf); for (i = 0; i < MAX_MB_PLANE; ++i) av1_free_restoration_struct(&cpi->rst_search[i]); #endif // CONFIG_LOOP_RESTORATION aom_free_frame_buffer(&cpi->scaled_source); aom_free_frame_buffer(&cpi->scaled_last_source); aom_free_frame_buffer(&cpi->alt_ref_buffer); av1_lookahead_destroy(cpi->lookahead); aom_free(cpi->tile_tok[0][0]); cpi->tile_tok[0][0] = 0; av1_free_pc_tree(&cpi->td); av1_free_var_tree(&cpi->td); #if CONFIG_PALETTE if (cpi->common.allow_screen_content_tools) aom_free(cpi->td.mb.palette_buffer); #endif // CONFIG_PALETTE if (cpi->source_diff_var != NULL) { aom_free(cpi->source_diff_var); cpi->source_diff_var = NULL; } #if CONFIG_ANS aom_buf_ans_free(&cpi->buf_ans); #endif // CONFIG_ANS } static void save_coding_context(AV1_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; AV1_COMMON *cm = &cpi->common; #if CONFIG_REF_MV int i; #endif // Stores a snapshot of key state variables which can subsequently be // restored with a call to av1_restore_coding_context. These functions are // intended for use in a re-code loop in av1_compress_frame where the // quantizer value is adjusted between loop iterations. #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) { av1_copy(cc->nmv_vec_cost[i], cpi->td.mb.nmv_vec_cost[i]); av1_copy(cc->nmv_costs, cpi->nmv_costs); av1_copy(cc->nmv_costs_hp, cpi->nmv_costs_hp); } #else av1_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost); #endif av1_copy(cc->nmvcosts, cpi->nmvcosts); av1_copy(cc->nmvcosts_hp, cpi->nmvcosts_hp); av1_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); av1_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); cc->fc = *cm->fc; } static void restore_coding_context(AV1_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; AV1_COMMON *cm = &cpi->common; #if CONFIG_REF_MV int i; #endif // Restore key state variables to the snapshot state stored in the // previous call to av1_save_coding_context. #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) { av1_copy(cpi->td.mb.nmv_vec_cost[i], cc->nmv_vec_cost[i]); av1_copy(cpi->nmv_costs, cc->nmv_costs); av1_copy(cpi->nmv_costs_hp, cc->nmv_costs_hp); } #else av1_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost); #endif av1_copy(cpi->nmvcosts, cc->nmvcosts); av1_copy(cpi->nmvcosts_hp, cc->nmvcosts_hp); av1_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); av1_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); *cm->fc = cc->fc; } static void configure_static_seg_features(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; struct segmentation *const seg = &cm->seg; int high_q = (int)(rc->avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->frame_type == KEY_FRAME) { // Clear down the global segmentation map memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation av1_disable_segmentation(seg); // Clear down the segment features. av1_clearall_segfeatures(seg); } else if (cpi->refresh_alt_ref_frame) { // If this is an alt ref frame // Clear down the global segmentation map memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation and individual segment features by default av1_disable_segmentation(seg); av1_clearall_segfeatures(seg); // Scan frames from current to arf frame. // This function re-enables segmentation if appropriate. av1_update_mbgraph_stats(cpi); // If segmentation was enabled set those features needed for the // arf itself. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth); av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Where relevant assume segment data is delta data seg->abs_delta = SEGMENT_DELTADATA; } } else if (seg->enabled) { // All other frames if segmentation has been enabled // First normal frame in a valid gf or alt ref group if (rc->frames_since_golden == 0) { // Set up segment features for normal frames in an arf group if (rc->source_alt_ref_active) { seg->update_map = 0; seg->update_data = 1; seg->abs_delta = SEGMENT_DELTADATA; qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth); av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); av1_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Segment coding disabled for compred testing if (high_q || (cpi->static_mb_pct == 100)) { av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); av1_enable_segfeature(seg, 1, SEG_LVL_SKIP); } } else { // Disable segmentation and clear down features if alt ref // is not active for this group av1_disable_segmentation(seg); memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; av1_clearall_segfeatures(seg); } } else if (rc->is_src_frame_alt_ref) { // Special case where we are coding over the top of a previous // alt ref frame. // Segment coding disabled for compred testing // Enable ref frame features for segment 0 as well av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); // All mbs should use ALTREF_FRAME av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); // Skip all MBs if high Q (0,0 mv and skip coeffs) if (high_q) { av1_enable_segfeature(seg, 0, SEG_LVL_SKIP); av1_enable_segfeature(seg, 1, SEG_LVL_SKIP); } // Enable data update seg->update_data = 1; } else { // All other frames. // No updates.. leave things as they are. seg->update_map = 0; seg->update_data = 0; } } } static void update_reference_segmentation_map(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; uint8_t *cache_ptr = cm->last_frame_seg_map; int row, col; for (row = 0; row < cm->mi_rows; row++) { MODE_INFO **mi_8x8 = mi_8x8_ptr; uint8_t *cache = cache_ptr; for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++) cache[0] = mi_8x8[0]->mbmi.segment_id; mi_8x8_ptr += cm->mi_stride; cache_ptr += cm->mi_cols; } } static void alloc_raw_frame_buffers(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const AV1EncoderConfig *oxcf = &cpi->oxcf; if (!cpi->lookahead) cpi->lookahead = av1_lookahead_init(oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif oxcf->lag_in_frames); if (!cpi->lookahead) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); // TODO(agrange) Check if ARF is enabled and skip allocation if not. if (aom_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); } static void alloc_util_frame_buffers(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; if (aom_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); #if CONFIG_LOOP_RESTORATION if (aom_realloc_frame_buffer(&cpi->last_frame_db, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate last frame deblocked buffer"); if (aom_realloc_frame_buffer(&cpi->trial_frame_rst, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate trial restored frame buffer"); int extra_rstbuf_sz = RESTORATION_EXTBUF_SIZE; if (extra_rstbuf_sz > 0) { aom_free(cpi->extra_rstbuf); CHECK_MEM_ERROR(cm, cpi->extra_rstbuf, (uint8_t *)aom_malloc(extra_rstbuf_sz)); } else { cpi->extra_rstbuf = NULL; } #endif // CONFIG_LOOP_RESTORATION if (aom_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); if (aom_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate scaled last source buffer"); } static int alloc_context_buffers_ext(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; int mi_size = cm->mi_cols * cm->mi_rows; cpi->mbmi_ext_base = aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base)); if (!cpi->mbmi_ext_base) return 1; return 0; } void av1_alloc_compressor_data(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; av1_alloc_context_buffers(cm, cm->width, cm->height); #if CONFIG_LV_MAP av1_alloc_txb_buf(cpi); #endif alloc_context_buffers_ext(cpi); aom_free(cpi->tile_tok[0][0]); { unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0], aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0]))); #if CONFIG_ANS && !ANS_MAX_SYMBOLS aom_buf_ans_alloc(&cpi->buf_ans, &cm->error, (int)tokens); #endif // CONFIG_ANS } av1_setup_pc_tree(&cpi->common, &cpi->td); } void av1_new_framerate(AV1_COMP *cpi, double framerate) { cpi->framerate = framerate < 0.1 ? 30 : framerate; #if CONFIG_XIPHRC if (!cpi->od_rc.cur_frame) return; cpi->od_rc.framerate = cpi->framerate; od_enc_rc_resize(&cpi->od_rc); #else av1_rc_update_framerate(cpi); #endif } static void set_tile_info(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; #if CONFIG_TILE_GROUPS && CONFIG_DEPENDENT_HORZTILES int tile_row, tile_col, num_tiles_in_tg; int tg_row_start, tg_col_start; #endif #if CONFIG_EXT_TILE #if CONFIG_EXT_PARTITION if (cpi->oxcf.superblock_size != AOM_SUPERBLOCK_SIZE_64X64) { cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 32); cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 32); cm->tile_width <<= MAX_MIB_SIZE_LOG2; cm->tile_height <<= MAX_MIB_SIZE_LOG2; } else { cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64); cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64); cm->tile_width <<= MAX_MIB_SIZE_LOG2 - 1; cm->tile_height <<= MAX_MIB_SIZE_LOG2 - 1; } #else cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64); cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64); cm->tile_width <<= MAX_MIB_SIZE_LOG2; cm->tile_height <<= MAX_MIB_SIZE_LOG2; #endif // CONFIG_EXT_PARTITION cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); assert(cm->tile_width >> MAX_MIB_SIZE <= 32); assert(cm->tile_height >> MAX_MIB_SIZE <= 32); // Get the number of tiles cm->tile_cols = 1; while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; cm->tile_rows = 1; while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; #else int min_log2_tile_cols, max_log2_tile_cols; av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); cm->log2_tile_rows = cpi->oxcf.tile_rows; cm->tile_cols = 1 << cm->log2_tile_cols; cm->tile_rows = 1 << cm->log2_tile_rows; cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); cm->tile_width >>= cm->log2_tile_cols; cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); cm->tile_height >>= cm->log2_tile_rows; // round to integer multiples of max superblock size cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2); cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2); #endif // CONFIG_EXT_TILE #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles = cpi->oxcf.dependent_horz_tiles; if (cm->log2_tile_rows == 0) cm->dependent_horz_tiles = 0; #if CONFIG_TILE_GROUPS if (cpi->oxcf.mtu == 0) { cm->num_tg = cpi->oxcf.num_tile_groups; } else { // Use a default value for the purposes of weighting costs in probability // updates cm->num_tg = DEFAULT_MAX_NUM_TG; } num_tiles_in_tg = (cm->tile_cols * cm->tile_rows + cm->num_tg - 1) / cm->num_tg; tg_row_start = 0; tg_col_start = 0; for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row) { for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col) { if ((tile_row * cm->tile_cols + tile_col) % num_tiles_in_tg == 0) { tg_row_start = tile_row; tg_col_start = tile_col; } cm->tile_group_start_row[tile_row][tile_col] = tg_row_start; cm->tile_group_start_col[tile_row][tile_col] = tg_col_start; } } #endif #endif #if CONFIG_LOOPFILTERING_ACROSS_TILES cm->loop_filter_across_tiles_enabled = cpi->oxcf.loop_filter_across_tiles_enabled; #endif // CONFIG_LOOPFILTERING_ACROSS_TILES } static void update_frame_size(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; av1_set_mb_mi(cm, cm->width, cm->height); av1_init_context_buffers(cm); av1_init_macroblockd(cm, xd, #if CONFIG_PVQ NULL, #endif #if CONFIG_CFL &NULL_CFL, #endif NULL); memset(cpi->mbmi_ext_base, 0, cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base)); set_tile_info(cpi); } static void init_buffer_indices(AV1_COMP *cpi) { #if CONFIG_EXT_REFS int fb_idx; for (fb_idx = 0; fb_idx < LAST_REF_FRAMES; ++fb_idx) cpi->lst_fb_idxes[fb_idx] = fb_idx; cpi->gld_fb_idx = LAST_REF_FRAMES; cpi->bwd_fb_idx = LAST_REF_FRAMES + 1; cpi->alt_fb_idx = LAST_REF_FRAMES + 2; for (fb_idx = 0; fb_idx < MAX_EXT_ARFS + 1; ++fb_idx) cpi->arf_map[fb_idx] = LAST_REF_FRAMES + 2 + fb_idx; #else cpi->lst_fb_idx = 0; cpi->gld_fb_idx = 1; cpi->alt_fb_idx = 2; #endif // CONFIG_EXT_REFS } static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) { AV1_COMMON *const cm = &cpi->common; cpi->oxcf = *oxcf; cpi->framerate = oxcf->init_framerate; cm->profile = oxcf->profile; cm->bit_depth = oxcf->bit_depth; #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth = oxcf->use_highbitdepth; #endif cm->color_space = oxcf->color_space; cm->color_range = oxcf->color_range; cm->width = oxcf->width; cm->height = oxcf->height; av1_alloc_compressor_data(cpi); // Single thread case: use counts in common. cpi->td.counts = &cm->counts; // change includes all joint functionality av1_change_config(cpi, oxcf); cpi->static_mb_pct = 0; cpi->ref_frame_flags = 0; init_buffer_indices(cpi); } static void set_rc_buffer_sizes(RATE_CONTROL *rc, const AV1EncoderConfig *oxcf) { const int64_t bandwidth = oxcf->target_bandwidth; const int64_t starting = oxcf->starting_buffer_level_ms; const int64_t optimal = oxcf->optimal_buffer_level_ms; const int64_t maximum = oxcf->maximum_buffer_size_ms; rc->starting_buffer_level = starting * bandwidth / 1000; rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; } #if CONFIG_HIGHBITDEPTH #define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].sdaf = SDAF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svaf = SVAF; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; #define MAKE_BFP_SAD_WRAPPER(fnname) \ static unsigned int fnname##_bits8(const uint8_t *src_ptr, \ int source_stride, \ const uint8_t *ref_ptr, int ref_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \ } \ static unsigned int fnname##_bits10( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \ } \ static unsigned int fnname##_bits12( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \ } #define MAKE_BFP_SADAVG_WRAPPER(fnname) \ static unsigned int fnname##_bits8( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *second_pred) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \ } \ static unsigned int fnname##_bits10( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *second_pred) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ 2; \ } \ static unsigned int fnname##_bits12( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *second_pred) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ 4; \ } #define MAKE_BFP_SAD3_WRAPPER(fnname) \ static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ } \ static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 3; i++) sad_array[i] >>= 2; \ } \ static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 3; i++) sad_array[i] >>= 4; \ } #define MAKE_BFP_SAD8_WRAPPER(fnname) \ static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ } \ static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 8; i++) sad_array[i] >>= 2; \ } \ static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ const uint8_t *ref_ptr, int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 8; i++) sad_array[i] >>= 4; \ } #define MAKE_BFP_SAD4D_WRAPPER(fnname) \ static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ const uint8_t *const ref_ptr[], int ref_stride, \ unsigned int *sad_array) { \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ } \ static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ const uint8_t *const ref_ptr[], int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 4; i++) sad_array[i] >>= 2; \ } \ static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ const uint8_t *const ref_ptr[], int ref_stride, \ unsigned int *sad_array) { \ int i; \ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ for (i = 0; i < 4; i++) sad_array[i] >>= 4; \ } #if CONFIG_EXT_PARTITION MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad128x128x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad128x128x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d) #endif // CONFIG_EXT_PARTITION MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad32x32x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad32x32x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad64x64x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad64x64x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x16x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x16x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad16x8x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad16x8x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x16x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x16x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad8x8x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x8x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad8x4x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x8x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d) MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4) MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg) MAKE_BFP_SAD3_WRAPPER(aom_highbd_sad4x4x3) MAKE_BFP_SAD8_WRAPPER(aom_highbd_sad4x4x8) MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d) #if CONFIG_EXT_INTER #define HIGHBD_MBFP(BT, MSDF, MVF, MSVF) \ cpi->fn_ptr[BT].msdf = MSDF; \ cpi->fn_ptr[BT].mvf = MVF; \ cpi->fn_ptr[BT].msvf = MSVF; #define MAKE_MBFP_SAD_WRAPPER(fnname) \ static unsigned int fnname##_bits8( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *m, int m_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride); \ } \ static unsigned int fnname##_bits10( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *m, int m_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \ 2; \ } \ static unsigned int fnname##_bits12( \ const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ int ref_stride, const uint8_t *m, int m_stride) { \ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, m, m_stride) >> \ 4; \ } #if CONFIG_EXT_PARTITION MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x128) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad128x64) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x128) #endif // CONFIG_EXT_PARTITION MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x64) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad64x32) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x64) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x32) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad32x16) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x32) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x16) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad16x8) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x16) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x8) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad8x4) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x8) MAKE_MBFP_SAD_WRAPPER(aom_highbd_masked_sad4x4) #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR #define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \ cpi->fn_ptr[BT].osdf = OSDF; \ cpi->fn_ptr[BT].ovf = OVF; \ cpi->fn_ptr[BT].osvf = OSVF; #define MAKE_OBFP_SAD_WRAPPER(fnname) \ static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \ const int32_t *wsrc, \ const int32_t *msk) { \ return fnname(ref, ref_stride, wsrc, msk); \ } \ static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \ const int32_t *wsrc, \ const int32_t *msk) { \ return fnname(ref, ref_stride, wsrc, msk) >> 2; \ } \ static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \ const int32_t *wsrc, \ const int32_t *msk) { \ return fnname(ref, ref_stride, wsrc, msk) >> 4; \ } #if CONFIG_EXT_PARTITION MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128) #endif // CONFIG_EXT_PARTITION MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8) MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4) #endif // CONFIG_MOTION_VAR static void highbd_set_var_fns(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; if (cm->use_highbitdepth) { switch (cm->bit_depth) { case AOM_BITS_8: HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8, aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16, aom_highbd_8_sub_pixel_variance32x16, aom_highbd_8_sub_pixel_avg_variance32x16, NULL, NULL, aom_highbd_sad32x16x4d_bits8) HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8, aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32, aom_highbd_8_sub_pixel_variance16x32, aom_highbd_8_sub_pixel_avg_variance16x32, NULL, NULL, aom_highbd_sad16x32x4d_bits8) HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8, aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32, aom_highbd_8_sub_pixel_variance64x32, aom_highbd_8_sub_pixel_avg_variance64x32, NULL, NULL, aom_highbd_sad64x32x4d_bits8) HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8, aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64, aom_highbd_8_sub_pixel_variance32x64, aom_highbd_8_sub_pixel_avg_variance32x64, NULL, NULL, aom_highbd_sad32x64x4d_bits8) HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8, aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32, aom_highbd_8_sub_pixel_variance32x32, aom_highbd_8_sub_pixel_avg_variance32x32, aom_highbd_sad32x32x3_bits8, aom_highbd_sad32x32x8_bits8, aom_highbd_sad32x32x4d_bits8) HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8, aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64, aom_highbd_8_sub_pixel_variance64x64, aom_highbd_8_sub_pixel_avg_variance64x64, aom_highbd_sad64x64x3_bits8, aom_highbd_sad64x64x8_bits8, aom_highbd_sad64x64x4d_bits8) HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8, aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16, aom_highbd_8_sub_pixel_variance16x16, aom_highbd_8_sub_pixel_avg_variance16x16, aom_highbd_sad16x16x3_bits8, aom_highbd_sad16x16x8_bits8, aom_highbd_sad16x16x4d_bits8) HIGHBD_BFP( BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8, aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8, aom_highbd_8_sub_pixel_avg_variance16x8, aom_highbd_sad16x8x3_bits8, aom_highbd_sad16x8x8_bits8, aom_highbd_sad16x8x4d_bits8) HIGHBD_BFP( BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8, aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16, aom_highbd_8_sub_pixel_avg_variance8x16, aom_highbd_sad8x16x3_bits8, aom_highbd_sad8x16x8_bits8, aom_highbd_sad8x16x4d_bits8) HIGHBD_BFP( BLOCK_8X8, aom_highbd_sad8x8_bits8, aom_highbd_sad8x8_avg_bits8, aom_highbd_8_variance8x8, aom_highbd_8_sub_pixel_variance8x8, aom_highbd_8_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits8, aom_highbd_sad8x8x8_bits8, aom_highbd_sad8x8x4d_bits8) HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8, aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4, aom_highbd_8_sub_pixel_variance8x4, aom_highbd_8_sub_pixel_avg_variance8x4, NULL, aom_highbd_sad8x4x8_bits8, aom_highbd_sad8x4x4d_bits8) HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8, aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8, aom_highbd_8_sub_pixel_variance4x8, aom_highbd_8_sub_pixel_avg_variance4x8, NULL, aom_highbd_sad4x8x8_bits8, aom_highbd_sad4x8x4d_bits8) HIGHBD_BFP( BLOCK_4X4, aom_highbd_sad4x4_bits8, aom_highbd_sad4x4_avg_bits8, aom_highbd_8_variance4x4, aom_highbd_8_sub_pixel_variance4x4, aom_highbd_8_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits8, aom_highbd_sad4x4x8_bits8, aom_highbd_sad4x4x4d_bits8) #if CONFIG_CB4X4 HIGHBD_BFP(BLOCK_2X2, NULL, NULL, aom_highbd_8_variance2x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_4X2, NULL, NULL, aom_highbd_8_variance4x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_2X4, NULL, NULL, aom_highbd_8_variance2x4, NULL, NULL, NULL, NULL, NULL) #endif #if CONFIG_EXT_PARTITION HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits8, aom_highbd_sad128x128_avg_bits8, aom_highbd_8_variance128x128, aom_highbd_8_sub_pixel_variance128x128, aom_highbd_8_sub_pixel_avg_variance128x128, aom_highbd_sad128x128x3_bits8, aom_highbd_sad128x128x8_bits8, aom_highbd_sad128x128x4d_bits8) HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8, aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64, aom_highbd_8_sub_pixel_variance128x64, aom_highbd_8_sub_pixel_avg_variance128x64, NULL, NULL, aom_highbd_sad128x64x4d_bits8) HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8, aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128, aom_highbd_8_sub_pixel_variance64x128, aom_highbd_8_sub_pixel_avg_variance64x128, NULL, NULL, aom_highbd_sad64x128x4d_bits8) #endif // CONFIG_EXT_PARTITION #if CONFIG_EXT_INTER #if CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8, aom_highbd_masked_variance128x128, aom_highbd_masked_sub_pixel_variance128x128) HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8, aom_highbd_masked_variance128x64, aom_highbd_masked_sub_pixel_variance128x64) HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8, aom_highbd_masked_variance64x128, aom_highbd_masked_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8, aom_highbd_masked_variance64x64, aom_highbd_masked_sub_pixel_variance64x64) HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8, aom_highbd_masked_variance64x32, aom_highbd_masked_sub_pixel_variance64x32) HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8, aom_highbd_masked_variance32x64, aom_highbd_masked_sub_pixel_variance32x64) HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8, aom_highbd_masked_variance32x32, aom_highbd_masked_sub_pixel_variance32x32) HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8, aom_highbd_masked_variance32x16, aom_highbd_masked_sub_pixel_variance32x16) HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8, aom_highbd_masked_variance16x32, aom_highbd_masked_sub_pixel_variance16x32) HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8, aom_highbd_masked_variance16x16, aom_highbd_masked_sub_pixel_variance16x16) HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8, aom_highbd_masked_variance8x16, aom_highbd_masked_sub_pixel_variance8x16) HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8, aom_highbd_masked_variance16x8, aom_highbd_masked_sub_pixel_variance16x8) HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8, aom_highbd_masked_variance8x8, aom_highbd_masked_sub_pixel_variance8x8) HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8, aom_highbd_masked_variance4x8, aom_highbd_masked_sub_pixel_variance4x8) HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8, aom_highbd_masked_variance8x4, aom_highbd_masked_sub_pixel_variance8x4) HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8, aom_highbd_masked_variance4x4, aom_highbd_masked_sub_pixel_variance4x4) #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR #if CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8, aom_highbd_obmc_variance128x128, aom_highbd_obmc_sub_pixel_variance128x128) HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8, aom_highbd_obmc_variance128x64, aom_highbd_obmc_sub_pixel_variance128x64) HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8, aom_highbd_obmc_variance64x128, aom_highbd_obmc_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8, aom_highbd_obmc_variance64x64, aom_highbd_obmc_sub_pixel_variance64x64) HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8, aom_highbd_obmc_variance64x32, aom_highbd_obmc_sub_pixel_variance64x32) HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8, aom_highbd_obmc_variance32x64, aom_highbd_obmc_sub_pixel_variance32x64) HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8, aom_highbd_obmc_variance32x32, aom_highbd_obmc_sub_pixel_variance32x32) HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8, aom_highbd_obmc_variance32x16, aom_highbd_obmc_sub_pixel_variance32x16) HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8, aom_highbd_obmc_variance16x32, aom_highbd_obmc_sub_pixel_variance16x32) HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8, aom_highbd_obmc_variance16x16, aom_highbd_obmc_sub_pixel_variance16x16) HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8, aom_highbd_obmc_variance8x16, aom_highbd_obmc_sub_pixel_variance8x16) HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8, aom_highbd_obmc_variance16x8, aom_highbd_obmc_sub_pixel_variance16x8) HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8, aom_highbd_obmc_variance8x8, aom_highbd_obmc_sub_pixel_variance8x8) HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8, aom_highbd_obmc_variance4x8, aom_highbd_obmc_sub_pixel_variance4x8) HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8, aom_highbd_obmc_variance8x4, aom_highbd_obmc_sub_pixel_variance8x4) HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8, aom_highbd_obmc_variance4x4, aom_highbd_obmc_sub_pixel_variance4x4) #endif // CONFIG_MOTION_VAR break; case AOM_BITS_10: HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10, aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16, aom_highbd_10_sub_pixel_variance32x16, aom_highbd_10_sub_pixel_avg_variance32x16, NULL, NULL, aom_highbd_sad32x16x4d_bits10) HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10, aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32, aom_highbd_10_sub_pixel_variance16x32, aom_highbd_10_sub_pixel_avg_variance16x32, NULL, NULL, aom_highbd_sad16x32x4d_bits10) HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10, aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32, aom_highbd_10_sub_pixel_variance64x32, aom_highbd_10_sub_pixel_avg_variance64x32, NULL, NULL, aom_highbd_sad64x32x4d_bits10) HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10, aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64, aom_highbd_10_sub_pixel_variance32x64, aom_highbd_10_sub_pixel_avg_variance32x64, NULL, NULL, aom_highbd_sad32x64x4d_bits10) HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10, aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32, aom_highbd_10_sub_pixel_variance32x32, aom_highbd_10_sub_pixel_avg_variance32x32, aom_highbd_sad32x32x3_bits10, aom_highbd_sad32x32x8_bits10, aom_highbd_sad32x32x4d_bits10) HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10, aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64, aom_highbd_10_sub_pixel_variance64x64, aom_highbd_10_sub_pixel_avg_variance64x64, aom_highbd_sad64x64x3_bits10, aom_highbd_sad64x64x8_bits10, aom_highbd_sad64x64x4d_bits10) HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10, aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16, aom_highbd_10_sub_pixel_variance16x16, aom_highbd_10_sub_pixel_avg_variance16x16, aom_highbd_sad16x16x3_bits10, aom_highbd_sad16x16x8_bits10, aom_highbd_sad16x16x4d_bits10) HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10, aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8, aom_highbd_10_sub_pixel_variance16x8, aom_highbd_10_sub_pixel_avg_variance16x8, aom_highbd_sad16x8x3_bits10, aom_highbd_sad16x8x8_bits10, aom_highbd_sad16x8x4d_bits10) HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10, aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16, aom_highbd_10_sub_pixel_variance8x16, aom_highbd_10_sub_pixel_avg_variance8x16, aom_highbd_sad8x16x3_bits10, aom_highbd_sad8x16x8_bits10, aom_highbd_sad8x16x4d_bits10) HIGHBD_BFP( BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10, aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8, aom_highbd_10_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits10, aom_highbd_sad8x8x8_bits10, aom_highbd_sad8x8x4d_bits10) HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits10, aom_highbd_sad8x4_avg_bits10, aom_highbd_10_variance8x4, aom_highbd_10_sub_pixel_variance8x4, aom_highbd_10_sub_pixel_avg_variance8x4, NULL, aom_highbd_sad8x4x8_bits10, aom_highbd_sad8x4x4d_bits10) HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits10, aom_highbd_sad4x8_avg_bits10, aom_highbd_10_variance4x8, aom_highbd_10_sub_pixel_variance4x8, aom_highbd_10_sub_pixel_avg_variance4x8, NULL, aom_highbd_sad4x8x8_bits10, aom_highbd_sad4x8x4d_bits10) HIGHBD_BFP( BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10, aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4, aom_highbd_10_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits10, aom_highbd_sad4x4x8_bits10, aom_highbd_sad4x4x4d_bits10) #if CONFIG_CB4X4 HIGHBD_BFP(BLOCK_2X2, NULL, NULL, aom_highbd_10_variance2x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_4X2, NULL, NULL, aom_highbd_10_variance4x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_2X4, NULL, NULL, aom_highbd_10_variance2x4, NULL, NULL, NULL, NULL, NULL) #endif #if CONFIG_EXT_PARTITION HIGHBD_BFP( BLOCK_128X128, aom_highbd_sad128x128_bits10, aom_highbd_sad128x128_avg_bits10, aom_highbd_10_variance128x128, aom_highbd_10_sub_pixel_variance128x128, aom_highbd_10_sub_pixel_avg_variance128x128, aom_highbd_sad128x128x3_bits10, aom_highbd_sad128x128x8_bits10, aom_highbd_sad128x128x4d_bits10) HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits10, aom_highbd_sad128x64_avg_bits10, aom_highbd_10_variance128x64, aom_highbd_10_sub_pixel_variance128x64, aom_highbd_10_sub_pixel_avg_variance128x64, NULL, NULL, aom_highbd_sad128x64x4d_bits10) HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits10, aom_highbd_sad64x128_avg_bits10, aom_highbd_10_variance64x128, aom_highbd_10_sub_pixel_variance64x128, aom_highbd_10_sub_pixel_avg_variance64x128, NULL, NULL, aom_highbd_sad64x128x4d_bits10) #endif // CONFIG_EXT_PARTITION #if CONFIG_EXT_INTER #if CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10, aom_highbd_10_masked_variance128x128, aom_highbd_10_masked_sub_pixel_variance128x128) HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10, aom_highbd_10_masked_variance128x64, aom_highbd_10_masked_sub_pixel_variance128x64) HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10, aom_highbd_10_masked_variance64x128, aom_highbd_10_masked_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10, aom_highbd_10_masked_variance64x64, aom_highbd_10_masked_sub_pixel_variance64x64) HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10, aom_highbd_10_masked_variance64x32, aom_highbd_10_masked_sub_pixel_variance64x32) HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10, aom_highbd_10_masked_variance32x64, aom_highbd_10_masked_sub_pixel_variance32x64) HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10, aom_highbd_10_masked_variance32x32, aom_highbd_10_masked_sub_pixel_variance32x32) HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10, aom_highbd_10_masked_variance32x16, aom_highbd_10_masked_sub_pixel_variance32x16) HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10, aom_highbd_10_masked_variance16x32, aom_highbd_10_masked_sub_pixel_variance16x32) HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10, aom_highbd_10_masked_variance16x16, aom_highbd_10_masked_sub_pixel_variance16x16) HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10, aom_highbd_10_masked_variance8x16, aom_highbd_10_masked_sub_pixel_variance8x16) HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10, aom_highbd_10_masked_variance16x8, aom_highbd_10_masked_sub_pixel_variance16x8) HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10, aom_highbd_10_masked_variance8x8, aom_highbd_10_masked_sub_pixel_variance8x8) HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10, aom_highbd_10_masked_variance4x8, aom_highbd_10_masked_sub_pixel_variance4x8) HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10, aom_highbd_10_masked_variance8x4, aom_highbd_10_masked_sub_pixel_variance8x4) HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10, aom_highbd_10_masked_variance4x4, aom_highbd_10_masked_sub_pixel_variance4x4) #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR #if CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10, aom_highbd_10_obmc_variance128x128, aom_highbd_10_obmc_sub_pixel_variance128x128) HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10, aom_highbd_10_obmc_variance128x64, aom_highbd_10_obmc_sub_pixel_variance128x64) HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10, aom_highbd_10_obmc_variance64x128, aom_highbd_10_obmc_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10, aom_highbd_10_obmc_variance64x64, aom_highbd_10_obmc_sub_pixel_variance64x64) HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10, aom_highbd_10_obmc_variance64x32, aom_highbd_10_obmc_sub_pixel_variance64x32) HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10, aom_highbd_10_obmc_variance32x64, aom_highbd_10_obmc_sub_pixel_variance32x64) HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10, aom_highbd_10_obmc_variance32x32, aom_highbd_10_obmc_sub_pixel_variance32x32) HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10, aom_highbd_10_obmc_variance32x16, aom_highbd_10_obmc_sub_pixel_variance32x16) HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10, aom_highbd_10_obmc_variance16x32, aom_highbd_10_obmc_sub_pixel_variance16x32) HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10, aom_highbd_10_obmc_variance16x16, aom_highbd_10_obmc_sub_pixel_variance16x16) HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10, aom_highbd_10_obmc_variance8x16, aom_highbd_10_obmc_sub_pixel_variance8x16) HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10, aom_highbd_10_obmc_variance16x8, aom_highbd_10_obmc_sub_pixel_variance16x8) HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10, aom_highbd_10_obmc_variance8x8, aom_highbd_10_obmc_sub_pixel_variance8x8) HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10, aom_highbd_10_obmc_variance4x8, aom_highbd_10_obmc_sub_pixel_variance4x8) HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10, aom_highbd_10_obmc_variance8x4, aom_highbd_10_obmc_sub_pixel_variance8x4) HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10, aom_highbd_10_obmc_variance4x4, aom_highbd_10_obmc_sub_pixel_variance4x4) #endif // CONFIG_MOTION_VAR break; case AOM_BITS_12: HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12, aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16, aom_highbd_12_sub_pixel_variance32x16, aom_highbd_12_sub_pixel_avg_variance32x16, NULL, NULL, aom_highbd_sad32x16x4d_bits12) HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12, aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32, aom_highbd_12_sub_pixel_variance16x32, aom_highbd_12_sub_pixel_avg_variance16x32, NULL, NULL, aom_highbd_sad16x32x4d_bits12) HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12, aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32, aom_highbd_12_sub_pixel_variance64x32, aom_highbd_12_sub_pixel_avg_variance64x32, NULL, NULL, aom_highbd_sad64x32x4d_bits12) HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12, aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64, aom_highbd_12_sub_pixel_variance32x64, aom_highbd_12_sub_pixel_avg_variance32x64, NULL, NULL, aom_highbd_sad32x64x4d_bits12) HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12, aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32, aom_highbd_12_sub_pixel_variance32x32, aom_highbd_12_sub_pixel_avg_variance32x32, aom_highbd_sad32x32x3_bits12, aom_highbd_sad32x32x8_bits12, aom_highbd_sad32x32x4d_bits12) HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12, aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64, aom_highbd_12_sub_pixel_variance64x64, aom_highbd_12_sub_pixel_avg_variance64x64, aom_highbd_sad64x64x3_bits12, aom_highbd_sad64x64x8_bits12, aom_highbd_sad64x64x4d_bits12) HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12, aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16, aom_highbd_12_sub_pixel_variance16x16, aom_highbd_12_sub_pixel_avg_variance16x16, aom_highbd_sad16x16x3_bits12, aom_highbd_sad16x16x8_bits12, aom_highbd_sad16x16x4d_bits12) HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12, aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8, aom_highbd_12_sub_pixel_variance16x8, aom_highbd_12_sub_pixel_avg_variance16x8, aom_highbd_sad16x8x3_bits12, aom_highbd_sad16x8x8_bits12, aom_highbd_sad16x8x4d_bits12) HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12, aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16, aom_highbd_12_sub_pixel_variance8x16, aom_highbd_12_sub_pixel_avg_variance8x16, aom_highbd_sad8x16x3_bits12, aom_highbd_sad8x16x8_bits12, aom_highbd_sad8x16x4d_bits12) HIGHBD_BFP( BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12, aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8, aom_highbd_12_sub_pixel_avg_variance8x8, aom_highbd_sad8x8x3_bits12, aom_highbd_sad8x8x8_bits12, aom_highbd_sad8x8x4d_bits12) HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits12, aom_highbd_sad8x4_avg_bits12, aom_highbd_12_variance8x4, aom_highbd_12_sub_pixel_variance8x4, aom_highbd_12_sub_pixel_avg_variance8x4, NULL, aom_highbd_sad8x4x8_bits12, aom_highbd_sad8x4x4d_bits12) HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits12, aom_highbd_sad4x8_avg_bits12, aom_highbd_12_variance4x8, aom_highbd_12_sub_pixel_variance4x8, aom_highbd_12_sub_pixel_avg_variance4x8, NULL, aom_highbd_sad4x8x8_bits12, aom_highbd_sad4x8x4d_bits12) HIGHBD_BFP( BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12, aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4, aom_highbd_12_sub_pixel_avg_variance4x4, aom_highbd_sad4x4x3_bits12, aom_highbd_sad4x4x8_bits12, aom_highbd_sad4x4x4d_bits12) #if CONFIG_CB4X4 HIGHBD_BFP(BLOCK_2X2, NULL, NULL, aom_highbd_12_variance2x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_4X2, NULL, NULL, aom_highbd_12_variance4x2, NULL, NULL, NULL, NULL, NULL) HIGHBD_BFP(BLOCK_2X4, NULL, NULL, aom_highbd_12_variance2x4, NULL, NULL, NULL, NULL, NULL) #endif #if CONFIG_EXT_PARTITION HIGHBD_BFP( BLOCK_128X128, aom_highbd_sad128x128_bits12, aom_highbd_sad128x128_avg_bits12, aom_highbd_12_variance128x128, aom_highbd_12_sub_pixel_variance128x128, aom_highbd_12_sub_pixel_avg_variance128x128, aom_highbd_sad128x128x3_bits12, aom_highbd_sad128x128x8_bits12, aom_highbd_sad128x128x4d_bits12) HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits12, aom_highbd_sad128x64_avg_bits12, aom_highbd_12_variance128x64, aom_highbd_12_sub_pixel_variance128x64, aom_highbd_12_sub_pixel_avg_variance128x64, NULL, NULL, aom_highbd_sad128x64x4d_bits12) HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits12, aom_highbd_sad64x128_avg_bits12, aom_highbd_12_variance64x128, aom_highbd_12_sub_pixel_variance64x128, aom_highbd_12_sub_pixel_avg_variance64x128, NULL, NULL, aom_highbd_sad64x128x4d_bits12) #endif // CONFIG_EXT_PARTITION #if CONFIG_EXT_INTER #if CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12, aom_highbd_12_masked_variance128x128, aom_highbd_12_masked_sub_pixel_variance128x128) HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12, aom_highbd_12_masked_variance128x64, aom_highbd_12_masked_sub_pixel_variance128x64) HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12, aom_highbd_12_masked_variance64x128, aom_highbd_12_masked_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12, aom_highbd_12_masked_variance64x64, aom_highbd_12_masked_sub_pixel_variance64x64) HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12, aom_highbd_12_masked_variance64x32, aom_highbd_12_masked_sub_pixel_variance64x32) HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12, aom_highbd_12_masked_variance32x64, aom_highbd_12_masked_sub_pixel_variance32x64) HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12, aom_highbd_12_masked_variance32x32, aom_highbd_12_masked_sub_pixel_variance32x32) HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12, aom_highbd_12_masked_variance32x16, aom_highbd_12_masked_sub_pixel_variance32x16) HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12, aom_highbd_12_masked_variance16x32, aom_highbd_12_masked_sub_pixel_variance16x32) HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12, aom_highbd_12_masked_variance16x16, aom_highbd_12_masked_sub_pixel_variance16x16) HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12, aom_highbd_12_masked_variance8x16, aom_highbd_12_masked_sub_pixel_variance8x16) HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12, aom_highbd_12_masked_variance16x8, aom_highbd_12_masked_sub_pixel_variance16x8) HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12, aom_highbd_12_masked_variance8x8, aom_highbd_12_masked_sub_pixel_variance8x8) HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12, aom_highbd_12_masked_variance4x8, aom_highbd_12_masked_sub_pixel_variance4x8) HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12, aom_highbd_12_masked_variance8x4, aom_highbd_12_masked_sub_pixel_variance8x4) HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12, aom_highbd_12_masked_variance4x4, aom_highbd_12_masked_sub_pixel_variance4x4) #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR #if CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12, aom_highbd_12_obmc_variance128x128, aom_highbd_12_obmc_sub_pixel_variance128x128) HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12, aom_highbd_12_obmc_variance128x64, aom_highbd_12_obmc_sub_pixel_variance128x64) HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12, aom_highbd_12_obmc_variance64x128, aom_highbd_12_obmc_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12, aom_highbd_12_obmc_variance64x64, aom_highbd_12_obmc_sub_pixel_variance64x64) HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12, aom_highbd_12_obmc_variance64x32, aom_highbd_12_obmc_sub_pixel_variance64x32) HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12, aom_highbd_12_obmc_variance32x64, aom_highbd_12_obmc_sub_pixel_variance32x64) HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12, aom_highbd_12_obmc_variance32x32, aom_highbd_12_obmc_sub_pixel_variance32x32) HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12, aom_highbd_12_obmc_variance32x16, aom_highbd_12_obmc_sub_pixel_variance32x16) HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12, aom_highbd_12_obmc_variance16x32, aom_highbd_12_obmc_sub_pixel_variance16x32) HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12, aom_highbd_12_obmc_variance16x16, aom_highbd_12_obmc_sub_pixel_variance16x16) HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12, aom_highbd_12_obmc_variance8x16, aom_highbd_12_obmc_sub_pixel_variance8x16) HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12, aom_highbd_12_obmc_variance16x8, aom_highbd_12_obmc_sub_pixel_variance16x8) HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12, aom_highbd_12_obmc_variance8x8, aom_highbd_12_obmc_sub_pixel_variance8x8) HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12, aom_highbd_12_obmc_variance4x8, aom_highbd_12_obmc_sub_pixel_variance4x8) HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12, aom_highbd_12_obmc_variance8x4, aom_highbd_12_obmc_sub_pixel_variance8x4) HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12, aom_highbd_12_obmc_variance4x4, aom_highbd_12_obmc_sub_pixel_variance4x4) #endif // CONFIG_MOTION_VAR break; default: assert(0 && "cm->bit_depth should be AOM_BITS_8, " "AOM_BITS_10 or AOM_BITS_12"); } } } #endif // CONFIG_HIGHBITDEPTH static void realloc_segmentation_maps(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; // Create the encoder segmentation map and set all entries to 0 aom_free(cpi->segmentation_map); CHECK_MEM_ERROR(cm, cpi->segmentation_map, aom_calloc(cm->mi_rows * cm->mi_cols, 1)); // Create a map used for cyclic background refresh. if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh); CHECK_MEM_ERROR(cm, cpi->cyclic_refresh, av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols)); // Create a map used to mark inactive areas. aom_free(cpi->active_map.map); CHECK_MEM_ERROR(cm, cpi->active_map.map, aom_calloc(cm->mi_rows * cm->mi_cols, 1)); } void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; if (cm->profile != oxcf->profile) cm->profile = oxcf->profile; cm->bit_depth = oxcf->bit_depth; cm->color_space = oxcf->color_space; cm->color_range = oxcf->color_range; if (cm->profile <= PROFILE_1) assert(cm->bit_depth == AOM_BITS_8); else assert(cm->bit_depth > AOM_BITS_8); cpi->oxcf = *oxcf; #if CONFIG_HIGHBITDEPTH cpi->td.mb.e_mbd.bd = (int)cm->bit_depth; #endif // CONFIG_HIGHBITDEPTH #if CONFIG_GLOBAL_MOTION cpi->td.mb.e_mbd.global_motion = cm->global_motion; #endif // CONFIG_GLOBAL_MOTION if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) { rc->baseline_gf_interval = FIXED_GF_INTERVAL; } else { rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; } cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 0; #if CONFIG_EXT_REFS cpi->refresh_bwd_ref_frame = 0; #endif // CONFIG_EXT_REFS cm->refresh_frame_context = (oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD; cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE; #if CONFIG_PALETTE cm->allow_screen_content_tools = (cpi->oxcf.content == AOM_CONTENT_SCREEN); if (cm->allow_screen_content_tools) { MACROBLOCK *x = &cpi->td.mb; if (x->palette_buffer == 0) { CHECK_MEM_ERROR(cm, x->palette_buffer, aom_memalign(16, sizeof(*x->palette_buffer))); } // Reallocate the pc_tree, as it's contents depends on // the state of cm->allow_screen_content_tools av1_free_pc_tree(&cpi->td); av1_setup_pc_tree(&cpi->common, &cpi->td); } #endif // CONFIG_PALETTE av1_reset_segment_features(cm); av1_set_high_precision_mv(cpi, 0); set_rc_buffer_sizes(rc, &cpi->oxcf); // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size); rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size); // Set up frame rate and related parameters rate control values. av1_new_framerate(cpi, cpi->framerate); // Set absolute upper and lower quality limits rc->worst_quality = cpi->oxcf.worst_allowed_q; rc->best_quality = cpi->oxcf.best_allowed_q; cm->interp_filter = cpi->sf.default_interp_filter; if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) { cm->render_width = cpi->oxcf.render_width; cm->render_height = cpi->oxcf.render_height; } else { cm->render_width = cpi->oxcf.width; cm->render_height = cpi->oxcf.height; } cm->width = cpi->oxcf.width; cm->height = cpi->oxcf.height; if (cpi->initial_width) { if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) { av1_free_context_buffers(cm); av1_alloc_compressor_data(cpi); realloc_segmentation_maps(cpi); cpi->initial_width = cpi->initial_height = 0; } } update_frame_size(cpi); cpi->alt_ref_source = NULL; rc->is_src_frame_alt_ref = 0; #if CONFIG_EXT_REFS rc->is_bwd_ref_frame = 0; rc->is_last_bipred_frame = 0; rc->is_bipred_frame = 0; #endif // CONFIG_EXT_REFS #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif set_tile_info(cpi); cpi->ext_refresh_frame_flags_pending = 0; cpi->ext_refresh_frame_context_pending = 0; #if CONFIG_HIGHBITDEPTH highbd_set_var_fns(cpi); #endif #if CONFIG_ANS && ANS_MAX_SYMBOLS cpi->common.ans_window_size_log2 = cpi->oxcf.ans_window_size_log2; if (cpi->buf_ans.size != (1 << cpi->common.ans_window_size_log2)) { aom_buf_ans_free(&cpi->buf_ans); aom_buf_ans_alloc(&cpi->buf_ans, &cpi->common.error, 1 << cpi->common.ans_window_size_log2); } #endif // CONFIG_ANS && ANS_MAX_SYMBOLS } #ifndef M_LOG2_E #define M_LOG2_E 0.693147180559945309417 #endif #define log2f(x) (log(x) / (float)M_LOG2_E) #if !CONFIG_REF_MV static void cal_nmvjointsadcost(int *mvjointsadcost) { mvjointsadcost[0] = 600; mvjointsadcost[1] = 300; mvjointsadcost[2] = 300; mvjointsadcost[3] = 300; } #endif static void cal_nmvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static INLINE void init_upsampled_ref_frame_bufs(AV1_COMP *cpi) { int i; for (i = 0; i < (REF_FRAMES + 1); ++i) { cpi->upsampled_ref_bufs[i].ref_count = 0; cpi->upsampled_ref_idx[i] = INVALID_IDX; } } AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf, BufferPool *const pool) { unsigned int i; AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP)); AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL; if (!cm) return NULL; av1_zero(*cpi); if (setjmp(cm->error.jmp)) { cm->error.setjmp = 0; av1_remove_compressor(cpi); return 0; } cm->error.setjmp = 1; cm->alloc_mi = av1_enc_alloc_mi; cm->free_mi = av1_enc_free_mi; cm->setup_mi = av1_enc_setup_mi; CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); CHECK_MEM_ERROR(cm, cm->frame_contexts, (FRAME_CONTEXT *)aom_memalign( 32, FRAME_CONTEXTS * sizeof(*cm->frame_contexts))); memset(cm->fc, 0, sizeof(*cm->fc)); memset(cm->frame_contexts, 0, FRAME_CONTEXTS * sizeof(*cm->frame_contexts)); cpi->resize_state = 0; cpi->resize_avg_qp = 0; cpi->resize_buffer_underflow = 0; cpi->common.buffer_pool = pool; init_config(cpi, oxcf); #if CONFIG_XIPHRC cpi->od_rc.framerate = cpi->framerate; cpi->od_rc.frame_width = cm->render_width; cpi->od_rc.frame_height = cm->render_height; cpi->od_rc.keyframe_rate = oxcf->key_freq; cpi->od_rc.goldenframe_rate = FIXED_GF_INTERVAL; cpi->od_rc.altref_rate = 25; cpi->od_rc.firstpass_quant = 1; cpi->od_rc.bit_depth = cm->bit_depth; cpi->od_rc.minq = oxcf->best_allowed_q; cpi->od_rc.maxq = oxcf->worst_allowed_q; if (cpi->oxcf.rc_mode == AOM_CQ) cpi->od_rc.minq = cpi->od_rc.quality; cpi->od_rc.quality = cpi->oxcf.rc_mode == AOM_Q ? oxcf->cq_level : -1; cpi->od_rc.periodic_boosts = oxcf->frame_periodic_boost; od_enc_rc_init(&cpi->od_rc, cpi->oxcf.rc_mode == AOM_Q ? -1 : oxcf->target_bandwidth, oxcf->maximum_buffer_size_ms); #else av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc); #endif cm->current_video_frame = 0; cpi->partition_search_skippable_frame = 0; cpi->tile_data = NULL; cpi->last_show_frame_buf_idx = INVALID_IDX; realloc_segmentation_maps(cpi); #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) { memset(cpi->nmv_costs, 0, sizeof(cpi->nmv_costs)); memset(cpi->nmv_costs_hp, 0, sizeof(cpi->nmv_costs_hp)); } #endif memset(cpi->nmvcosts, 0, sizeof(cpi->nmvcosts)); memset(cpi->nmvcosts_hp, 0, sizeof(cpi->nmvcosts_hp)); memset(cpi->nmvsadcosts, 0, sizeof(cpi->nmvsadcosts)); memset(cpi->nmvsadcosts_hp, 0, sizeof(cpi->nmvsadcosts_hp)); for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); i++) { CHECK_MEM_ERROR( cm, cpi->mbgraph_stats[i].mb_stats, aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); } #if CONFIG_FP_MB_STATS cpi->use_fp_mb_stats = 0; if (cpi->use_fp_mb_stats) { // a place holder used to store the first pass mb stats in the first pass CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf, aom_calloc(cm->MBs * sizeof(uint8_t), 1)); } else { cpi->twopass.frame_mb_stats_buf = NULL; } #endif cpi->refresh_alt_ref_frame = 0; cpi->multi_arf_last_grp_enabled = 0; cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_blockiness = 1; cpi->b_calculate_consistency = 1; cpi->total_inconsistency = 0; cpi->psnr.worst = 100.0; cpi->worst_ssim = 100.0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_sq_error = 0; cpi->total_samples = 0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; } cpi->fastssim.worst = 100.0; cpi->psnrhvs.worst = 100.0; if (cpi->b_calculate_blockiness) { cpi->total_blockiness = 0; cpi->worst_blockiness = 0.0; } if (cpi->b_calculate_consistency) { CHECK_MEM_ERROR(cm, cpi->ssim_vars, aom_malloc(sizeof(*cpi->ssim_vars) * 4 * cpi->common.mi_rows * cpi->common.mi_cols)); cpi->worst_consistency = 100.0; } #endif #if CONFIG_ENTROPY_STATS av1_zero(aggregate_fc); #endif // CONFIG_ENTROPY_STATS cpi->first_time_stamp_ever = INT64_MAX; #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) { cpi->td.mb.nmvcost[i][0] = &cpi->nmv_costs[i][0][MV_MAX]; cpi->td.mb.nmvcost[i][1] = &cpi->nmv_costs[i][1][MV_MAX]; cpi->td.mb.nmvcost_hp[i][0] = &cpi->nmv_costs_hp[i][0][MV_MAX]; cpi->td.mb.nmvcost_hp[i][1] = &cpi->nmv_costs_hp[i][1][MV_MAX]; } #else cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost); cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX]; cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX]; cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX]; cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX]; #endif cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX]; cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX]; cal_nmvsadcosts(cpi->td.mb.nmvsadcost); cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX]; cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX]; cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp); #ifdef OUTPUT_YUV_SKINMAP yuv_skinmap_file = fopen("skinmap.yuv", "ab"); #endif #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif #if CONFIG_XIPHRC if (oxcf->pass == 2) { cpi->od_rc.twopass_allframes_buf = oxcf->two_pass_stats_in.buf; cpi->od_rc.twopass_allframes_buf_size = oxcf->two_pass_stats_in.sz; } #else if (oxcf->pass == 1) { av1_init_first_pass(cpi); } else if (oxcf->pass == 2) { const size_t packet_sz = sizeof(FIRSTPASS_STATS); const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { const size_t psz = cpi->common.MBs * sizeof(uint8_t); const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz); cpi->twopass.firstpass_mb_stats.mb_stats_start = oxcf->firstpass_mb_stats_in.buf; cpi->twopass.firstpass_mb_stats.mb_stats_end = cpi->twopass.firstpass_mb_stats.mb_stats_start + (ps - 1) * cpi->common.MBs * sizeof(uint8_t); } #endif cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1]; av1_init_second_pass(cpi); } #endif init_upsampled_ref_frame_bufs(cpi); av1_set_speed_features_framesize_independent(cpi); av1_set_speed_features_framesize_dependent(cpi); // Allocate memory to store variances for a frame. CHECK_MEM_ERROR(cm, cpi->source_diff_var, aom_calloc(cm->MBs, sizeof(*cpi->source_diff_var))); cpi->source_var_thresh = 0; cpi->frames_till_next_var_check = 0; #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].sdaf = SDAF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svaf = SVAF; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; #if CONFIG_EXT_PARTITION BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128, aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128, aom_sad128x128x3, aom_sad128x128x8, aom_sad128x128x4d) BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64, aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, NULL, NULL, aom_sad128x64x4d) BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128, aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, NULL, NULL, aom_sad64x128x4d) #endif // CONFIG_EXT_PARTITION BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16, aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, NULL, NULL, aom_sad32x16x4d) BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32, aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, NULL, NULL, aom_sad16x32x4d) BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32, aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, NULL, NULL, aom_sad64x32x4d) BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64, aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, NULL, NULL, aom_sad32x64x4d) BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32, aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32, aom_sad32x32x3, aom_sad32x32x8, aom_sad32x32x4d) BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64, aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64, aom_sad64x64x3, aom_sad64x64x8, aom_sad64x64x4d) BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16, aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16, aom_sad16x16x3, aom_sad16x16x8, aom_sad16x16x4d) BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8, aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, aom_sad16x8x3, aom_sad16x8x8, aom_sad16x8x4d) BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16, aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, aom_sad8x16x3, aom_sad8x16x8, aom_sad8x16x4d) BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8, aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x3, aom_sad8x8x8, aom_sad8x8x4d) BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4, aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, NULL, aom_sad8x4x8, aom_sad8x4x4d) BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8, aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, NULL, aom_sad4x8x8, aom_sad4x8x4d) BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4, aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x3, aom_sad4x4x8, aom_sad4x4x4d) #if CONFIG_CB4X4 BFP(BLOCK_2X2, NULL, NULL, aom_variance2x2, NULL, NULL, NULL, NULL, NULL) BFP(BLOCK_2X4, NULL, NULL, aom_variance2x4, NULL, NULL, NULL, NULL, NULL) BFP(BLOCK_4X2, NULL, NULL, aom_variance4x2, NULL, NULL, NULL, NULL, NULL) #endif #if CONFIG_MOTION_VAR #define OBFP(BT, OSDF, OVF, OSVF) \ cpi->fn_ptr[BT].osdf = OSDF; \ cpi->fn_ptr[BT].ovf = OVF; \ cpi->fn_ptr[BT].osvf = OSVF; #if CONFIG_EXT_PARTITION OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128, aom_obmc_sub_pixel_variance128x128) OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64, aom_obmc_sub_pixel_variance128x64) OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128, aom_obmc_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64, aom_obmc_sub_pixel_variance64x64) OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32, aom_obmc_sub_pixel_variance64x32) OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64, aom_obmc_sub_pixel_variance32x64) OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32, aom_obmc_sub_pixel_variance32x32) OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16, aom_obmc_sub_pixel_variance32x16) OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32, aom_obmc_sub_pixel_variance16x32) OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16, aom_obmc_sub_pixel_variance16x16) OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8, aom_obmc_sub_pixel_variance16x8) OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16, aom_obmc_sub_pixel_variance8x16) OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8, aom_obmc_sub_pixel_variance8x8) OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8, aom_obmc_sub_pixel_variance4x8) OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4, aom_obmc_sub_pixel_variance8x4) OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4, aom_obmc_sub_pixel_variance4x4) #endif // CONFIG_MOTION_VAR #if CONFIG_EXT_INTER #define MBFP(BT, MSDF, MVF, MSVF) \ cpi->fn_ptr[BT].msdf = MSDF; \ cpi->fn_ptr[BT].mvf = MVF; \ cpi->fn_ptr[BT].msvf = MSVF; #if CONFIG_EXT_PARTITION MBFP(BLOCK_128X128, aom_masked_sad128x128, aom_masked_variance128x128, aom_masked_sub_pixel_variance128x128) MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_variance128x64, aom_masked_sub_pixel_variance128x64) MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_variance64x128, aom_masked_sub_pixel_variance64x128) #endif // CONFIG_EXT_PARTITION MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_variance64x64, aom_masked_sub_pixel_variance64x64) MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_variance64x32, aom_masked_sub_pixel_variance64x32) MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_variance32x64, aom_masked_sub_pixel_variance32x64) MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_variance32x32, aom_masked_sub_pixel_variance32x32) MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_variance32x16, aom_masked_sub_pixel_variance32x16) MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_variance16x32, aom_masked_sub_pixel_variance16x32) MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_variance16x16, aom_masked_sub_pixel_variance16x16) MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_variance16x8, aom_masked_sub_pixel_variance16x8) MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_variance8x16, aom_masked_sub_pixel_variance8x16) MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_variance8x8, aom_masked_sub_pixel_variance8x8) MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_variance4x8, aom_masked_sub_pixel_variance4x8) MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_variance8x4, aom_masked_sub_pixel_variance8x4) MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_variance4x4, aom_masked_sub_pixel_variance4x4) #endif // CONFIG_EXT_INTER #if CONFIG_HIGHBITDEPTH highbd_set_var_fns(cpi); #endif /* av1_init_quantizer() is first called here. Add check in * av1_frame_init_quantizer() so that av1_init_quantizer is only * called later when needed. This will avoid unnecessary calls of * av1_init_quantizer() for every frame. */ av1_init_quantizer(cpi); #if CONFIG_AOM_QM aom_qm_init(cm); #endif av1_loop_filter_init(cm); #if CONFIG_LOOP_RESTORATION av1_loop_restoration_precal(); #endif // CONFIG_LOOP_RESTORATION cm->error.setjmp = 0; return cpi; } #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) #define SNPRINT2(H, T, V) \ snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) void av1_remove_compressor(AV1_COMP *cpi) { AV1_COMMON *cm; unsigned int i; int t; if (!cpi) return; cm = &cpi->common; if (cm->current_video_frame > 0) { #if CONFIG_ENTROPY_STATS if (cpi->oxcf.pass != 1) { fprintf(stderr, "Writing counts.stt\n"); FILE *f = fopen("counts.stt", "wb"); fwrite(&aggregate_fc, sizeof(aggregate_fc), 1, f); fclose(f); } #endif // CONFIG_ENTROPY_STATS #if CONFIG_INTERNAL_STATS aom_clear_system_state(); if (cpi->oxcf.pass != 1) { char headings[512] = { 0 }; char results[512] = { 0 }; FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; const double dr = (double)cpi->bytes * (double)8 / (double)1000 / time_encoded; const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000; const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); if (cpi->b_calculate_psnr) { const double total_psnr = aom_sse_to_psnr( (double)cpi->total_samples, peak, (double)cpi->total_sq_error); const double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); snprintf(headings, sizeof(headings), "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" "WstPsnr\tWstSsim\tWstFast\tWstHVS"); snprintf(results, sizeof(results), "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\t%7.3f\t%7.3f", dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr, cpi->psnr.stat[ALL] / cpi->count, total_psnr, total_ssim, total_ssim, cpi->fastssim.stat[ALL] / cpi->count, cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst, cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst); if (cpi->b_calculate_blockiness) { SNPRINT(headings, "\t Block\tWstBlck"); SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count); SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness); } if (cpi->b_calculate_consistency) { double consistency = aom_sse_to_psnr((double)cpi->total_samples, peak, (double)cpi->total_inconsistency); SNPRINT(headings, "\tConsist\tWstCons"); SNPRINT2(results, "\t%7.3f", consistency); SNPRINT2(results, "\t%7.3f", cpi->worst_consistency); } fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings); fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time, rate_err, fabs(rate_err)); } fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } for (t = 0; t < cpi->num_workers; ++t) { AVxWorker *const worker = &cpi->workers[t]; EncWorkerData *const thread_data = &cpi->tile_thr_data[t]; // Deallocate allocated threads. aom_get_worker_interface()->end(worker); // Deallocate allocated thread data. if (t < cpi->num_workers - 1) { #if CONFIG_PALETTE if (cpi->common.allow_screen_content_tools) aom_free(thread_data->td->mb.palette_buffer); #endif // CONFIG_PALETTE aom_free(thread_data->td->counts); av1_free_pc_tree(thread_data->td); av1_free_var_tree(thread_data->td); aom_free(thread_data->td); } } aom_free(cpi->tile_thr_data); aom_free(cpi->workers); if (cpi->num_workers > 1) av1_loop_filter_dealloc(&cpi->lf_row_sync); dealloc_compressor_data(cpi); for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); ++i) { aom_free(cpi->mbgraph_stats[i].mb_stats); } #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { aom_free(cpi->twopass.frame_mb_stats_buf); cpi->twopass.frame_mb_stats_buf = NULL; } #endif #if CONFIG_INTERNAL_STATS aom_free(cpi->ssim_vars); cpi->ssim_vars = NULL; #endif // CONFIG_INTERNAL_STATS av1_remove_common(cm); av1_free_ref_frame_buffers(cm->buffer_pool); aom_free(cpi); #ifdef OUTPUT_YUV_SKINMAP fclose(yuv_skinmap_file); #endif #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static void generate_psnr_packet(AV1_COMP *cpi) { struct aom_codec_cx_pkt pkt; int i; PSNR_STATS psnr; #if CONFIG_HIGHBITDEPTH aom_calc_highbd_psnr(cpi->source, cpi->common.frame_to_show, &psnr, cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth); #else aom_calc_psnr(cpi->source, cpi->common.frame_to_show, &psnr); #endif for (i = 0; i < 4; ++i) { pkt.data.psnr.samples[i] = psnr.samples[i]; pkt.data.psnr.sse[i] = psnr.sse[i]; pkt.data.psnr.psnr[i] = psnr.psnr[i]; } pkt.kind = AOM_CODEC_PSNR_PKT; aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) { if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0; } void av1_update_reference(AV1_COMP *cpi, int ref_frame_flags) { cpi->ext_refresh_golden_frame = (ref_frame_flags & AOM_GOLD_FLAG) != 0; cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & AOM_ALT_FLAG) != 0; cpi->ext_refresh_last_frame = (ref_frame_flags & AOM_LAST_FLAG) != 0; cpi->ext_refresh_frame_flags_pending = 1; } static YV12_BUFFER_CONFIG *get_av1_ref_frame_buffer( AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag) { MV_REFERENCE_FRAME ref_frame = NONE_FRAME; if (ref_frame_flag == AOM_LAST_FLAG) ref_frame = LAST_FRAME; #if CONFIG_EXT_REFS else if (ref_frame_flag == AOM_LAST2_FLAG) ref_frame = LAST2_FRAME; else if (ref_frame_flag == AOM_LAST3_FLAG) ref_frame = LAST3_FRAME; #endif // CONFIG_EXT_REFS else if (ref_frame_flag == AOM_GOLD_FLAG) ref_frame = GOLDEN_FRAME; #if CONFIG_EXT_REFS else if (ref_frame_flag == AOM_BWD_FLAG) ref_frame = BWDREF_FRAME; #endif // CONFIG_EXT_REFS else if (ref_frame_flag == AOM_ALT_FLAG) ref_frame = ALTREF_FRAME; return ref_frame == NONE_FRAME ? NULL : get_ref_frame_buffer(cpi, ref_frame); } int av1_copy_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { aom_yv12_copy_frame(cfg, sd); return 0; } else { return -1; } } int av1_set_reference_enc(AV1_COMP *cpi, AOM_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { YV12_BUFFER_CONFIG *cfg = get_av1_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { aom_yv12_copy_frame(sd, cfg); return 0; } else { return -1; } } int av1_update_entropy(AV1_COMP *cpi, int update) { cpi->ext_refresh_frame_context = update; cpi->ext_refresh_frame_context_pending = 1; return 0; } #if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP) // The denoiser buffer is allocated as a YUV 440 buffer. This function writes it // as YUV 420. We simply use the top-left pixels of the UV buffers, since we do // not denoise the UV channels at this time. If ever we implement UV channel // denoising we will have to modify this. void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) { uint8_t *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, f); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, f); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, f); src += s->uv_stride; } while (--h); } #endif #if CONFIG_EXT_REFS && !CONFIG_XIPHRC static void check_show_existing_frame(AV1_COMP *cpi) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; AV1_COMMON *const cm = &cpi->common; const FRAME_UPDATE_TYPE next_frame_update_type = gf_group->update_type[gf_group->index]; const int which_arf = gf_group->arf_update_idx[gf_group->index]; if (cm->show_existing_frame == 1) { cm->show_existing_frame = 0; } else if (cpi->rc.is_last_bipred_frame) { // NOTE(zoeliu): If the current frame is a last bi-predictive frame, it is // needed next to show the BWDREF_FRAME, which is pointed by // the last_fb_idxes[0] after reference frame buffer update cpi->rc.is_last_bipred_frame = 0; cm->show_existing_frame = 1; cpi->existing_fb_idx_to_show = cpi->lst_fb_idxes[0]; } else if (cpi->is_arf_filter_off[which_arf] && (next_frame_update_type == OVERLAY_UPDATE || next_frame_update_type == INTNL_OVERLAY_UPDATE)) { // Other parameters related to OVERLAY_UPDATE will be taken care of // in av1_rc_get_second_pass_params(cpi) cm->show_existing_frame = 1; cpi->rc.is_src_frame_alt_ref = 1; cpi->existing_fb_idx_to_show = cpi->alt_fb_idx; cpi->is_arf_filter_off[which_arf] = 0; } cpi->rc.is_src_frame_ext_arf = 0; } #endif // CONFIG_EXT_REFS && !CONFIG_XIPHRC #ifdef OUTPUT_YUV_REC void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) { uint8_t *src = s->y_buffer; int h = cm->height; #if CONFIG_HIGHBITDEPTH if (s->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); do { fwrite(src16, s->y_width, 2, yuv_rec_file); src16 += s->y_stride; } while (--h); src16 = CONVERT_TO_SHORTPTR(s->u_buffer); h = s->uv_height; do { fwrite(src16, s->uv_width, 2, yuv_rec_file); src16 += s->uv_stride; } while (--h); src16 = CONVERT_TO_SHORTPTR(s->v_buffer); h = s->uv_height; do { fwrite(src16, s->uv_width, 2, yuv_rec_file); src16 += s->uv_stride; } while (--h); fflush(yuv_rec_file); return; } #endif // CONFIG_HIGHBITDEPTH do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); fflush(yuv_rec_file); } #endif // OUTPUT_YUV_REC #if CONFIG_HIGHBITDEPTH static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int bd) { #else static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst) { #endif // CONFIG_HIGHBITDEPTH // TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t int i; const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; const int src_widths[3] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int src_heights[3] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width, dst->uv_crop_width }; const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height, dst->uv_crop_height }; for (i = 0; i < MAX_MB_PLANE; ++i) { #if CONFIG_HIGHBITDEPTH if (src->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], dsts[i], dst_heights[i], dst_widths[i], dst_strides[i], bd); } else { av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); } #else av1_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); #endif // CONFIG_HIGHBITDEPTH } aom_extend_frame_borders(dst); } #if CONFIG_HIGHBITDEPTH static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int planes, int bd) { #else static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int planes) { #endif // CONFIG_HIGHBITDEPTH const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; const InterpFilterParams interp_filter_params = av1_get_interp_filter_params(EIGHTTAP_REGULAR); const int16_t *kernel = interp_filter_params.filter_ptr; const int taps = interp_filter_params.taps; int x, y, i; assert(planes <= 3); for (y = 0; y < dst_h; y += 16) { for (x = 0; x < dst_w; x += 16) { for (i = 0; i < planes; ++i) { const int factor = (i == 0 || i == 3 ? 1 : 2); const int x_q4 = x * (16 / factor) * src_w / dst_w; const int y_q4 = y * (16 / factor) * src_h / dst_h; const int src_stride = src_strides[i]; const int dst_stride = dst_strides[i]; const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h * src_stride + (x / factor) * src_w / dst_w; uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); #if CONFIG_HIGHBITDEPTH if (src->flags & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride, &kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w, &kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h, 16 / factor, 16 / factor, bd); } else { aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, &kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w, &kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h, 16 / factor, 16 / factor); } #else aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, &kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w, &kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h, 16 / factor, 16 / factor); #endif // CONFIG_HIGHBITDEPTH } } } if (planes == 1) aom_extend_frame_borders_y(dst); else aom_extend_frame_borders(dst); } static int scale_down(AV1_COMP *cpi, int q) { RATE_CONTROL *const rc = &cpi->rc; GF_GROUP *const gf_group = &cpi->twopass.gf_group; int scale = 0; assert(frame_is_kf_gf_arf(cpi)); if (rc->frame_size_selector == UNSCALED && q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) { const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1] * AOMMAX(rc->this_frame_target, rc->avg_frame_bandwidth)); scale = rc->projected_frame_size > max_size_thresh ? 1 : 0; } return scale; } #if CONFIG_GLOBAL_MOTION #define GM_RECODE_LOOP_NUM4X4_FACTOR 192 static int recode_loop_test_global_motion(AV1_COMP *cpi) { int i; int recode = 0; RD_COUNTS *const rdc = &cpi->td.rd_counts; AV1_COMMON *const cm = &cpi->common; for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { if (cm->global_motion[i].wmtype != IDENTITY && rdc->global_motion_used[i] * GM_RECODE_LOOP_NUM4X4_FACTOR < cpi->gmparams_cost[i]) { set_default_warp_params(&cm->global_motion[i]); cpi->gmparams_cost[i] = 0; #if CONFIG_REF_MV recode = 1; #else recode |= (rdc->global_motion_used[i] > 0); #endif } } return recode; } #endif // CONFIG_GLOBAL_MOTION // Function to test for conditions that indicate we should loop // back and recode a frame. static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { const RATE_CONTROL *const rc = &cpi->rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); int force_recode = 0; if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || (cpi->sf.recode_loop == ALLOW_RECODE) || (frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) { if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) && scale_down(cpi, q)) { // Code this group at a lower resolution. cpi->resize_pending = 1; return 1; } // TODO(agrange) high_limit could be greater than the scale-down threshold. if ((rc->projected_frame_size > high_limit && q < maxq) || (rc->projected_frame_size < low_limit && q > minq)) { force_recode = 1; } else if (cpi->oxcf.rc_mode == AOM_CQ) { // Deal with frame undershoot and whether or not we are // below the automatically set cq level. if (q > oxcf->cq_level && rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { force_recode = 1; } } } return force_recode; } static INLINE int get_free_upsampled_ref_buf(EncRefCntBuffer *ubufs) { int i; for (i = 0; i < (REF_FRAMES + 1); i++) { if (!ubufs[i].ref_count) { return i; } } return INVALID_IDX; } // Up-sample 1 reference frame. static INLINE int upsample_ref_frame(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *const ref) { AV1_COMMON *const cm = &cpi->common; EncRefCntBuffer *ubufs = cpi->upsampled_ref_bufs; int new_uidx = get_free_upsampled_ref_buf(ubufs); if (new_uidx == INVALID_IDX) { return INVALID_IDX; } else { YV12_BUFFER_CONFIG *upsampled_ref = &ubufs[new_uidx].buf; // Can allocate buffer for Y plane only. if (upsampled_ref->buffer_alloc_sz < (ref->buffer_alloc_sz << 6)) if (aom_realloc_frame_buffer(upsampled_ref, (cm->width << 3), (cm->height << 3), cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif (AOM_BORDER_IN_PIXELS << 3), cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate up-sampled frame buffer"); // Currently, only Y plane is up-sampled, U, V are not used. #if CONFIG_HIGHBITDEPTH scale_and_extend_frame(ref, upsampled_ref, 1, (int)cm->bit_depth); #else scale_and_extend_frame(ref, upsampled_ref, 1); #endif return new_uidx; } } #define DUMP_REF_FRAME_IMAGES 0 #if DUMP_REF_FRAME_IMAGES == 1 static int dump_one_image(AV1_COMMON *cm, const YV12_BUFFER_CONFIG *const ref_buf, char *file_name) { int h; FILE *f_ref = NULL; if (ref_buf == NULL) { printf("Frame data buffer is NULL.\n"); return AOM_CODEC_MEM_ERROR; } if ((f_ref = fopen(file_name, "wb")) == NULL) { printf("Unable to open file %s to write.\n", file_name); return AOM_CODEC_MEM_ERROR; } // --- Y --- for (h = 0; h < cm->height; ++h) { fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref); } // --- U --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), f_ref); } // --- V --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), f_ref); } fclose(f_ref); return AOM_CODEC_OK; } static void dump_ref_frame_images(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { char file_name[256] = ""; snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv", cm->current_video_frame, ref_frame); dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name); } } #endif // DUMP_REF_FRAME_IMAGES == 1 #if CONFIG_EXT_REFS // This function is used to shift the virtual indices of last reference frames // as follows: // LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME // when the LAST_FRAME is updated. static INLINE void shift_last_ref_frames(AV1_COMP *cpi) { int ref_frame; for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) { cpi->lst_fb_idxes[ref_frame] = cpi->lst_fb_idxes[ref_frame - 1]; // [0] is allocated to the current coded frame. The statistics for the // reference frames start at [LAST_FRAME], i.e. [1]. if (!cpi->rc.is_src_frame_alt_ref) { memcpy(cpi->interp_filter_selected[ref_frame + LAST_FRAME], cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME], sizeof(cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME])); } } } #endif // CONFIG_EXT_REFS void av1_update_reference_frames(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; BufferPool *const pool = cm->buffer_pool; const int use_upsampled_ref = cpi->sf.use_upsampled_references; int new_uidx = 0; // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., // for the purpose to verify no mismatch between encoder and decoder. if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx; if (use_upsampled_ref) { #if CONFIG_EXT_REFS if (cm->show_existing_frame) { new_uidx = cpi->upsampled_ref_idx[cpi->existing_fb_idx_to_show]; // TODO(zoeliu): Once following is confirmed, remove it. assert(cpi->upsampled_ref_bufs[new_uidx].ref_count > 0); } else { #endif // CONFIG_EXT_REFS // Up-sample the current encoded frame. RefCntBuffer *bufs = pool->frame_bufs; const YV12_BUFFER_CONFIG *const ref = &bufs[cm->new_fb_idx].buf; new_uidx = upsample_ref_frame(cpi, ref); #if CONFIG_EXT_REFS assert(new_uidx != INVALID_IDX); } #endif // CONFIG_EXT_REFS } // At this point the new frame has been encoded. // If any buffer copy / swapping is signaled it should be done here. if (cm->frame_type == KEY_FRAME) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); #if CONFIG_EXT_REFS ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx], cm->new_fb_idx); #endif // CONFIG_EXT_REFS ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); if (use_upsampled_ref) { uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx); #if CONFIG_EXT_REFS uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx); #endif // CONFIG_EXT_REFS uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx); } } else if (av1_preserve_existing_gf(cpi)) { // We have decided to preserve the previously existing golden frame as our // new ARF frame. However, in the short term in function // av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if // we're updating the GF with the current decoded frame, we save it to the // ARF slot instead. // We now have to update the ARF with the current frame and swap gld_fb_idx // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF // slot and, if we're updating the GF, the current frame becomes the new GF. int tmp; ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx); tmp = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->gld_fb_idx; cpi->gld_fb_idx = tmp; #if CONFIG_EXT_REFS // We need to modify the mapping accordingly cpi->arf_map[0] = cpi->alt_fb_idx; #endif // TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to // cpi->interp_filter_selected[GOLDEN_FRAME]? #if CONFIG_EXT_REFS } else if (cpi->rc.is_last_bipred_frame) { // Refresh the LAST_FRAME with the BWDREF_FRAME and retire the LAST3_FRAME // by updating the virtual indices. Note that the frame BWDREF_FRAME points // to now should be retired, and it should not be used before refreshed. int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]; shift_last_ref_frames(cpi); cpi->lst_fb_idxes[0] = cpi->bwd_fb_idx; cpi->bwd_fb_idx = tmp; memcpy(cpi->interp_filter_selected[LAST_FRAME], cpi->interp_filter_selected[BWDREF_FRAME], sizeof(cpi->interp_filter_selected[BWDREF_FRAME])); } else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) { // Deal with the special case for showing existing internal ALTREF_FRAME // Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME // by updating the virtual indices. const GF_GROUP *const gf_group = &cpi->twopass.gf_group; int which_arf = gf_group->arf_ref_idx[gf_group->index]; int tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]; shift_last_ref_frames(cpi); cpi->lst_fb_idxes[0] = cpi->alt_fb_idx; cpi->alt_fb_idx = tmp; // We need to modify the mapping accordingly cpi->arf_map[which_arf] = cpi->alt_fb_idx; memcpy(cpi->interp_filter_selected[LAST_FRAME], cpi->interp_filter_selected[ALTREF_FRAME + which_arf], sizeof(cpi->interp_filter_selected[ALTREF_FRAME + which_arf])); #endif // CONFIG_EXT_REFS } else { /* For non key/golden frames */ if (cpi->refresh_alt_ref_frame) { int arf_idx = cpi->alt_fb_idx; int which_arf = 0; #if CONFIG_EXT_REFS if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; which_arf = gf_group->arf_update_idx[gf_group->index]; arf_idx = cpi->arf_map[which_arf]; } #else if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_idx = gf_group->arf_update_idx[gf_group->index]; } #endif // CONFIG_EXT_REFS ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[arf_idx], new_uidx); memcpy(cpi->interp_filter_selected[ALTREF_FRAME + which_arf], cpi->interp_filter_selected[0], sizeof(cpi->interp_filter_selected[0])); } if (cpi->refresh_golden_frame) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx); #if !CONFIG_EXT_REFS if (!cpi->rc.is_src_frame_alt_ref) #endif // !CONFIG_EXT_REFS memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], cpi->interp_filter_selected[0], sizeof(cpi->interp_filter_selected[0])); } #if CONFIG_EXT_REFS if (cpi->refresh_bwd_ref_frame) { if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) { // We have swapped the virtual indices to allow bwd_ref_frame to use // ALT0 as reference frame. We need to swap them back. // NOTE: The ALT_REFs' are indexed reversely, and ALT0 refers to the // farthest ALT_REF from the first frame in the gf group. int tmp = cpi->arf_map[0]; cpi->arf_map[0] = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->bwd_fb_idx; cpi->bwd_fb_idx = tmp; } ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->bwd_fb_idx], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx); memcpy(cpi->interp_filter_selected[BWDREF_FRAME], cpi->interp_filter_selected[0], sizeof(cpi->interp_filter_selected[0])); } #endif // CONFIG_EXT_REFS } if (cpi->refresh_last_frame) { #if CONFIG_EXT_REFS // NOTE(zoeliu): We have two layers of mapping (1) from the per-frame // reference to the reference frame buffer virtual index; and then (2) from // the virtual index to the reference frame buffer physical index: // // LAST_FRAME, ..., LAST3_FRAME, ..., ALTREF_FRAME // | | | // v v v // lst_fb_idxes[0], ..., lst_fb_idxes[2], ..., alt_fb_idx // | | | // v v v // ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[] // // When refresh_last_frame is set, it is intended to retire LAST3_FRAME, // have the other 2 LAST reference frames shifted as follows: // LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME // , and then have LAST_FRAME refreshed by the newly coded frame. // // To fulfill it, the decoder will be notified to execute following 2 steps: // // (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME // to point to the newly coded frame, i.e. // ref_frame_map[lst_fb_idexes[2]] => new_fb_idx; // // (b) To change the 1st layer mapping to have LAST_FRAME mapped to the // original virtual index of LAST3_FRAME and have the other mappings // shifted as follows: // LAST_FRAME, LAST2_FRAME, LAST3_FRAME // | | | // v v v // lst_fb_idxes[2], lst_fb_idxes[0], lst_fb_idxes[1] int ref_frame; if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) { // We have swapped the virtual indices to use ALT0 as BWD_REF // and we need to swap them back. int tmp = cpi->arf_map[0]; cpi->arf_map[0] = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->bwd_fb_idx; cpi->bwd_fb_idx = tmp; } if (cm->frame_type == KEY_FRAME) { for (ref_frame = 0; ref_frame < LAST_REF_FRAMES; ++ref_frame) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idxes[ref_frame]], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->lst_fb_idxes[ref_frame]], new_uidx); } } else { int tmp; ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb( cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]], new_uidx); tmp = cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]; shift_last_ref_frames(cpi); cpi->lst_fb_idxes[0] = tmp; assert(cm->show_existing_frame == 0); // NOTE: Currently only LF_UPDATE and INTNL_OVERLAY_UPDATE frames are to // refresh the LAST_FRAME. memcpy(cpi->interp_filter_selected[LAST_FRAME], cpi->interp_filter_selected[0], sizeof(cpi->interp_filter_selected[0])); } #else ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); if (use_upsampled_ref) uref_cnt_fb(cpi->upsampled_ref_bufs, &cpi->upsampled_ref_idx[cpi->lst_fb_idx], new_uidx); if (!cpi->rc.is_src_frame_alt_ref) { memcpy(cpi->interp_filter_selected[LAST_FRAME], cpi->interp_filter_selected[0], sizeof(cpi->interp_filter_selected[0])); } #endif // CONFIG_EXT_REFS } #if DUMP_REF_FRAME_IMAGES == 1 // Dump out all reference frame images. dump_ref_frame_images(cpi); #endif // DUMP_REF_FRAME_IMAGES } static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) { MACROBLOCKD *xd = &cpi->td.mb.e_mbd; struct loopfilter *lf = &cm->lf; if (is_lossless_requested(&cpi->oxcf)) { lf->filter_level = 0; } else { struct aom_usec_timer timer; aom_clear_system_state(); aom_usec_timer_start(&timer); av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_pick); aom_usec_timer_mark(&timer); cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer); } if (lf->filter_level > 0) { #if CONFIG_VAR_TX || CONFIG_EXT_PARTITION || CONFIG_CB4X4 av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0); #else if (cpi->num_workers > 1) av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane, lf->filter_level, 0, 0, cpi->workers, cpi->num_workers, &cpi->lf_row_sync); else av1_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0); #endif } #if CONFIG_CDEF if (is_lossless_requested(&cpi->oxcf)) { cm->cdef_bits = 0; cm->cdef_strengths[0] = 0; cm->nb_cdef_strengths = 1; } else { // Find cm->dering_level, cm->clpf_strength_u and cm->clpf_strength_v av1_cdef_search(cm->frame_to_show, cpi->source, cm, xd); // Apply the filter av1_cdef_frame(cm->frame_to_show, cm, xd); } #endif #if CONFIG_LOOP_RESTORATION av1_pick_filter_restoration(cpi->source, cpi, cpi->sf.lpf_pick); if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || cm->rst_info[1].frame_restoration_type != RESTORE_NONE || cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { av1_loop_restoration_frame(cm->frame_to_show, cm, cm->rst_info, 7, 0, NULL); } #endif // CONFIG_LOOP_RESTORATION aom_extend_frame_inner_borders(cm->frame_to_show); } static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) { RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx]; if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows || new_fb_ptr->mi_cols < cm->mi_cols) { aom_free(new_fb_ptr->mvs); CHECK_MEM_ERROR(cm, new_fb_ptr->mvs, (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*new_fb_ptr->mvs))); new_fb_ptr->mi_rows = cm->mi_rows; new_fb_ptr->mi_cols = cm->mi_cols; } } void av1_scale_references(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = { AOM_LAST_FLAG, #if CONFIG_EXT_REFS AOM_LAST2_FLAG, AOM_LAST3_FLAG, #endif // CONFIG_EXT_REFS AOM_GOLD_FLAG, #if CONFIG_EXT_REFS AOM_BWD_FLAG, #endif // CONFIG_EXT_REFS AOM_ALT_FLAG }; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1). if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) { BufferPool *const pool = cm->buffer_pool; const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, ref_frame); if (ref == NULL) { cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; continue; } #if CONFIG_HIGHBITDEPTH if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { RefCntBuffer *new_fb_ptr = NULL; int force_scaling = 0; int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; if (new_fb == INVALID_IDX) { new_fb = get_free_fb(cm); force_scaling = 1; } if (new_fb == INVALID_IDX) return; new_fb_ptr = &pool->frame_bufs[new_fb]; if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || new_fb_ptr->buf.y_crop_height != cm->height) { if (aom_realloc_frame_buffer( &new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE, (int)cm->bit_depth); cpi->scaled_ref_idx[ref_frame - 1] = new_fb; alloc_frame_mvs(cm, new_fb); } #else if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { RefCntBuffer *new_fb_ptr = NULL; int force_scaling = 0; int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; if (new_fb == INVALID_IDX) { new_fb = get_free_fb(cm); force_scaling = 1; } if (new_fb == INVALID_IDX) return; new_fb_ptr = &pool->frame_bufs[new_fb]; if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || new_fb_ptr->buf.y_crop_height != cm->height) { if (aom_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE); cpi->scaled_ref_idx[ref_frame - 1] = new_fb; alloc_frame_mvs(cm, new_fb); } #endif // CONFIG_HIGHBITDEPTH if (cpi->sf.use_upsampled_references && (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || new_fb_ptr->buf.y_crop_height != cm->height)) { const int map_idx = get_ref_frame_map_idx(cpi, ref_frame); EncRefCntBuffer *ubuf = &cpi->upsampled_ref_bufs[cpi->upsampled_ref_idx[map_idx]]; if (aom_realloc_frame_buffer(&ubuf->buf, (cm->width << 3), (cm->height << 3), cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif (AOM_BORDER_IN_PIXELS << 3), cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate up-sampled frame buffer"); #if CONFIG_HIGHBITDEPTH scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1, (int)cm->bit_depth); #else scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1); #endif } } else { const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); RefCntBuffer *const buf = &pool->frame_bufs[buf_idx]; buf->buf.y_crop_width = ref->y_crop_width; buf->buf.y_crop_height = ref->y_crop_height; cpi->scaled_ref_idx[ref_frame - 1] = buf_idx; ++buf->ref_count; } } else { if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; } } } static void release_scaled_references(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; int i; if (cpi->oxcf.pass == 0) { // Only release scaled references under certain conditions: // if reference will be updated, or if scaled reference has same resolution. int refresh[INTER_REFS_PER_FRAME]; refresh[0] = (cpi->refresh_last_frame) ? 1 : 0; #if CONFIG_EXT_REFS refresh[1] = refresh[2] = 0; refresh[3] = (cpi->refresh_golden_frame) ? 1 : 0; refresh[4] = (cpi->refresh_bwd_ref_frame) ? 1 : 0; refresh[5] = (cpi->refresh_alt_ref_frame) ? 1 : 0; #else refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0; refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0; #endif // CONFIG_EXT_REFS for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { const int idx = cpi->scaled_ref_idx[i - 1]; RefCntBuffer *const buf = idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL; const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i); if (buf != NULL && (refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width && buf->buf.y_crop_height == ref->y_crop_height))) { --buf->ref_count; cpi->scaled_ref_idx[i - 1] = INVALID_IDX; } } } else { for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) { const int idx = cpi->scaled_ref_idx[i]; RefCntBuffer *const buf = idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL; if (buf != NULL) { --buf->ref_count; cpi->scaled_ref_idx[i] = INVALID_IDX; } } } } static void full_to_model_count(unsigned int *model_count, unsigned int *full_count) { int n; model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN]; model_count[ONE_TOKEN] = full_count[ONE_TOKEN]; model_count[TWO_TOKEN] = full_count[TWO_TOKEN]; for (n = THREE_TOKEN; n < EOB_TOKEN; ++n) model_count[TWO_TOKEN] += full_count[n]; model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN]; } void av1_full_to_model_counts(av1_coeff_count_model *model_count, av1_coeff_count *full_count) { int i, j, k, l; for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]); } #if 0 && CONFIG_INTERNAL_STATS static void output_frame_level_debug_stats(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w"); int64_t recon_err; aom_clear_system_state(); recon_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); if (cpi->twopass.total_left_stats.coded_error != 0.0) fprintf(f, "%10u %dx%d %d %d %10d %10d %10d %10d" "%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" " "%10"PRId64" %10"PRId64" %10d " "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf" "%6d %6d %5d %5d %5d " "%10"PRId64" %10.3lf" "%10lf %8u %10"PRId64" %10d %10d %10d\n", cpi->common.current_video_frame, cm->width, cm->height, cpi->rc.source_alt_ref_pending, cpi->rc.source_alt_ref_active, cpi->rc.this_frame_target, cpi->rc.projected_frame_size, cpi->rc.projected_frame_size / cpi->common.MBs, (cpi->rc.projected_frame_size - cpi->rc.this_frame_target), cpi->rc.vbr_bits_off_target, cpi->rc.vbr_bits_off_target_fast, cpi->twopass.extend_minq, cpi->twopass.extend_minq_fast, cpi->rc.total_target_vs_actual, (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target), cpi->rc.total_actual_bits, cm->base_qindex, av1_convert_qindex_to_q(cm->base_qindex, cm->bit_depth), (double)av1_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0, av1_convert_qindex_to_q(cpi->twopass.active_worst_quality, cm->bit_depth), cpi->rc.avg_q, av1_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth), cpi->refresh_last_frame, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost, cpi->twopass.bits_left, cpi->twopass.total_left_stats.coded_error, cpi->twopass.bits_left / (1 + cpi->twopass.total_left_stats.coded_error), cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost, cpi->twopass.kf_zeromotion_pct, cpi->twopass.fr_content_type); fclose(f); if (0) { FILE *const fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame); for (i = 0; i < MAX_MODES; ++i) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif static void set_mv_search_params(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; const unsigned int max_mv_def = AOMMIN(cm->width, cm->height); // Default based on max resolution. cpi->mv_step_param = av1_init_search_range(max_mv_def); if (cpi->sf.mv.auto_mv_step_size) { if (frame_is_intra_only(cm)) { // Initialize max_mv_magnitude for use in the first INTER frame // after a key/intra-only frame. cpi->max_mv_magnitude = max_mv_def; } else { if (cm->show_frame) { // Allow mv_steps to correspond to twice the max mv magnitude found // in the previous frame, capped by the default max_mv_magnitude based // on resolution. cpi->mv_step_param = av1_init_search_range( AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude)); } cpi->max_mv_magnitude = 0; } } } static void set_size_independent_vars(AV1_COMP *cpi) { #if CONFIG_GLOBAL_MOTION int i; for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { set_default_warp_params(&cpi->common.global_motion[i]); } cpi->global_motion_search_done = 0; #endif // CONFIG_GLOBAL_MOTION av1_set_speed_features_framesize_independent(cpi); av1_set_rd_speed_thresholds(cpi); av1_set_rd_speed_thresholds_sub8x8(cpi); cpi->common.interp_filter = cpi->sf.default_interp_filter; } static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index, int *top_index) { AV1_COMMON *const cm = &cpi->common; const AV1EncoderConfig *const oxcf = &cpi->oxcf; // Setup variables that depend on the dimensions of the frame. av1_set_speed_features_framesize_dependent(cpi); // Decide q and q bounds. #if CONFIG_XIPHRC int frame_type = cm->frame_type == KEY_FRAME ? OD_I_FRAME : OD_P_FRAME; *q = od_enc_rc_select_quantizers_and_lambdas( &cpi->od_rc, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, frame_type, bottom_index, top_index); #else *q = av1_rc_pick_q_and_bounds(cpi, bottom_index, top_index); #endif if (!frame_is_intra_only(cm)) { av1_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH); } // Configure experimental use of segmentation for enhanced coding of // static regions if indicated. // Only allowed in the second pass of a two pass encode, as it requires // lagged coding, and if the relevant speed feature flag is set. if (oxcf->pass == 2 && cpi->sf.static_segmentation) configure_static_seg_features(cpi); } static void init_motion_estimation(AV1_COMP *cpi) { int y_stride = cpi->scaled_source.y_stride; if (cpi->sf.mv.search_method == NSTEP) { av1_init3smotion_compensation(&cpi->ss_cfg, y_stride); } else if (cpi->sf.mv.search_method == DIAMOND) { av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride); } } #if CONFIG_LOOP_RESTORATION static void set_restoration_tilesize(int width, int height, RestorationInfo *rst) { (void)width; (void)height; rst[0].restoration_tilesize = (RESTORATION_TILESIZE_MAX >> 1); rst[1].restoration_tilesize = rst[0].restoration_tilesize; rst[2].restoration_tilesize = rst[0].restoration_tilesize; } #endif // CONFIG_LOOP_RESTORATION static void set_frame_size(AV1_COMP *cpi) { int ref_frame; AV1_COMMON *const cm = &cpi->common; AV1EncoderConfig *const oxcf = &cpi->oxcf; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; if (oxcf->pass == 2 && oxcf->rc_mode == AOM_VBR && ((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) || (oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) { av1_calculate_coded_size(cpi, &oxcf->scaled_frame_width, &oxcf->scaled_frame_height); // There has been a change in frame size. av1_set_size_literal(cpi, oxcf->scaled_frame_width, oxcf->scaled_frame_height); } if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR && oxcf->resize_mode == RESIZE_DYNAMIC) { if (cpi->resize_pending == 1) { oxcf->scaled_frame_width = (cm->width * cpi->resize_scale_num) / cpi->resize_scale_den; oxcf->scaled_frame_height = (cm->height * cpi->resize_scale_num) / cpi->resize_scale_den; } else if (cpi->resize_pending == -1) { // Go back up to original size. oxcf->scaled_frame_width = oxcf->width; oxcf->scaled_frame_height = oxcf->height; } if (cpi->resize_pending != 0) { // There has been a change in frame size. av1_set_size_literal(cpi, oxcf->scaled_frame_width, oxcf->scaled_frame_height); // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. set_mv_search_params(cpi); } } #if !CONFIG_XIPHRC if (oxcf->pass == 2) { av1_set_target_rate(cpi); } #endif alloc_frame_mvs(cm, cm->new_fb_idx); // Reset the frame pointers to the current frame size. if (aom_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); #if CONFIG_LOOP_RESTORATION set_restoration_tilesize(cm->width, cm->height, cm->rst_info); for (int i = 0; i < MAX_MB_PLANE; ++i) cm->rst_info[i].frame_restoration_type = RESTORE_NONE; av1_alloc_restoration_buffers(cm); for (int i = 0; i < MAX_MB_PLANE; ++i) { cpi->rst_search[i].restoration_tilesize = cm->rst_info[i].restoration_tilesize; av1_alloc_restoration_struct(cm, &cpi->rst_search[i], cm->width, cm->height); } #endif // CONFIG_LOOP_RESTORATION alloc_util_frame_buffers(cpi); init_motion_estimation(cpi); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME]; const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); ref_buf->idx = buf_idx; if (buf_idx != INVALID_IDX) { YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf; ref_buf->buf = buf; #if CONFIG_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0); #else av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, cm->height); #endif // CONFIG_HIGHBITDEPTH if (av1_is_scaled(&ref_buf->sf)) aom_extend_frame_borders(buf); } else { ref_buf->buf = NULL; } } set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); } static void reset_use_upsampled_references(AV1_COMP *cpi) { MV_REFERENCE_FRAME ref_frame; // reset up-sampled reference buffer structure. init_upsampled_ref_frame_bufs(cpi); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, ref_frame); int new_uidx = upsample_ref_frame(cpi, ref); // Update the up-sampled reference index. cpi->upsampled_ref_idx[get_ref_frame_map_idx(cpi, ref_frame)] = new_uidx; cpi->upsampled_ref_bufs[new_uidx].ref_count++; } } static void encode_without_recode_loop(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int q = 0, bottom_index = 0, top_index = 0; // Dummy variables. const int use_upsampled_ref = cpi->sf.use_upsampled_references; aom_clear_system_state(); set_frame_size(cpi); // For 1 pass CBR under dynamic resize mode: use faster scaling for source. // Only for 2x2 scaling for now. if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR && cpi->oxcf.resize_mode == RESIZE_DYNAMIC && cpi->un_scaled_source->y_width == (cm->width << 1) && cpi->un_scaled_source->y_height == (cm->height << 1)) { cpi->source = av1_scale_if_required_fast(cm, cpi->un_scaled_source, &cpi->scaled_source); if (cpi->unscaled_last_source != NULL) cpi->last_source = av1_scale_if_required_fast( cm, cpi->unscaled_last_source, &cpi->scaled_last_source); } else { cpi->source = av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source); if (cpi->unscaled_last_source != NULL) cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source, &cpi->scaled_last_source); } if (frame_is_intra_only(cm) == 0) { av1_scale_references(cpi); } set_size_independent_vars(cpi); set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); // cpi->sf.use_upsampled_references can be different from frame to frame. // Every time when cpi->sf.use_upsampled_references is changed from 0 to 1. // The reference frames for this frame have to be up-sampled before encoding. if (!use_upsampled_ref && cpi->sf.use_upsampled_references && cm->frame_type != KEY_FRAME) reset_use_upsampled_references(cpi); av1_set_quantizer(cm, q); av1_set_variance_partition_thresholds(cpi, q); setup_frame(cpi); #if CONFIG_SUBFRAME_PROB_UPDATE cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1; av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs); cm->coef_probs_update_idx = 0; av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs); #endif // CONFIG_SUBFRAME_PROB_UPDATE suppress_active_map(cpi); // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { av1_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { av1_setup_in_frame_q_adj(cpi); } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { av1_cyclic_refresh_setup(cpi); } apply_active_map(cpi); // transform / motion compensation build reconstruction frame av1_encode_frame(cpi); // Update some stats from cyclic refresh, and check if we should not update // golden reference, for 1 pass CBR. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME && (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR)) av1_cyclic_refresh_check_golden_update(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); aom_clear_system_state(); } static void encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int bottom_index, top_index; int loop_count = 0; int loop_at_this_size = 0; int loop = 0; #if !CONFIG_XIPHRC int overshoot_seen = 0; int undershoot_seen = 0; #endif int frame_over_shoot_limit; int frame_under_shoot_limit; int q = 0, q_low = 0, q_high = 0; const int use_upsampled_ref = cpi->sf.use_upsampled_references; set_size_independent_vars(cpi); do { aom_clear_system_state(); set_frame_size(cpi); if (loop_count == 0 || cpi->resize_pending != 0) { set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); // cpi->sf.use_upsampled_references can be different from frame to frame. // Every time when cpi->sf.use_upsampled_references is changed from 0 to // 1. // The reference frames for this frame have to be up-sampled before // encoding. if (!use_upsampled_ref && cpi->sf.use_upsampled_references && cm->frame_type != KEY_FRAME) reset_use_upsampled_references(cpi); // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. set_mv_search_params(cpi); #if !CONFIG_XIPHRC // Reset the loop state for new frame size. overshoot_seen = 0; undershoot_seen = 0; #endif // Reconfiguration for change in frame size has concluded. cpi->resize_pending = 0; q_low = bottom_index; q_high = top_index; loop_at_this_size = 0; } // Decide frame size bounds first time through. if (loop_count == 0) { av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, &frame_under_shoot_limit, &frame_over_shoot_limit); } cpi->source = av1_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source); if (cpi->unscaled_last_source != NULL) cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source, &cpi->scaled_last_source); if (frame_is_intra_only(cm) == 0) { if (loop_count > 0) { release_scaled_references(cpi); } av1_scale_references(cpi); } av1_set_quantizer(cm, q); if (loop_count == 0) setup_frame(cpi); #if CONFIG_Q_ADAPT_PROBS // Base q-index may have changed, so we need to assign proper default coef // probs before every iteration. if (frame_is_intra_only(cm) || cm->error_resilient_mode) { int i; av1_default_coef_probs(cm); if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) { for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) { cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } } #endif // CONFIG_Q_ADAPT_PROBS #if CONFIG_SUBFRAME_PROB_UPDATE cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1; if (loop_count == 0 || frame_is_intra_only(cm) || cm->error_resilient_mode) { av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); av1_copy(cpi->subframe_stats.enc_starting_coef_probs, cm->fc->coef_probs); } else { if (cm->do_subframe_update) { av1_copy(cm->fc->coef_probs, cpi->subframe_stats.enc_starting_coef_probs); av1_copy(cm->starting_coef_probs, cpi->subframe_stats.enc_starting_coef_probs); av1_zero(cpi->subframe_stats.coef_counts_buf); av1_zero(cpi->subframe_stats.eob_counts_buf); } } cm->coef_probs_update_idx = 0; av1_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs); #endif // CONFIG_SUBFRAME_PROB_UPDATE // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { av1_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { av1_setup_in_frame_q_adj(cpi); } // transform / motion compensation build reconstruction frame av1_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); aom_clear_system_state(); // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { save_coding_context(cpi); av1_pack_bitstream(cpi, dest, size); rc->projected_frame_size = (int)(*size) << 3; restore_coding_context(cpi); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; } if (cpi->oxcf.rc_mode == AOM_Q) { loop = 0; } else { if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && (rc->projected_frame_size < rc->max_frame_bandwidth)) { int last_q = q; int64_t kf_err; int64_t high_err_target = cpi->ambient_err; int64_t low_err_target = cpi->ambient_err >> 1; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { kf_err = aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm)); } else { kf_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); } #else kf_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); #endif // CONFIG_HIGHBITDEPTH // Prevent possible divide by zero error below for perfect KF kf_err += !kf_err; // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if ((kf_err > high_err_target && rc->projected_frame_size <= frame_over_shoot_limit) || (kf_err > low_err_target && rc->projected_frame_size <= frame_under_shoot_limit)) { // Lower q_high q_high = q > q_low ? q - 1 : q_low; // Adjust Q q = (int)((q * high_err_target) / kf_err); q = AOMMIN(q, (q_high + q_low) >> 1); } else if (kf_err < low_err_target && rc->projected_frame_size >= frame_under_shoot_limit) { // The key frame is much better than the previous frame // Raise q_low q_low = q < q_high ? q + 1 : q_high; // Adjust Q q = (int)((q * low_err_target) / kf_err); q = AOMMIN(q, (q_high + q_low + 1) >> 1); } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, q, AOMMAX(q_high, top_index), bottom_index)) { // Is the projected frame size out of range and are we allowed // to attempt to recode. int last_q = q; #if !CONFIG_XIPHRC int retries = 0; #endif if (cpi->resize_pending == 1) { // Change in frame size so go back around the recode loop. cpi->rc.frame_size_selector = SCALE_STEP1 - cpi->rc.frame_size_selector; cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector; #if CONFIG_INTERNAL_STATS ++cpi->tot_recode_hits; #endif ++loop_count; loop = 1; continue; } #if !CONFIG_XIPHRC // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (rc->projected_frame_size > rc->this_frame_target) { // Special case if the projected size is > the max allowed. if (rc->projected_frame_size >= rc->max_frame_bandwidth) q_high = rc->worst_quality; // Raise Qlow as to at least the current value q_low = q < q_high ? q + 1 : q_high; if (undershoot_seen || loop_at_this_size > 1) { // Update rate_correction_factor unless av1_rc_update_rate_correction_factors(cpi); q = (q_high + q_low + 1) / 2; } else { // Update rate_correction_factor unless av1_rc_update_rate_correction_factors(cpi); q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, AOMMAX(q_high, top_index)); while (q < q_low && retries < 10) { av1_rc_update_rate_correction_factors(cpi); q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, AOMMAX(q_high, top_index)); retries++; } } overshoot_seen = 1; } else { // Frame is too small q_high = q > q_low ? q - 1 : q_low; if (overshoot_seen || loop_at_this_size > 1) { av1_rc_update_rate_correction_factors(cpi); q = (q_high + q_low) / 2; } else { av1_rc_update_rate_correction_factors(cpi); q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) { q_low = q; } while (q > q_high && retries < 10) { av1_rc_update_rate_correction_factors(cpi); q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); retries++; } } undershoot_seen = 1; } #endif // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = (q != last_q); } else { loop = 0; } } // Special case for overlay frame. if (rc->is_src_frame_alt_ref && rc->projected_frame_size < rc->max_frame_bandwidth) loop = 0; #if CONFIG_GLOBAL_MOTION if (recode_loop_test_global_motion(cpi)) { loop = 1; } #endif // CONFIG_GLOBAL_MOTION if (loop) { ++loop_count; ++loop_at_this_size; #if CONFIG_INTERNAL_STATS ++cpi->tot_recode_hits; #endif } } while (loop); } static int get_ref_frame_flags(const AV1_COMP *cpi) { const int *const map = cpi->common.ref_frame_map; #if CONFIG_EXT_REFS const int last2_is_last = map[cpi->lst_fb_idxes[1]] == map[cpi->lst_fb_idxes[0]]; const int last3_is_last = map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[0]]; const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[0]]; #if CONFIG_LOWDELAY_COMPOUND const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[0]]; const int last3_is_last2 = map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[1]]; const int gld_is_last2 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[1]]; const int gld_is_last3 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[2]]; #else const int bwd_is_last = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[0]]; const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[0]]; const int last3_is_last2 = map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[1]]; const int gld_is_last2 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[1]]; const int bwd_is_last2 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[1]]; const int gld_is_last3 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[2]]; const int bwd_is_last3 = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idxes[2]]; const int bwd_is_gld = map[cpi->bwd_fb_idx] == map[cpi->gld_fb_idx]; #endif const int last2_is_alt = map[cpi->lst_fb_idxes[1]] == map[cpi->alt_fb_idx]; const int last3_is_alt = map[cpi->lst_fb_idxes[2]] == map[cpi->alt_fb_idx]; const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx]; const int bwd_is_alt = map[cpi->bwd_fb_idx] == map[cpi->alt_fb_idx]; #else const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx]; const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx]; const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx]; #endif // CONFIG_EXT_REFS int flags = AOM_REFFRAME_ALL; #if CONFIG_EXT_REFS // Disable the use of BWDREF_FRAME for non-bipredictive frames. if (!(cpi->rc.is_bipred_frame || cpi->rc.is_last_bipred_frame || (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs))) flags &= ~AOM_BWD_FLAG; #endif // CONFIG_EXT_REFS if (gld_is_last || gld_is_alt) flags &= ~AOM_GOLD_FLAG; if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG; if (alt_is_last) flags &= ~AOM_ALT_FLAG; #if CONFIG_EXT_REFS if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG; if (last3_is_last || last3_is_last2 || last3_is_alt) flags &= ~AOM_LAST3_FLAG; if (gld_is_last2 || gld_is_last3) flags &= ~AOM_GOLD_FLAG; #if CONFIG_LOWDELAY_COMPOUND // Changes LL & HL bitstream /* Allow biprediction between two identical frames (e.g. bwd_is_last = 1) */ if (bwd_is_alt && (flags & AOM_BWD_FLAG)) flags &= ~AOM_BWD_FLAG; #else if ((bwd_is_last || bwd_is_last2 || bwd_is_last3 || bwd_is_gld || bwd_is_alt) && (flags & AOM_BWD_FLAG)) flags &= ~AOM_BWD_FLAG; #endif #endif // CONFIG_EXT_REFS return flags; } static void set_ext_overrides(AV1_COMP *cpi) { // Overrides the defaults with the externally supplied values with // av1_update_reference() and av1_update_entropy() calls // Note: The overrides are valid only for the next frame passed // to encode_frame_to_data_rate() function if (cpi->ext_refresh_frame_context_pending) { cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; cpi->ext_refresh_frame_context_pending = 0; } if (cpi->ext_refresh_frame_flags_pending) { cpi->refresh_last_frame = cpi->ext_refresh_last_frame; cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; cpi->ext_refresh_frame_flags_pending = 0; } } YV12_BUFFER_CONFIG *av1_scale_if_required_fast(AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled) { if (cm->mi_cols * MI_SIZE != unscaled->y_width || cm->mi_rows * MI_SIZE != unscaled->y_height) { // For 2x2 scaling down. aom_scale_frame(unscaled, scaled, unscaled->y_buffer, 9, 2, 1, 2, 1, 0); aom_extend_frame_borders(scaled); return scaled; } else { return unscaled; } } YV12_BUFFER_CONFIG *av1_scale_if_required(AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled) { if (cm->mi_cols * MI_SIZE != unscaled->y_width || cm->mi_rows * MI_SIZE != unscaled->y_height) { #if CONFIG_HIGHBITDEPTH scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth); #else scale_and_extend_frame_nonnormative(unscaled, scaled); #endif // CONFIG_HIGHBITDEPTH return scaled; } else { return unscaled; } } static void set_arf_sign_bias(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int arf_sign_bias; #if CONFIG_EXT_REFS const GF_GROUP *const gf_group = &cpi->twopass.gf_group; // The arf_sign_bias will be one for internal ARFs' arf_sign_bias = cpi->rc.source_alt_ref_active && (!cpi->refresh_alt_ref_frame || (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)); #else if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_sign_bias = cpi->rc.source_alt_ref_active && (!cpi->refresh_alt_ref_frame || (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)); } else { arf_sign_bias = (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame); } #endif // CONFIG_EXT_REFS cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias; #if CONFIG_EXT_REFS cm->ref_frame_sign_bias[BWDREF_FRAME] = cm->ref_frame_sign_bias[ALTREF_FRAME]; #endif // CONFIG_EXT_REFS } static int setup_interp_filter_search_mask(AV1_COMP *cpi) { InterpFilter ifilter; int ref_total[TOTAL_REFS_PER_FRAME] = { 0 }; MV_REFERENCE_FRAME ref; int mask = 0; int arf_idx = ALTREF_FRAME; #if CONFIG_EXT_REFS // Get which arf used as ALTREF_FRAME if (cpi->oxcf.pass == 2) arf_idx += cpi->twopass.gf_group.arf_ref_idx[cpi->twopass.gf_group.index]; #endif // CONFIG_EXT_REFS if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame) return mask; #if CONFIG_EXT_REFS for (ref = LAST_FRAME; ref < ALTREF_FRAME; ++ref) for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) ref_total[ref] += cpi->interp_filter_selected[ref][ifilter]; for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) ref_total[ref] += cpi->interp_filter_selected[arf_idx][ifilter]; #else for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) ref_total[ref] += cpi->interp_filter_selected[ref][ifilter]; #endif // CONFIG_EXT_REFS for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) { if ((ref_total[LAST_FRAME] && cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) && #if CONFIG_EXT_REFS (ref_total[LAST2_FRAME] == 0 || cpi->interp_filter_selected[LAST2_FRAME][ifilter] * 50 < ref_total[LAST2_FRAME]) && (ref_total[LAST3_FRAME] == 0 || cpi->interp_filter_selected[LAST3_FRAME][ifilter] * 50 < ref_total[LAST3_FRAME]) && #endif // CONFIG_EXT_REFS (ref_total[GOLDEN_FRAME] == 0 || cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 < ref_total[GOLDEN_FRAME]) && #if CONFIG_EXT_REFS (ref_total[BWDREF_FRAME] == 0 || cpi->interp_filter_selected[BWDREF_FRAME][ifilter] * 50 < ref_total[BWDREF_FRAME]) && #endif // CONFIG_EXT_REFS (ref_total[ALTREF_FRAME] == 0 || cpi->interp_filter_selected[arf_idx][ifilter] * 50 < ref_total[ALTREF_FRAME])) mask |= 1 << ifilter; } return mask; } #define DUMP_RECON_FRAMES 0 #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. static void dump_filtered_recon_frames(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show; int h; char file_name[256] = "/tmp/enc_filtered_recon.yuv"; FILE *f_recon = NULL; if (recon_buf == NULL || !cm->show_frame) { printf("Frame %d is not ready or no show to dump.\n", cm->current_video_frame); return; } if (cm->current_video_frame == 0) { if ((f_recon = fopen(file_name, "wb")) == NULL) { printf("Unable to open file %s to write.\n", file_name); return; } } else { if ((f_recon = fopen(file_name, "ab")) == NULL) { printf("Unable to open file %s to append.\n", file_name); return; } } printf( "\nFrame=%5d, encode_update_type[%5d]=%1d, show_existing_frame=%d, " "y_stride=%4d, uv_stride=%4d, width=%4d, height=%4d\n", cm->current_video_frame, cpi->twopass.gf_group.index, cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index], cm->show_existing_frame, recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height); // --- Y --- for (h = 0; h < cm->height; ++h) { fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width, f_recon); } // --- U --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), f_recon); } // --- V --- for (h = 0; h < (cm->height >> 1); ++h) { fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), f_recon); } fclose(f_recon); } #endif // DUMP_RECON_FRAMES #if CONFIG_EC_ADAPT static void make_update_tile_list_enc(AV1_COMP *cpi, const int tile_rows, const int tile_cols, FRAME_CONTEXT *ec_ctxs[]) { int i; for (i = 0; i < tile_rows * tile_cols; ++i) ec_ctxs[i] = &cpi->tile_data[i].tctx; } #endif static void encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest, int skip_adapt, unsigned int *frame_flags) { AV1_COMMON *const cm = &cpi->common; const AV1EncoderConfig *const oxcf = &cpi->oxcf; struct segmentation *const seg = &cm->seg; TX_SIZE t; #if CONFIG_EC_ADAPT FRAME_CONTEXT **tile_ctxs = aom_malloc(cm->tile_rows * cm->tile_cols * sizeof(&cpi->tile_data[0].tctx)); aom_cdf_prob **cdf_ptrs = aom_malloc(cm->tile_rows * cm->tile_cols * sizeof(&cpi->tile_data[0].tctx.partition_cdf[0][0])); #endif #if CONFIG_XIPHRC int frame_type; int drop_this_frame = 0; #endif // CONFIG_XIPHRC set_ext_overrides(cpi); aom_clear_system_state(); // Set the arf sign bias for this frame. set_arf_sign_bias(cpi); #if CONFIG_TEMPMV_SIGNALING // frame type has been decided outside of this function call cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only; cm->use_prev_frame_mvs = !cpi->oxcf.disable_tempmv && !cm->cur_frame->intra_only; #endif #if CONFIG_EXT_REFS // NOTE: // (1) Move the setup of the ref_frame_flags upfront as it would be // determined by the current frame properties; // (2) The setup of the ref_frame_flags applies to both show_existing_frame's // and the other cases. if (cm->current_video_frame > 0) cpi->ref_frame_flags = get_ref_frame_flags(cpi); if (cm->show_existing_frame) { // NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current // BWDREF_FRAME in the reference frame buffer. cm->frame_type = INTER_FRAME; cm->show_frame = 1; cpi->frame_flags = *frame_flags; // In the case of show_existing frame, we will not send fresh flag // to decoder. Any change in the reference frame buffer can be done by // switching the virtual indices. cpi->refresh_last_frame = 0; cpi->refresh_golden_frame = 0; cpi->refresh_bwd_ref_frame = 0; cpi->refresh_alt_ref_frame = 0; cpi->rc.is_bwd_ref_frame = 0; cpi->rc.is_last_bipred_frame = 0; cpi->rc.is_bipred_frame = 0; // Build the bitstream av1_pack_bitstream(cpi, dest, size); // Set up frame to show to get ready for stats collection. cm->frame_to_show = get_frame_new_buffer(cm); #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. dump_filtered_recon_frames(cpi); #endif // DUMP_RECON_FRAMES // Update the LAST_FRAME in the reference frame buffer. av1_update_reference_frames(cpi); // Update frame flags cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; cpi->frame_flags &= ~FRAMEFLAGS_BWDREF; cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; // Update the frame type cm->last_frame_type = cm->frame_type; // Since we allocate a spot for the OVERLAY frame in the gf group, we need // to do post-encoding update accordingly. if (cpi->rc.is_src_frame_alt_ref) { av1_set_target_rate(cpi); #if CONFIG_XIPHRC frame_type = cm->frame_type == INTER_FRAME ? OD_P_FRAME : OD_I_FRAME; drop_this_frame = od_enc_rc_update_state( &cpi->od_rc, *size << 3, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, frame_type, cpi->droppable); #else av1_rc_postencode_update(cpi, *size); #endif } cm->last_width = cm->width; cm->last_height = cm->height; ++cm->current_video_frame; #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif return; } #endif // CONFIG_EXT_REFS // Set default state for segment based loop filter update flags. cm->lf.mode_ref_delta_update = 0; if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search) cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi); // Set various flags etc to special state if it is a key frame. if (frame_is_intra_only(cm)) { // Reset the loop filter deltas and segmentation map. av1_reset_segment_features(cm); // If segmentation is enabled force a map update for key frames. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; } // The alternate reference frame cannot be active for a key frame. cpi->rc.source_alt_ref_active = 0; cm->error_resilient_mode = oxcf->error_resilient_mode; // By default, encoder assumes decoder can use prev_mi. if (cm->error_resilient_mode) { cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE; cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD; } else if (cm->intra_only) { // Only reset the current context. cm->reset_frame_context = RESET_FRAME_CONTEXT_CURRENT; } } #if CONFIG_TILE_GROUPS if (cpi->oxcf.mtu == 0) { cm->num_tg = cpi->oxcf.num_tile_groups; } else { // Use a default value for the purposes of weighting costs in probability // updates cm->num_tg = DEFAULT_MAX_NUM_TG; } #endif #if CONFIG_EXT_TILE cm->tile_encoding_mode = cpi->oxcf.tile_encoding_mode; #endif // CONFIG_EXT_TILE #if CONFIG_XIPHRC if (drop_this_frame) { av1_rc_postencode_update_drop_frame(cpi); ++cm->current_video_frame; #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif return; } #else // For 1 pass CBR, check if we are dropping this frame. // Never drop on key frame. if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR && cm->frame_type != KEY_FRAME) { if (av1_rc_drop_frame(cpi)) { av1_rc_postencode_update_drop_frame(cpi); ++cm->current_video_frame; #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif return; } } #endif aom_clear_system_state(); #if CONFIG_INTERNAL_STATS memset(cpi->mode_chosen_counts, 0, MAX_MODES * sizeof(*cpi->mode_chosen_counts)); #endif #if CONFIG_REFERENCE_BUFFER { /* Non-normative definition of current_frame_id ("frame counter" with * wraparound) */ const int frame_id_length = FRAME_ID_LENGTH_MINUS7 + 7; if (cm->current_frame_id == -1) { int lsb, msb; /* quasi-random initialization of current_frame_id for a key frame */ #if CONFIG_HIGHBITDEPTH if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) { lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff; msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff; } else { #endif lsb = cpi->source->y_buffer[0] & 0xff; msb = cpi->source->y_buffer[1] & 0xff; #if CONFIG_HIGHBITDEPTH } #endif cm->current_frame_id = ((msb << 8) + lsb) % (1 << frame_id_length); } else { cm->current_frame_id = (cm->current_frame_id + 1 + (1 << frame_id_length)) % (1 << frame_id_length); } } #endif #if CONFIG_EXT_DELTA_Q cm->delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; cm->delta_lf_present_flag = cpi->oxcf.deltaq_mode == DELTA_Q_LF; #endif if (cpi->sf.recode_loop == DISALLOW_RECODE) { encode_without_recode_loop(cpi); } else { encode_with_recode_loop(cpi, size, dest); } #ifdef OUTPUT_YUV_SKINMAP if (cpi->common.current_video_frame > 1) { av1_compute_skin_map(cpi, yuv_skinmap_file); } #endif // OUTPUT_YUV_SKINMAP // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before // the force key frame if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { cpi->ambient_err = aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm)); } else { cpi->ambient_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); } #else cpi->ambient_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); #endif // CONFIG_HIGHBITDEPTH } // If the encoder forced a KEY_FRAME decision if (cm->frame_type == KEY_FRAME) { cpi->refresh_last_frame = 1; } cm->frame_to_show = get_frame_new_buffer(cm); cm->frame_to_show->color_space = cm->color_space; cm->frame_to_show->color_range = cm->color_range; cm->frame_to_show->render_width = cm->render_width; cm->frame_to_show->render_height = cm->render_height; #if CONFIG_EXT_REFS // TODO(zoeliu): For non-ref frames, loop filtering may need to be turned // off. #endif // CONFIG_EXT_REFS // Pick the loop filter level for the frame. loopfilter_frame(cpi, cm); // Build the bitstream av1_pack_bitstream(cpi, dest, size); if (skip_adapt) { #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif return; } #if CONFIG_REFERENCE_BUFFER { int i; /* Update reference frame id values based on the value of refresh_mask */ for (i = 0; i < REF_FRAMES; i++) { if ((cm->refresh_mask >> i) & 1) { cm->ref_frame_id[i] = cm->current_frame_id; } } } #endif #if DUMP_RECON_FRAMES == 1 // NOTE(zoeliu): For debug - Output the filtered reconstructed video. if (cm->show_frame) dump_filtered_recon_frames(cpi); #endif // DUMP_RECON_FRAMES if (cm->seg.update_map) update_reference_segmentation_map(cpi); if (frame_is_intra_only(cm) == 0) { release_scaled_references(cpi); } av1_update_reference_frames(cpi); for (t = 0; t < TX_SIZES; t++) av1_full_to_model_counts(cpi->td.counts->coef[t], cpi->td.rd_counts.coef_counts[t]); #if CONFIG_ENTROPY_STATS av1_accumulate_frame_counts(&aggregate_fc, &cm->counts); #endif // CONFIG_ENTROPY_STATS if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { #if CONFIG_SUBFRAME_PROB_UPDATE cm->partial_prob_update = 0; #endif // CONFIG_SUBFRAME_PROB_UPDATE av1_adapt_coef_probs(cm); av1_adapt_intra_frame_probs(cm); #if CONFIG_EC_ADAPT make_update_tile_list_enc(cpi, cm->tile_rows, cm->tile_cols, tile_ctxs); av1_average_tile_coef_cdfs(cpi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); av1_average_tile_intra_cdfs(cpi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); #if CONFIG_PVQ av1_average_tile_pvq_cdfs(cpi->common.fc, tile_ctxs, cm->tile_rows * cm->tile_cols); #endif // CONFIG_PVQ #endif // CONFIG_EC_ADAPT #if CONFIG_ADAPT_SCAN av1_adapt_scan_order(cm); #endif // CONFIG_ADAPT_SCAN } if (!frame_is_intra_only(cm)) { if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { av1_adapt_inter_frame_probs(cm); av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); #if CONFIG_EC_ADAPT av1_average_tile_inter_cdfs(&cpi->common, cpi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); av1_average_tile_mv_cdfs(cpi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); #endif } } if (cpi->refresh_golden_frame == 1) cpi->frame_flags |= FRAMEFLAGS_GOLDEN; else cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; if (cpi->refresh_alt_ref_frame == 1) cpi->frame_flags |= FRAMEFLAGS_ALTREF; else cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; #if CONFIG_EXT_REFS if (cpi->refresh_bwd_ref_frame == 1) cpi->frame_flags |= FRAMEFLAGS_BWDREF; else cpi->frame_flags &= ~FRAMEFLAGS_BWDREF; #endif // CONFIG_EXT_REFS #if !CONFIG_EXT_REFS cpi->ref_frame_flags = get_ref_frame_flags(cpi); #endif // !CONFIG_EXT_REFS cm->last_frame_type = cm->frame_type; #if CONFIG_XIPHRC frame_type = cm->frame_type == KEY_FRAME ? OD_I_FRAME : OD_P_FRAME; drop_this_frame = od_enc_rc_update_state(&cpi->od_rc, *size << 3, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, frame_type, 0); if (drop_this_frame) { av1_rc_postencode_update_drop_frame(cpi); ++cm->current_video_frame; #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif return; } #else // !CONFIG_XIPHRC av1_rc_postencode_update(cpi, *size); #endif // CONFIG_XIPHRC #if 0 output_frame_level_debug_stats(cpi); #endif if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY; } else { *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; } // Clear the one shot update flags for segmentation map and mode/ref loop // filter deltas. cm->seg.update_map = 0; cm->seg.update_data = 0; cm->lf.mode_ref_delta_update = 0; // keep track of the last coded dimensions cm->last_width = cm->width; cm->last_height = cm->height; // reset to normal state now that we are done. if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame; if (cm->show_frame) { #if CONFIG_EXT_REFS // TODO(zoeliu): We may only swamp mi and prev_mi for those frames that are // being used as reference. #endif // CONFIG_EXT_REFS av1_swap_mi_and_prev_mi(cm); // Don't increment frame counters if this was an altref buffer // update not a real frame ++cm->current_video_frame; } #if CONFIG_EXT_REFS // NOTE: Shall not refer to any frame not used as reference. if (cm->is_reference_frame) #endif // CONFIG_EXT_REFS cm->prev_frame = cm->cur_frame; #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif } static void Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest, int skip_adapt, unsigned int *frame_flags) { #if CONFIG_XIPHRC int64_t ip_count; int frame_type, is_golden, is_altref; /* Not updated during init so update it here */ if (cpi->oxcf.rc_mode == AOM_Q) cpi->od_rc.quality = cpi->oxcf.cq_level; frame_type = od_frame_type(&cpi->od_rc, cpi->od_rc.cur_frame, &is_golden, &is_altref, &ip_count); if (frame_type == OD_I_FRAME) { frame_type = KEY_FRAME; cpi->frame_flags &= FRAMEFLAGS_KEY; } else if (frame_type == OD_P_FRAME) { frame_type = INTER_FRAME; } if (is_altref) { cpi->refresh_alt_ref_frame = 1; cpi->rc.source_alt_ref_active = 1; } cpi->refresh_golden_frame = is_golden; cpi->common.frame_type = frame_type; if (is_golden) cpi->frame_flags &= FRAMEFLAGS_GOLDEN; #else if (cpi->oxcf.rc_mode == AOM_CBR) { av1_rc_get_one_pass_cbr_params(cpi); } else { av1_rc_get_one_pass_vbr_params(cpi); } #endif encode_frame_to_data_rate(cpi, size, dest, skip_adapt, frame_flags); } #if !CONFIG_XIPHRC static void Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { encode_frame_to_data_rate(cpi, size, dest, 0, frame_flags); #if CONFIG_EXT_REFS // Do not do post-encoding update for those frames that do not have a spot in // a gf group, but note that an OVERLAY frame always has a spot in a gf group, // even when show_existing_frame is used. if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref) { av1_twopass_postencode_update(cpi); } check_show_existing_frame(cpi); #else av1_twopass_postencode_update(cpi); #endif // CONFIG_EXT_REFS } #endif static void init_ref_frame_bufs(AV1_COMMON *cm) { int i; BufferPool *const pool = cm->buffer_pool; cm->new_fb_idx = INVALID_IDX; for (i = 0; i < REF_FRAMES; ++i) { cm->ref_frame_map[i] = INVALID_IDX; pool->frame_bufs[i].ref_count = 0; } } static void check_initial_width(AV1_COMP *cpi, #if CONFIG_HIGHBITDEPTH int use_highbitdepth, #endif int subsampling_x, int subsampling_y) { AV1_COMMON *const cm = &cpi->common; if (!cpi->initial_width || #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth != use_highbitdepth || #endif cm->subsampling_x != subsampling_x || cm->subsampling_y != subsampling_y) { cm->subsampling_x = subsampling_x; cm->subsampling_y = subsampling_y; #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth = use_highbitdepth; #endif alloc_raw_frame_buffers(cpi); init_ref_frame_bufs(cm); alloc_util_frame_buffers(cpi); init_motion_estimation(cpi); // TODO(agrange) This can be removed. cpi->initial_width = cm->width; cpi->initial_height = cm->height; cpi->initial_mbs = cm->MBs; } } int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { AV1_COMMON *const cm = &cpi->common; struct aom_usec_timer timer; int res = 0; const int subsampling_x = sd->subsampling_x; const int subsampling_y = sd->subsampling_y; #if CONFIG_HIGHBITDEPTH const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; #endif #if CONFIG_HIGHBITDEPTH check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y); #else check_initial_width(cpi, subsampling_x, subsampling_y); #endif // CONFIG_HIGHBITDEPTH aom_usec_timer_start(&timer); if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, #if CONFIG_HIGHBITDEPTH use_highbitdepth, #endif // CONFIG_HIGHBITDEPTH frame_flags)) res = -1; aom_usec_timer_mark(&timer); cpi->time_receive_data += aom_usec_timer_elapsed(&timer); if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) && (subsampling_x != 1 || subsampling_y != 1)) { aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, "Non-4:2:0 color format requires profile 1 or 3"); res = -1; } if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) && (subsampling_x == 1 && subsampling_y == 1)) { aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, "4:2:0 color format requires profile 0 or 2"); res = -1; } return res; } static int frame_is_reference(const AV1_COMP *cpi) { const AV1_COMMON *cm = &cpi->common; return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || cpi->refresh_golden_frame || #if CONFIG_EXT_REFS cpi->refresh_bwd_ref_frame || #endif // CONFIG_EXT_REFS cpi->refresh_alt_ref_frame || !cm->error_resilient_mode || cm->lf.mode_ref_delta_update || cm->seg.update_map || cm->seg.update_data; } static void adjust_frame_rate(AV1_COMP *cpi, const struct lookahead_entry *source) { int64_t this_duration; int step = 0; if (source->ts_start == cpi->first_time_stamp_ever) { this_duration = source->ts_end - source->ts_start; step = 1; } else { int64_t last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; this_duration = source->ts_end - cpi->last_end_time_stamp_seen; // do a step update if the duration changes by 10% if (last_duration) step = (int)((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) { av1_new_framerate(cpi, 10000000.0 / this_duration); } else { // Average this frame's rate into the last second's average // frame rate. If we haven't seen 1 second yet, then average // over the whole interval seen. const double interval = AOMMIN( (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0); double avg_duration = 10000000.0 / cpi->framerate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; av1_new_framerate(cpi, 10000000.0 / avg_duration); } } cpi->last_time_stamp_seen = source->ts_start; cpi->last_end_time_stamp_seen = source->ts_end; } // Returns 0 if this is not an alt ref else the offset of the source frame // used as the arf midpoint. static int get_arf_src_index(AV1_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; int arf_src_index = 0; if (is_altref_enabled(cpi)) { if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { arf_src_index = gf_group->arf_src_offset[gf_group->index]; } } else if (rc->source_alt_ref_pending) { arf_src_index = rc->frames_till_gf_update_due; } } return arf_src_index; } #if CONFIG_EXT_REFS static int get_brf_src_index(AV1_COMP *cpi) { int brf_src_index = 0; const GF_GROUP *const gf_group = &cpi->twopass.gf_group; // TODO(zoeliu): We need to add the check on the -bwd_ref command line setup // flag. if (gf_group->bidir_pred_enabled[gf_group->index]) { if (cpi->oxcf.pass == 2) { if (gf_group->update_type[gf_group->index] == BRF_UPDATE) brf_src_index = gf_group->brf_src_offset[gf_group->index]; } else { // TODO(zoeliu): To re-visit the setup for this scenario brf_src_index = cpi->rc.bipred_group_interval - 1; } } return brf_src_index; } #endif // CONFIG_EXT_REFS static void check_src_altref(AV1_COMP *cpi, const struct lookahead_entry *source) { RATE_CONTROL *const rc = &cpi->rc; // If pass == 2, the parameters set here will be reset in // av1_rc_get_second_pass_params() if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; rc->is_src_frame_alt_ref = #if CONFIG_EXT_REFS (gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) || #endif // CONFIG_EXT_REFS (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE); } else { rc->is_src_frame_alt_ref = cpi->alt_ref_source && (source == cpi->alt_ref_source); } if (rc->is_src_frame_alt_ref) { // Current frame is an ARF overlay frame. cpi->alt_ref_source = NULL; // Don't refresh the last buffer for an ARF overlay frame. It will // become the GF so preserve last as an alternative prediction option. cpi->refresh_last_frame = 0; } } #if CONFIG_INTERNAL_STATS extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch, const unsigned char *img2, int img2_pitch, int width, int height); static void adjust_image_stat(double y, double u, double v, double all, ImageStat *s) { s->stat[Y] += y; s->stat[U] += u; s->stat[V] += v; s->stat[ALL] += all; s->worst = AOMMIN(s->worst, all); } static void compute_internal_stats(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; double samples = 0.0; uint32_t in_bit_depth = 8; uint32_t bit_depth = 8; #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) { in_bit_depth = cpi->oxcf.input_bit_depth; bit_depth = cm->bit_depth; } #endif if (cm->show_frame) { const YV12_BUFFER_CONFIG *orig = cpi->source; const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; double y, u, v, frame_all; cpi->count++; if (cpi->b_calculate_psnr) { PSNR_STATS psnr; double frame_ssim2 = 0.0, weight = 0.0; aom_clear_system_state(); // TODO(yaowu): unify these two versions into one. #if CONFIG_HIGHBITDEPTH aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); #else aom_calc_psnr(orig, recon, &psnr); #endif // CONFIG_HIGHBITDEPTH adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0], &cpi->psnr); cpi->total_sq_error += psnr.sse[0]; cpi->total_samples += psnr.samples[0]; samples = psnr.samples[0]; // TODO(yaowu): unify these two versions into one. #if CONFIG_HIGHBITDEPTH if (cm->use_highbitdepth) frame_ssim2 = aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth); else frame_ssim2 = aom_calc_ssim(orig, recon, &weight); #else frame_ssim2 = aom_calc_ssim(orig, recon, &weight); #endif // CONFIG_HIGHBITDEPTH cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; #if 0 { FILE *f = fopen("q_used.stt", "a"); fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cpi->common.current_video_frame, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } if (cpi->b_calculate_blockiness) { #if CONFIG_HIGHBITDEPTH if (!cm->use_highbitdepth) #endif { const double frame_blockiness = av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height); cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness); cpi->total_blockiness += frame_blockiness; } if (cpi->b_calculate_consistency) { #if CONFIG_HIGHBITDEPTH if (!cm->use_highbitdepth) #endif { const double this_inconsistency = aom_get_ssim_metrics( orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1); const double peak = (double)((1 << in_bit_depth) - 1); const double consistency = aom_sse_to_psnr(samples, peak, cpi->total_inconsistency); if (consistency > 0.0) cpi->worst_consistency = AOMMIN(cpi->worst_consistency, consistency); cpi->total_inconsistency += this_inconsistency; } } } frame_all = aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); adjust_image_stat(y, u, v, frame_all, &cpi->fastssim); frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs); } } #endif // CONFIG_INTERNAL_STATS int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags, size_t *size, uint8_t *dest, int64_t *time_stamp, int64_t *time_end, int flush) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; AV1_COMMON *const cm = &cpi->common; BufferPool *const pool = cm->buffer_pool; RATE_CONTROL *const rc = &cpi->rc; struct aom_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; struct lookahead_entry *last_source = NULL; struct lookahead_entry *source = NULL; int arf_src_index; #if CONFIG_EXT_REFS int brf_src_index; #endif // CONFIG_EXT_REFS int i; #if CONFIG_XIPHRC cpi->od_rc.end_of_input = flush; #endif #if CONFIG_BITSTREAM_DEBUG assert(cpi->oxcf.max_threads == 0 && "bitstream debug tool does not support multithreading"); bitstream_queue_record_write(); bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame); #endif aom_usec_timer_start(&cmptimer); av1_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV); // Is multi-arf enabled. // Note that at the moment multi_arf is only configured for 2 pass VBR if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1)) cpi->multi_arf_allowed = 1; else cpi->multi_arf_allowed = 0; // Normal defaults cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE; cm->refresh_frame_context = (oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD; cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 0; #if CONFIG_EXT_REFS cpi->refresh_bwd_ref_frame = 0; #endif // CONFIG_EXT_REFS cpi->refresh_alt_ref_frame = 0; #if CONFIG_EXT_REFS && !CONFIG_XIPHRC if (oxcf->pass == 2 && cm->show_existing_frame) { // Manage the source buffer and flush out the source frame that has been // coded already; Also get prepared for PSNR calculation if needed. if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) { *size = 0; return -1; } cpi->source = &source->img; // TODO(zoeliu): To track down to determine whether it's needed to adjust // the frame rate. *time_stamp = source->ts_start; *time_end = source->ts_end; // We need to adjust frame rate for an overlay frame if (cpi->rc.is_src_frame_alt_ref) adjust_frame_rate(cpi, source); // Find a free buffer for the new frame, releasing the reference previously // held. if (cm->new_fb_idx != INVALID_IDX) { --pool->frame_bufs[cm->new_fb_idx].ref_count; } cm->new_fb_idx = get_free_fb(cm); if (cm->new_fb_idx == INVALID_IDX) return -1; // Clear down mmx registers aom_clear_system_state(); // Start with a 0 size frame. *size = 0; // We need to update the gf_group for show_existing overlay frame if (cpi->rc.is_src_frame_alt_ref) av1_rc_get_second_pass_params(cpi); Pass2Encode(cpi, size, dest, frame_flags); if (cpi->b_calculate_psnr) generate_psnr_packet(cpi); #if CONFIG_INTERNAL_STATS compute_internal_stats(cpi); cpi->bytes += (int)(*size); #endif // CONFIG_INTERNAL_STATS // Clear down mmx registers aom_clear_system_state(); cm->show_existing_frame = 0; return 0; } #endif // CONFIG_EXT_REFS && !CONFIG_XIPHRC // Should we encode an arf frame. arf_src_index = get_arf_src_index(cpi); if (arf_src_index) { for (i = 0; i <= arf_src_index; ++i) { struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i); // Avoid creating an alt-ref if there's a forced keyframe pending. if (e == NULL) { break; } else if (e->flags == AOM_EFLAG_FORCE_KF) { arf_src_index = 0; flush = 1; break; } } } if (arf_src_index) { assert(arf_src_index <= rc->frames_to_key); if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) { cpi->alt_ref_source = source; if (oxcf->arnr_max_frames > 0) { // Produce the filtered ARF frame. av1_temporal_filter(cpi, arf_src_index); aom_extend_frame_borders(&cpi->alt_ref_buffer); force_src_buffer = &cpi->alt_ref_buffer; } cm->show_frame = 0; cm->intra_only = 0; cpi->refresh_alt_ref_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 0; rc->is_src_frame_alt_ref = 0; } rc->source_alt_ref_pending = 0; } #if CONFIG_EXT_REFS rc->is_bwd_ref_frame = 0; brf_src_index = get_brf_src_index(cpi); if (brf_src_index) { assert(brf_src_index <= rc->frames_to_key); if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) { cm->show_frame = 0; cm->intra_only = 0; cpi->refresh_bwd_ref_frame = 1; cpi->refresh_last_frame = 0; cpi->refresh_golden_frame = 0; cpi->refresh_alt_ref_frame = 0; rc->is_bwd_ref_frame = 1; } } #endif // CONFIG_EXT_REFS if (!source) { // Get last frame source. if (cm->current_video_frame > 0) { if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL) return -1; } // Read in the source frame. source = av1_lookahead_pop(cpi->lookahead, flush); if (source != NULL) { cm->show_frame = 1; cm->intra_only = 0; // Check to see if the frame should be encoded as an arf overlay. check_src_altref(cpi, source); } } if (source) { cpi->un_scaled_source = cpi->source = force_src_buffer ? force_src_buffer : &source->img; cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL; *time_stamp = source->ts_start; *time_end = source->ts_end; *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; } else { *size = 0; if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) { #if CONFIG_XIPHRC od_enc_rc_2pass_out(&cpi->od_rc, cpi->output_pkt_list, 1); #else av1_end_first_pass(cpi); /* get last stats packet */ #endif cpi->twopass.first_pass_done = 1; } return -1; } if (source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = source->ts_start; cpi->last_end_time_stamp_seen = source->ts_start; } // Clear down mmx registers aom_clear_system_state(); // adjust frame rates based on timestamps given if (cm->show_frame) adjust_frame_rate(cpi, source); // Find a free buffer for the new frame, releasing the reference previously // held. if (cm->new_fb_idx != INVALID_IDX) { --pool->frame_bufs[cm->new_fb_idx].ref_count; } cm->new_fb_idx = get_free_fb(cm); if (cm->new_fb_idx == INVALID_IDX) return -1; cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx]; #if CONFIG_EXT_REFS if (oxcf->pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; cpi->alt_fb_idx = cpi->arf_map[gf_group->arf_ref_idx[gf_group->index]]; } #else if (cpi->multi_arf_allowed) { if (cm->frame_type == KEY_FRAME) { init_buffer_indices(cpi); } else if (oxcf->pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index]; } } #endif // CONFIG_EXT_REFS // Start with a 0 size frame. *size = 0; cpi->frame_flags = *frame_flags; if (oxcf->pass == 2) { #if CONFIG_XIPHRC if (od_enc_rc_2pass_in(&cpi->od_rc) < 0) return -1; } #else av1_rc_get_second_pass_params(cpi); } else if (oxcf->pass == 1) { set_frame_size(cpi); } #endif if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) { for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX; } #if CONFIG_AOM_QM cm->using_qmatrix = cpi->oxcf.using_qm; cm->min_qmlevel = cpi->oxcf.qm_minlevel; cm->max_qmlevel = cpi->oxcf.qm_maxlevel; #endif #if CONFIG_REFERENCE_BUFFER if (*time_stamp == 0) { cpi->common.current_frame_id = -1; } #endif #if CONFIG_XIPHRC if (oxcf->pass == 1) { size_t tmp; if (cpi->od_rc.cur_frame == 0) Pass0Encode(cpi, &tmp, dest, 1, frame_flags); cpi->od_rc.firstpass_quant = cpi->od_rc.target_quantizer; Pass0Encode(cpi, &tmp, dest, 0, frame_flags); od_enc_rc_2pass_out(&cpi->od_rc, cpi->output_pkt_list, 0); } else if (oxcf->pass == 2) { Pass0Encode(cpi, size, dest, 0, frame_flags); } else { if (cpi->od_rc.cur_frame == 0) { size_t tmp; Pass0Encode(cpi, &tmp, dest, 1, frame_flags); } Pass0Encode(cpi, size, dest, 0, frame_flags); } #else if (oxcf->pass == 1) { cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf); av1_first_pass(cpi, source); } else if (oxcf->pass == 2) { Pass2Encode(cpi, size, dest, frame_flags); } else { // One pass encode Pass0Encode(cpi, size, dest, 0, frame_flags); } #endif if (!cm->error_resilient_mode) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; // No frame encoded, or frame was dropped, release scaled references. if ((*size == 0) && (frame_is_intra_only(cm) == 0)) { release_scaled_references(cpi); } if (*size > 0) { cpi->droppable = !frame_is_reference(cpi); } aom_usec_timer_mark(&cmptimer); cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame) generate_psnr_packet(cpi); #if CONFIG_INTERNAL_STATS if (oxcf->pass != 1) { compute_internal_stats(cpi); cpi->bytes += (int)(*size); } #endif // CONFIG_INTERNAL_STATS #if CONFIG_XIPHRC cpi->od_rc.cur_frame++; #endif aom_clear_system_state(); return 0; } int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) { AV1_COMMON *cm = &cpi->common; if (!cm->show_frame) { return -1; } else { int ret; if (cm->frame_to_show) { *dest = *cm->frame_to_show; dest->y_width = cm->width; dest->y_height = cm->height; dest->uv_width = cm->width >> cm->subsampling_x; dest->uv_height = cm->height >> cm->subsampling_y; ret = 0; } else { ret = -1; } aom_clear_system_state(); return ret; } } int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) { if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1; *frame = cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf; return 0; } int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode, AOM_SCALING vert_mode) { AV1_COMMON *cm = &cpi->common; int hr = 0, hs = 0, vr = 0, vs = 0; if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; Scale2Ratio(horiz_mode, &hr, &hs); Scale2Ratio(vert_mode, &vr, &vs); // always go to the next whole number cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } int av1_set_size_literal(AV1_COMP *cpi, unsigned int width, unsigned int height) { AV1_COMMON *cm = &cpi->common; #if CONFIG_HIGHBITDEPTH check_initial_width(cpi, cm->use_highbitdepth, 1, 1); #else check_initial_width(cpi, 1, 1); #endif // CONFIG_HIGHBITDEPTH if (width) { cm->width = width; if (cm->width > cpi->initial_width) { cm->width = cpi->initial_width; printf("Warning: Desired width too large, changed to %d\n", cm->width); } } if (height) { cm->height = height; if (cm->height > cpi->initial_height) { cm->height = cpi->initial_height; printf("Warning: Desired height too large, changed to %d\n", cm->height); } } assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; } void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) { if (flags & (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF)) { int ref = AOM_REFFRAME_ALL; if (flags & AOM_EFLAG_NO_REF_LAST) { ref ^= AOM_LAST_FLAG; #if CONFIG_EXT_REFS ref ^= AOM_LAST2_FLAG; ref ^= AOM_LAST3_FLAG; #endif // CONFIG_EXT_REFS } if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG; if (flags & AOM_EFLAG_NO_REF_ARF) ref ^= AOM_ALT_FLAG; av1_use_as_reference(cpi, ref); } if (flags & (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_FORCE_GF | AOM_EFLAG_FORCE_ARF)) { int upd = AOM_REFFRAME_ALL; if (flags & AOM_EFLAG_NO_UPD_LAST) { upd ^= AOM_LAST_FLAG; #if CONFIG_EXT_REFS upd ^= AOM_LAST2_FLAG; upd ^= AOM_LAST3_FLAG; #endif // CONFIG_EXT_REFS } if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG; if (flags & AOM_EFLAG_NO_UPD_ARF) upd ^= AOM_ALT_FLAG; av1_update_reference(cpi, upd); } if (flags & AOM_EFLAG_NO_UPD_ENTROPY) { av1_update_entropy(cpi, 0); } }