/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #define _POSIX_C_SOURCE 200112L // rand_r() #include #include #include #include #include #include #include "av1/encoder/bgsprite.h" #include "aom_mem/aom_mem.h" #include "./aom_scale_rtcd.h" #include "av1/common/mv.h" #include "av1/common/warped_motion.h" #include "av1/encoder/encoder.h" #include "av1/encoder/global_motion.h" #include "av1/encoder/mathutils.h" #include "av1/encoder/temporal_filter.h" /* Blending Modes: * 0 = Median * 1 = Mean */ #define BGSPRITE_BLENDING_MODE 1 // Enable removal of outliers from mean blending mode. #if BGSPRITE_BLENDING_MODE == 1 #define BGSPRITE_MEAN_REMOVE_OUTLIERS 0 #endif // BGSPRITE_BLENDING_MODE == 1 /* Interpolation for panorama alignment sampling: * 0 = Nearest neighbor * 1 = Bilinear */ #define BGSPRITE_INTERPOLATION 0 // Enable turning off bgsprite from firstpass metrics in define_gf_group. #define BGSPRITE_ENABLE_METRICS 1 // Enable foreground/backgrond segmentation and combine with temporal filter. #define BGSPRITE_ENABLE_SEGMENTATION 1 // Enable alignment using global motion. #define BGSPRITE_ENABLE_GME 0 // Block size for foreground mask. #define BGSPRITE_MASK_BLOCK_SIZE 4 typedef struct { #if CONFIG_HIGHBITDEPTH uint16_t y; uint16_t u; uint16_t v; #else uint8_t y; uint8_t u; uint8_t v; #endif // CONFIG_HIGHBITDEPTH uint8_t exists; } YuvPixel; typedef struct { int curr_model; double mean[2]; double var[2]; int age[2]; double u_mean[2]; double v_mean[2]; #if CONFIG_HIGHBITDEPTH uint16_t y; uint16_t u; uint16_t v; #else uint8_t y; uint8_t u; uint8_t v; #endif // CONFIG_HIGHBITDEPTH double final_var; } YuvPixelGaussian; // Maps to convert from matrix form to param vector form. static const int params_to_matrix_map[] = { 2, 3, 0, 4, 5, 1, 6, 7 }; static const int matrix_to_params_map[] = { 2, 5, 0, 1, 3, 4, 6, 7 }; // Convert the parameter array to a 3x3 matrix form. static void params_to_matrix(const double *const params, double *target) { for (int i = 0; i < MAX_PARAMDIM - 1; i++) { assert(params_to_matrix_map[i] < MAX_PARAMDIM - 1); target[i] = params[params_to_matrix_map[i]]; } target[8] = 1; } // Convert a 3x3 matrix to a parameter array form. static void matrix_to_params(const double *const matrix, double *target) { for (int i = 0; i < MAX_PARAMDIM - 1; i++) { assert(matrix_to_params_map[i] < MAX_PARAMDIM - 1); target[i] = matrix[matrix_to_params_map[i]]; } } #define TRANSFORM_MAT_DIM 3 // Do matrix multiplication on params. static void multiply_params(double *const m1, double *const m2, double *target) { double m1_matrix[MAX_PARAMDIM]; double m2_matrix[MAX_PARAMDIM]; double result[MAX_PARAMDIM]; params_to_matrix(m1, m1_matrix); params_to_matrix(m2, m2_matrix); multiply_mat(m2_matrix, m1_matrix, result, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM); matrix_to_params(result, target); } // Finds x and y limits of a single transformed image. // Width and height are the size of the input video. static void find_frame_limit(int width, int height, const double *const transform, int *x_min, int *x_max, int *y_min, int *y_max) { double transform_matrix[MAX_PARAMDIM]; double xy_matrix[3] = { 0, 0, 1 }; double uv_matrix[3] = { 0 }; // Macro used to update frame limits based on transformed coordinates. #define UPDATELIMITS(u, v, x_min, x_max, y_min, y_max) \ { \ if ((int)ceil(u) > *x_max) { \ *x_max = (int)ceil(u); \ } \ if ((int)floor(u) < *x_min) { \ *x_min = (int)floor(u); \ } \ if ((int)ceil(v) > *y_max) { \ *y_max = (int)ceil(v); \ } \ if ((int)floor(v) < *y_min) { \ *y_min = (int)floor(v); \ } \ } params_to_matrix(transform, transform_matrix); xy_matrix[0] = 0; xy_matrix[1] = 0; multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, 1); *x_max = (int)ceil(uv_matrix[0]); *x_min = (int)floor(uv_matrix[0]); *y_max = (int)ceil(uv_matrix[1]); *y_min = (int)floor(uv_matrix[1]); xy_matrix[0] = width - 1; xy_matrix[1] = 0; multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, 1); UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); xy_matrix[0] = width - 1; xy_matrix[1] = height - 1; multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, 1); UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); xy_matrix[0] = 0; xy_matrix[1] = height - 1; multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, 1); UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); #undef UPDATELIMITS } // Finds x and y limits for arrays. Also finds the overall max and minimums static void find_limits(int width, int height, const double **const params, int num_frames, int *x_min, int *x_max, int *y_min, int *y_max, int *pano_x_min, int *pano_x_max, int *pano_y_min, int *pano_y_max) { *pano_x_max = INT_MIN; *pano_x_min = INT_MAX; *pano_y_max = INT_MIN; *pano_y_min = INT_MAX; for (int i = 0; i < num_frames; ++i) { find_frame_limit(width, height, (const double *const)params[i], &x_min[i], &x_max[i], &y_min[i], &y_max[i]); if (x_max[i] > *pano_x_max) { *pano_x_max = x_max[i]; } if (x_min[i] < *pano_x_min) { *pano_x_min = x_min[i]; } if (y_max[i] > *pano_y_max) { *pano_y_max = y_max[i]; } if (y_min[i] < *pano_y_min) { *pano_y_min = y_min[i]; } } } // Inverts a 3x3 matrix that is in the parameter form. static void invert_params(const double *const params, double *target) { double temp[MAX_PARAMDIM] = { 0 }; params_to_matrix(params, temp); // Find determinant of matrix (expansion by minors). const double det = temp[0] * ((temp[4] * temp[8]) - (temp[5] * temp[7])) - temp[1] * ((temp[3] * temp[8]) - (temp[5] * temp[6])) + temp[2] * ((temp[3] * temp[7]) - (temp[4] * temp[6])); assert(det != 0); // inverse is transpose of cofactor * 1/det. double inverse[MAX_PARAMDIM] = { 0 }; inverse[0] = (temp[4] * temp[8] - temp[7] * temp[5]) / det; inverse[1] = (temp[2] * temp[7] - temp[1] * temp[8]) / det; inverse[2] = (temp[1] * temp[5] - temp[2] * temp[4]) / det; inverse[3] = (temp[5] * temp[6] - temp[3] * temp[8]) / det; inverse[4] = (temp[0] * temp[8] - temp[2] * temp[6]) / det; inverse[5] = (temp[3] * temp[2] - temp[0] * temp[5]) / det; inverse[6] = (temp[3] * temp[7] - temp[6] * temp[4]) / det; inverse[7] = (temp[6] * temp[1] - temp[0] * temp[7]) / det; inverse[8] = (temp[0] * temp[4] - temp[3] * temp[1]) / det; matrix_to_params(inverse, target); } static void build_image_stack(YV12_BUFFER_CONFIG **const frames, const int num_frames, const double **const params, const int *const x_min, const int *const x_max, const int *const y_min, const int *const y_max, int pano_x_min, int pano_y_min, YuvPixel ***img_stack) { // Re-sample images onto panorama (pre-filtering). const int x_offset = -pano_x_min; const int y_offset = -pano_y_min; const int frame_width = frames[0]->y_width; const int frame_height = frames[0]->y_height; for (int i = 0; i < num_frames; ++i) { // Find transforms from panorama coordinate system back to single image // coordinate system for sampling. int transformed_width = x_max[i] - x_min[i] + 1; int transformed_height = y_max[i] - y_min[i] + 1; double transform_matrix[MAX_PARAMDIM]; double transform_params[MAX_PARAMDIM - 1]; invert_params(params[i], transform_params); params_to_matrix(transform_params, transform_matrix); #if CONFIG_HIGHBITDEPTH const uint16_t *y_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->y_buffer); const uint16_t *u_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->u_buffer); const uint16_t *v_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->v_buffer); #endif // CONFIG_HIGHBITDEPTH for (int y = 0; y < transformed_height; ++y) { for (int x = 0; x < transformed_width; ++x) { // Do transform. double xy_matrix[3] = { x + x_min[i], y + y_min[i], 1 }; double uv_matrix[3] = { 0 }; multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM, 1); // Coordinates used for nearest neighbor interpolation. int image_x = (int)round(uv_matrix[0]); int image_y = (int)round(uv_matrix[1]); // Temporary values for bilinear interpolation double interpolated_yvalue = 0.0; double interpolated_uvalue = 0.0; double interpolated_vvalue = 0.0; double interpolated_fraction = 0.0; int interpolation_count = 0; #if BGSPRITE_INTERPOLATION == 1 // Coordintes used for bilinear interpolation. double x_base; double y_base; double x_decimal = modf(uv_matrix[0], &x_base); double y_decimal = modf(uv_matrix[1], &y_base); if ((x_decimal > 0.2 && x_decimal < 0.8) || (y_decimal > 0.2 && y_decimal < 0.8)) { for (int u = 0; u < 2; ++u) { for (int v = 0; v < 2; ++v) { int interp_x = (int)x_base + u; int interp_y = (int)y_base + v; if (interp_x >= 0 && interp_x < frame_width && interp_y >= 0 && interp_y < frame_height) { interpolation_count++; interpolated_fraction += fabs(u - x_decimal) * fabs(v - y_decimal); int ychannel_idx = interp_y * frames[i]->y_stride + interp_x; int uvchannel_idx = (interp_y >> frames[i]->subsampling_y) * frames[i]->uv_stride + (interp_x >> frames[i]->subsampling_x); #if CONFIG_HIGHBITDEPTH if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { interpolated_yvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * y_buffer16[ychannel_idx]; interpolated_uvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * u_buffer16[uvchannel_idx]; interpolated_vvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * v_buffer16[uvchannel_idx]; } else { #endif // CONFIG_HIGHBITDEPTH interpolated_yvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * frames[i]->y_buffer[ychannel_idx]; interpolated_uvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * frames[i]->u_buffer[uvchannel_idx]; interpolated_vvalue += (1 - fabs(u - x_decimal)) * (1 - fabs(v - y_decimal)) * frames[i]->v_buffer[uvchannel_idx]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } } } } #endif // BGSPRITE_INTERPOLATION == 1 if (BGSPRITE_INTERPOLATION && interpolation_count > 2) { if (interpolation_count != 4) { interpolated_yvalue /= interpolated_fraction; interpolated_uvalue /= interpolated_fraction; interpolated_vvalue /= interpolated_fraction; } int pano_x = x + x_min[i] + x_offset; int pano_y = y + y_min[i] + y_offset; #if CONFIG_HIGHBITDEPTH if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { img_stack[pano_y][pano_x][i].y = (uint16_t)interpolated_yvalue; img_stack[pano_y][pano_x][i].u = (uint16_t)interpolated_uvalue; img_stack[pano_y][pano_x][i].v = (uint16_t)interpolated_vvalue; img_stack[pano_y][pano_x][i].exists = 1; } else { #endif // CONFIG_HIGHBITDEPTH img_stack[pano_y][pano_x][i].y = (uint8_t)interpolated_yvalue; img_stack[pano_y][pano_x][i].u = (uint8_t)interpolated_uvalue; img_stack[pano_y][pano_x][i].v = (uint8_t)interpolated_vvalue; img_stack[pano_y][pano_x][i].exists = 1; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } else if (image_x >= 0 && image_x < frame_width && image_y >= 0 && image_y < frame_height) { // Place in panorama stack. int pano_x = x + x_min[i] + x_offset; int pano_y = y + y_min[i] + y_offset; int ychannel_idx = image_y * frames[i]->y_stride + image_x; int uvchannel_idx = (image_y >> frames[i]->subsampling_y) * frames[i]->uv_stride + (image_x >> frames[i]->subsampling_x); #if CONFIG_HIGHBITDEPTH if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { img_stack[pano_y][pano_x][i].y = y_buffer16[ychannel_idx]; img_stack[pano_y][pano_x][i].u = u_buffer16[uvchannel_idx]; img_stack[pano_y][pano_x][i].v = v_buffer16[uvchannel_idx]; img_stack[pano_y][pano_x][i].exists = 1; } else { #endif // CONFIG_HIGHBITDEPTH img_stack[pano_y][pano_x][i].y = frames[i]->y_buffer[ychannel_idx]; img_stack[pano_y][pano_x][i].u = frames[i]->u_buffer[uvchannel_idx]; img_stack[pano_y][pano_x][i].v = frames[i]->v_buffer[uvchannel_idx]; img_stack[pano_y][pano_x][i].exists = 1; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } } } } } #if BGSPRITE_BLENDING_MODE == 0 // swaps two YuvPixels. static void swap_yuv(YuvPixel *a, YuvPixel *b) { const YuvPixel temp = *b; *b = *a; *a = temp; } // Partitions array to find pivot index in qselect. static int partition(YuvPixel arr[], int left, int right, int pivot_idx) { YuvPixel pivot = arr[pivot_idx]; // Move pivot to the end. swap_yuv(&arr[pivot_idx], &arr[right]); int p_idx = left; for (int i = left; i < right; ++i) { if (arr[i].y <= pivot.y) { swap_yuv(&arr[i], &arr[p_idx]); p_idx++; } } swap_yuv(&arr[p_idx], &arr[right]); return p_idx; } // Returns the kth element in array, partially sorted in place (quickselect). static YuvPixel qselect(YuvPixel arr[], int left, int right, int k) { if (left >= right) { return arr[left]; } unsigned int seed = (int)time(NULL); int pivot_idx = left + rand_r(&seed) % (right - left + 1); pivot_idx = partition(arr, left, right, pivot_idx); if (k == pivot_idx) { return arr[k]; } else if (k < pivot_idx) { return qselect(arr, left, pivot_idx - 1, k); } else { return qselect(arr, pivot_idx + 1, right, k); } } // Blends image stack together using a temporal median. static void blend_median(const int width, const int height, const int num_frames, const YuvPixel ***image_stack, YuvPixel **blended_img) { // Allocate stack of pixels YuvPixel *pixel_stack = aom_calloc(num_frames, sizeof(*pixel_stack)); // Apply median filtering using quickselect. for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int count = 0; for (int i = 0; i < num_frames; ++i) { if (image_stack[y][x][i].exists) { pixel_stack[count] = image_stack[y][x][i]; ++count; } } if (count == 0) { // Just make the pixel black. // TODO(toddnguyen): Color the pixel with nearest neighbor blended_img[y][x].exists = 0; } else { const int median_idx = (int)floor(count / 2); YuvPixel median = qselect(pixel_stack, 0, count - 1, median_idx); // Make the median value the 0th index for UV subsampling later blended_img[y][x] = median; blended_img[y][x].exists = 1; } } } aom_free(pixel_stack); } #endif // BGSPRITE_BLENDING_MODE == 0 #if BGSPRITE_BLENDING_MODE == 1 // Blends image stack together using a temporal mean. static void blend_mean(const int width, const int height, const int num_frames, const YuvPixel ***image_stack, YuvPixel **blended_img, int highbitdepth) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { // Find uint32_t y_sum = 0; uint32_t u_sum = 0; uint32_t v_sum = 0; uint32_t count = 0; for (int i = 0; i < num_frames; ++i) { if (image_stack[y][x][i].exists) { y_sum += image_stack[y][x][i].y; u_sum += image_stack[y][x][i].u; v_sum += image_stack[y][x][i].v; ++count; } } #if BGSPRITE_MEAN_REMOVE_OUTLIERS if (count > 1) { double stdev = 0; double y_mean = (double)y_sum / count; for (int i = 0; i < num_frames; ++i) { if (image_stack[y][x][i].exists) { stdev += pow(y_mean - image_stack[y][x][i].y, 2); } } stdev = sqrt(stdev / count); uint32_t inlier_y_sum = 0; uint32_t inlier_u_sum = 0; uint32_t inlier_v_sum = 0; uint32_t inlier_count = 0; for (int i = 0; i < num_frames; ++i) { if (image_stack[y][x][i].exists && fabs(image_stack[y][x][i].y - y_mean) <= 1.5 * stdev) { inlier_y_sum += image_stack[y][x][i].y; inlier_u_sum += image_stack[y][x][i].u; inlier_v_sum += image_stack[y][x][i].v; ++inlier_count; } } count = inlier_count; y_sum = inlier_y_sum; u_sum = inlier_u_sum; v_sum = inlier_v_sum; } #endif // BGSPRITE_MEAN_REMOVE_OUTLIERS if (count != 0) { blended_img[y][x].exists = 1; #if CONFIG_HIGHBITDEPTH if (highbitdepth) { blended_img[y][x].y = (uint16_t)OD_DIVU(y_sum, count); blended_img[y][x].u = (uint16_t)OD_DIVU(u_sum, count); blended_img[y][x].v = (uint16_t)OD_DIVU(v_sum, count); } else { #endif // CONFIG_HIGHBITDEPTH (void)highbitdepth; blended_img[y][x].y = (uint8_t)OD_DIVU(y_sum, count); blended_img[y][x].u = (uint8_t)OD_DIVU(u_sum, count); blended_img[y][x].v = (uint8_t)OD_DIVU(v_sum, count); #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } else { blended_img[y][x].exists = 0; } } } } #endif // BGSPRITE_BLENDING_MODE == 1 #if BGSPRITE_ENABLE_SEGMENTATION // Builds dual-mode single gaussian model from image stack. static void build_gaussian(const YuvPixel ***image_stack, const int num_frames, const int width, const int height, const int x_block_width, const int y_block_height, const int block_size, YuvPixelGaussian **gauss) { const double initial_variance = 10.0; const double s_theta = 2.0; // Add images to dual-mode single gaussian model for (int y_block = 0; y_block < y_block_height; ++y_block) { for (int x_block = 0; x_block < x_block_width; ++x_block) { // Process all blocks. YuvPixelGaussian *model = &gauss[y_block][x_block]; // Process all frames. for (int i = 0; i < num_frames; ++i) { // Add block to the Gaussian model. double max_variance[2] = { 0.0, 0.0 }; double temp_y_mean = 0.0; double temp_u_mean = 0.0; double temp_v_mean = 0.0; // Find mean/variance of a block of pixels. int temp_count = 0; for (int sub_y = 0; sub_y < block_size; ++sub_y) { for (int sub_x = 0; sub_x < block_size; ++sub_x) { const int y = y_block * block_size + sub_y; const int x = x_block * block_size + sub_x; if (y < height && x < width && image_stack[y][x][i].exists) { ++temp_count; temp_y_mean += (double)image_stack[y][x][i].y; temp_u_mean += (double)image_stack[y][x][i].u; temp_v_mean += (double)image_stack[y][x][i].v; const double variance_0 = pow((double)image_stack[y][x][i].y - model->mean[0], 2); const double variance_1 = pow((double)image_stack[y][x][i].y - model->mean[1], 2); if (variance_0 > max_variance[0]) { max_variance[0] = variance_0; } if (variance_1 > max_variance[1]) { max_variance[1] = variance_1; } } } } // If pixels exist in the block, add to the model. if (temp_count > 0) { assert(temp_count <= block_size * block_size); temp_y_mean /= temp_count; temp_u_mean /= temp_count; temp_v_mean /= temp_count; // Switch the background model to the oldest model. if (model->age[0] > model->age[1]) { model->curr_model = 0; } else if (model->age[1] > model->age[0]) { model->curr_model = 1; } // If model is empty, initialize model. if (model->age[model->curr_model] == 0) { model->mean[model->curr_model] = temp_y_mean; model->u_mean[model->curr_model] = temp_u_mean; model->v_mean[model->curr_model] = temp_v_mean; model->var[model->curr_model] = initial_variance; model->age[model->curr_model] = 1; } else { // Constants for current model and foreground model (0 or 1). const int opposite = 1 - model->curr_model; const int current = model->curr_model; const double j = i; // Put block into the appropriate model. if (pow(temp_y_mean - model->mean[current], 2) < s_theta * model->var[current]) { // Add block to the current background model model->age[current] += 1; const double prev_weight = 1 / j; const double curr_weight = (j - 1) / j; model->mean[current] = prev_weight * model->mean[current] + curr_weight * temp_y_mean; model->u_mean[current] = prev_weight * model->u_mean[current] + curr_weight * temp_u_mean; model->v_mean[current] = prev_weight * model->v_mean[current] + curr_weight * temp_v_mean; model->var[current] = prev_weight * model->var[current] + curr_weight * max_variance[current]; } else { // Block does not fit into current background candidate. Add to // foreground candidate and reinitialize if necessary. const double var_fg = pow(temp_y_mean - model->mean[opposite], 2); if (var_fg <= s_theta * model->var[opposite]) { model->age[opposite] += 1; const double prev_weight = 1 / j; const double curr_weight = (j - 1) / j; model->mean[opposite] = prev_weight * model->mean[opposite] + curr_weight * temp_y_mean; model->u_mean[opposite] = prev_weight * model->u_mean[opposite] + curr_weight * temp_u_mean; model->v_mean[opposite] = prev_weight * model->v_mean[opposite] + curr_weight * temp_v_mean; model->var[opposite] = prev_weight * model->var[opposite] + curr_weight * max_variance[opposite]; } else if (model->age[opposite] == 0 || var_fg > s_theta * model->var[opposite]) { model->mean[opposite] = temp_y_mean; model->u_mean[opposite] = temp_u_mean; model->v_mean[opposite] = temp_v_mean; model->var[opposite] = initial_variance; model->age[opposite] = 1; } else { // This case should never happen. assert(0); } } } } } // Select the oldest candidate as the background model. if (model->age[0] == 0 && model->age[1] == 0) { model->y = 0; model->u = 0; model->v = 0; model->final_var = 0; } else if (model->age[0] > model->age[1]) { model->y = (uint8_t)model->mean[0]; model->u = (uint8_t)model->u_mean[0]; model->v = (uint8_t)model->v_mean[0]; model->final_var = model->var[0]; } else { model->y = (uint8_t)model->mean[1]; model->u = (uint8_t)model->u_mean[1]; model->v = (uint8_t)model->v_mean[1]; model->final_var = model->var[1]; } } } } // Builds foreground mask based on reference image and gaussian model. // In mask[][], 1 is foreground and 0 is background. static void build_mask(const int x_min, const int y_min, const int x_offset, const int y_offset, const int x_block_width, const int y_block_height, const int block_size, const YuvPixelGaussian **gauss, YV12_BUFFER_CONFIG *const reference, YV12_BUFFER_CONFIG *const panorama, uint8_t **mask) { const int crop_x_offset = x_min + x_offset; const int crop_y_offset = y_min + y_offset; const double d_theta = 4.0; for (int y_block = 0; y_block < y_block_height; ++y_block) { for (int x_block = 0; x_block < x_block_width; ++x_block) { // Create mask to determine if ARF is background for foreground. const YuvPixelGaussian *model = &gauss[y_block][x_block]; double temp_y_mean = 0.0; int temp_count = 0; for (int sub_y = 0; sub_y < block_size; ++sub_y) { for (int sub_x = 0; sub_x < block_size; ++sub_x) { // x and y are panorama coordinates. const int y = y_block * block_size + sub_y; const int x = x_block * block_size + sub_x; const int arf_y = y - crop_y_offset; const int arf_x = x - crop_x_offset; if (arf_y >= 0 && arf_y < panorama->y_height && arf_x >= 0 && arf_x < panorama->y_width) { ++temp_count; const int ychannel_idx = arf_y * panorama->y_stride + arf_x; temp_y_mean += (double)reference->y_buffer[ychannel_idx]; } } } if (temp_count > 0) { assert(temp_count <= block_size * block_size); temp_y_mean /= temp_count; if (pow(temp_y_mean - model->y, 2) > model->final_var * d_theta) { // Mark block as foreground. mask[y_block][x_block] = 1; } } } } } #endif // BGSPRITE_ENABLE_SEGMENTATION // Resamples blended_img into panorama, including UV subsampling. static void resample_panorama(YuvPixel **blended_img, const int center_idx, const int *const x_min, const int *const y_min, int pano_x_min, int pano_x_max, int pano_y_min, int pano_y_max, YV12_BUFFER_CONFIG *panorama) { const int width = pano_x_max - pano_x_min + 1; const int height = pano_y_max - pano_y_min + 1; const int x_offset = -pano_x_min; const int y_offset = -pano_y_min; const int crop_x_offset = x_min[center_idx] + x_offset; const int crop_y_offset = y_min[center_idx] + y_offset; #if CONFIG_HIGHBITDEPTH if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) { // Use median Y value. uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(panorama->y_buffer); uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(panorama->u_buffer); uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(panorama->v_buffer); for (int y = 0; y < panorama->y_height; ++y) { for (int x = 0; x < panorama->y_width; ++x) { const int ychannel_idx = y * panorama->y_stride + x; if (blended_img[y + crop_y_offset][x + crop_x_offset].exists) { pano_y_buffer16[ychannel_idx] = blended_img[y + crop_y_offset][x + crop_x_offset].y; } else { pano_y_buffer16[ychannel_idx] = 0; } } } // UV subsampling with median UV values for (int y = 0; y < panorama->uv_height; ++y) { for (int x = 0; x < panorama->uv_width; ++x) { uint32_t avg_count = 0; uint32_t u_sum = 0; uint32_t v_sum = 0; // Look at surrounding pixels for subsampling for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) { for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) { int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y; int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x; if (y_sample > 0 && y_sample < height && x_sample > 0 && x_sample < width && blended_img[y_sample][x_sample].exists) { u_sum += blended_img[y_sample][x_sample].u; v_sum += blended_img[y_sample][x_sample].v; avg_count++; } } } const int uvchannel_idx = y * panorama->uv_stride + x; if (avg_count != 0) { pano_u_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(u_sum, avg_count); pano_v_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(v_sum, avg_count); } else { pano_u_buffer16[uvchannel_idx] = 0; pano_v_buffer16[uvchannel_idx] = 0; } } } } else { #endif // CONFIG_HIGHBITDEPTH // Use blended Y value. for (int y = 0; y < panorama->y_height; ++y) { for (int x = 0; x < panorama->y_width; ++x) { const int ychannel_idx = y * panorama->y_stride + x; // Use filtered background. if (blended_img[y + crop_y_offset][x + crop_x_offset].exists) { panorama->y_buffer[ychannel_idx] = blended_img[y + crop_y_offset][x + crop_x_offset].y; } else { panorama->y_buffer[ychannel_idx] = 0; } } } // UV subsampling with blended UV values. for (int y = 0; y < panorama->uv_height; ++y) { for (int x = 0; x < panorama->uv_width; ++x) { uint16_t avg_count = 0; uint16_t u_sum = 0; uint16_t v_sum = 0; // Look at surrounding pixels for subsampling. for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) { for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) { int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y; int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x; if (y_sample > 0 && y_sample < height && x_sample > 0 && x_sample < width && blended_img[y_sample][x_sample].exists) { u_sum += blended_img[y_sample][x_sample].u; v_sum += blended_img[y_sample][x_sample].v; avg_count++; } } } const int uvchannel_idx = y * panorama->uv_stride + x; if (avg_count != 0) { panorama->u_buffer[uvchannel_idx] = (uint8_t)OD_DIVU(u_sum, avg_count); panorama->v_buffer[uvchannel_idx] = (uint8_t)OD_DIVU(v_sum, avg_count); } else { panorama->u_buffer[uvchannel_idx] = 0; panorama->v_buffer[uvchannel_idx] = 0; } } } #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } #if BGSPRITE_ENABLE_SEGMENTATION // Combines temporal filter output and bgsprite output to make final ARF output static void combine_arf(YV12_BUFFER_CONFIG *const temporal_arf, YV12_BUFFER_CONFIG *const bgsprite, uint8_t **const mask, const int block_size, const int x_offset, const int y_offset, YV12_BUFFER_CONFIG *target) { const int height = temporal_arf->y_height; const int width = temporal_arf->y_width; YuvPixel **blended_img = aom_malloc(height * sizeof(*blended_img)); for (int i = 0; i < height; ++i) { blended_img[i] = aom_malloc(width * sizeof(**blended_img)); } const int block_2_height = (height / BGSPRITE_MASK_BLOCK_SIZE) + (height % BGSPRITE_MASK_BLOCK_SIZE != 0 ? 1 : 0); const int block_2_width = (width / BGSPRITE_MASK_BLOCK_SIZE) + (width % BGSPRITE_MASK_BLOCK_SIZE != 0 ? 1 : 0); for (int block_y = 0; block_y < block_2_height; ++block_y) { for (int block_x = 0; block_x < block_2_width; ++block_x) { int count = 0; int total = 0; for (int sub_y = 0; sub_y < BGSPRITE_MASK_BLOCK_SIZE; ++sub_y) { for (int sub_x = 0; sub_x < BGSPRITE_MASK_BLOCK_SIZE; ++sub_x) { const int img_y = block_y * BGSPRITE_MASK_BLOCK_SIZE + sub_y; const int img_x = block_x * BGSPRITE_MASK_BLOCK_SIZE + sub_x; const int mask_y = (y_offset + img_y) / block_size; const int mask_x = (x_offset + img_x) / block_size; if (img_y < height && img_x < width) { if (mask[mask_y][mask_x]) { ++count; } ++total; } } } const double threshold = 0.30; const int amount = (int)(threshold * total); for (int sub_y = 0; sub_y < BGSPRITE_MASK_BLOCK_SIZE; ++sub_y) { for (int sub_x = 0; sub_x < BGSPRITE_MASK_BLOCK_SIZE; ++sub_x) { const int y = block_y * BGSPRITE_MASK_BLOCK_SIZE + sub_y; const int x = block_x * BGSPRITE_MASK_BLOCK_SIZE + sub_x; if (y < height && x < width) { blended_img[y][x].exists = 1; const int ychannel_idx = y * temporal_arf->y_stride + x; const int uvchannel_idx = (y >> temporal_arf->subsampling_y) * temporal_arf->uv_stride + (x >> temporal_arf->subsampling_x); if (count > amount) { // Foreground; use temporal arf. #if CONFIG_HIGHBITDEPTH if (temporal_arf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(temporal_arf->y_buffer); uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(temporal_arf->u_buffer); uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(temporal_arf->v_buffer); blended_img[y][x].y = pano_y_buffer16[ychannel_idx]; blended_img[y][x].u = pano_u_buffer16[uvchannel_idx]; blended_img[y][x].v = pano_v_buffer16[uvchannel_idx]; } else { #endif // CONFIG_HIGHBITDEPTH blended_img[y][x].y = temporal_arf->y_buffer[ychannel_idx]; blended_img[y][x].u = temporal_arf->u_buffer[uvchannel_idx]; blended_img[y][x].v = temporal_arf->v_buffer[uvchannel_idx]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } else { // Background; use bgsprite arf. #if CONFIG_HIGHBITDEPTH if (bgsprite->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(bgsprite->y_buffer); uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(bgsprite->u_buffer); uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(bgsprite->v_buffer); blended_img[y][x].y = pano_y_buffer16[ychannel_idx]; blended_img[y][x].u = pano_u_buffer16[uvchannel_idx]; blended_img[y][x].v = pano_v_buffer16[uvchannel_idx]; } else { #endif // CONFIG_HIGHBITDEPTH blended_img[y][x].y = bgsprite->y_buffer[ychannel_idx]; blended_img[y][x].u = bgsprite->u_buffer[uvchannel_idx]; blended_img[y][x].v = bgsprite->v_buffer[uvchannel_idx]; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH } } } } } } const int x_min = 0; const int y_min = 0; resample_panorama(blended_img, 0, &x_min, &y_min, 0, width - 1, 0, height - 1, target); for (int i = 0; i < height; ++i) { aom_free(blended_img[i]); } aom_free(blended_img); } #endif // BGSPRITE_ENABLE_SEGMENTATION // Stitches images together to create ARF and stores it in 'panorama'. static void stitch_images(AV1_COMP *cpi, YV12_BUFFER_CONFIG **const frames, const int num_frames, const int distance, const int center_idx, const double **const params, const int *const x_min, const int *const x_max, const int *const y_min, const int *const y_max, int pano_x_min, int pano_x_max, int pano_y_min, int pano_y_max, YV12_BUFFER_CONFIG *panorama) { const int width = pano_x_max - pano_x_min + 1; const int height = pano_y_max - pano_y_min + 1; // Create pano_stack[y][x][num_frames] stack of pixel values YuvPixel ***pano_stack = aom_malloc(height * sizeof(*pano_stack)); for (int i = 0; i < height; ++i) { pano_stack[i] = aom_malloc(width * sizeof(**pano_stack)); for (int j = 0; j < width; ++j) { pano_stack[i][j] = aom_calloc(num_frames, sizeof(***pano_stack)); } } build_image_stack(frames, num_frames, params, x_min, x_max, y_min, y_max, pano_x_min, pano_y_min, pano_stack); // Create blended_img[y][x] of combined panorama pixel values. YuvPixel **blended_img = aom_malloc(height * sizeof(*blended_img)); for (int i = 0; i < height; ++i) { blended_img[i] = aom_malloc(width * sizeof(**blended_img)); } // Blending and saving result in blended_img. #if BGSPRITE_BLENDING_MODE == 1 blend_mean(width, height, num_frames, (const YuvPixel ***)pano_stack, blended_img, panorama->flags & YV12_FLAG_HIGHBITDEPTH); #else // BGSPRITE_BLENDING_MODE != 1 blend_median(width, height, num_frames, (const YuvPixel ***)pano_stack, blended_img); #endif // BGSPRITE_BLENDING_MODE == 1 // NOTE(toddnguyen): Right now the ARF in the cpi struct is fixed size at // the same size as the frames. For now, we crop the generated panorama. assert(panorama->y_width <= width && panorama->y_height <= height); // Resamples the blended_img into the panorama buffer. YV12_BUFFER_CONFIG bgsprite; memset(&bgsprite, 0, sizeof(bgsprite)); aom_alloc_frame_buffer(&bgsprite, frames[0]->y_width, frames[0]->y_height, frames[0]->subsampling_x, frames[0]->subsampling_y, #if CONFIG_HIGHBITDEPTH frames[0]->flags & YV12_FLAG_HIGHBITDEPTH, #endif frames[0]->border, 0); aom_yv12_copy_frame(frames[0], &bgsprite); bgsprite.bit_depth = frames[0]->bit_depth; resample_panorama(blended_img, center_idx, x_min, y_min, pano_x_min, pano_x_max, pano_y_min, pano_y_max, &bgsprite); #if BGSPRITE_ENABLE_SEGMENTATION YV12_BUFFER_CONFIG temporal_bgsprite; memset(&temporal_bgsprite, 0, sizeof(temporal_bgsprite)); aom_alloc_frame_buffer(&temporal_bgsprite, frames[0]->y_width, frames[0]->y_height, frames[0]->subsampling_x, frames[0]->subsampling_y, #if CONFIG_HIGHBITDEPTH frames[0]->flags & YV12_FLAG_HIGHBITDEPTH, #endif frames[0]->border, 0); aom_yv12_copy_frame(frames[0], &temporal_bgsprite); temporal_bgsprite.bit_depth = frames[0]->bit_depth; av1_temporal_filter(cpi, &bgsprite, &temporal_bgsprite, distance); // Block size constants for gaussian model. const int N_1 = 2; const int y_block_height = (height / N_1) + (height % N_1 != 0 ? 1 : 0); const int x_block_width = (width / N_1) + (height % N_1 != 0 ? 1 : 0); YuvPixelGaussian **gauss = aom_malloc(y_block_height * sizeof(*gauss)); for (int i = 0; i < y_block_height; ++i) { gauss[i] = aom_calloc(x_block_width, sizeof(**gauss)); } // Build Gaussian model. build_gaussian((const YuvPixel ***)pano_stack, num_frames, width, height, x_block_width, y_block_height, N_1, gauss); // Select background model and build foreground mask. uint8_t **mask = aom_malloc(y_block_height * sizeof(*mask)); for (int i = 0; i < y_block_height; ++i) { mask[i] = aom_calloc(x_block_width, sizeof(**mask)); } const int x_offset = -pano_x_min; const int y_offset = -pano_y_min; build_mask(x_min[center_idx], y_min[center_idx], x_offset, y_offset, x_block_width, y_block_height, N_1, (const YuvPixelGaussian **)gauss, (YV12_BUFFER_CONFIG * const) frames[center_idx], panorama, mask); YV12_BUFFER_CONFIG temporal_arf; memset(&temporal_arf, 0, sizeof(temporal_arf)); aom_alloc_frame_buffer(&temporal_arf, frames[0]->y_width, frames[0]->y_height, frames[0]->subsampling_x, frames[0]->subsampling_y, #if CONFIG_HIGHBITDEPTH frames[0]->flags & YV12_FLAG_HIGHBITDEPTH, #endif frames[0]->border, 0); aom_yv12_copy_frame(frames[0], &temporal_arf); temporal_arf.bit_depth = frames[0]->bit_depth; av1_temporal_filter(cpi, NULL, &temporal_arf, distance); combine_arf(&temporal_arf, &temporal_bgsprite, mask, N_1, x_offset, y_offset, panorama); aom_free_frame_buffer(&temporal_arf); aom_free_frame_buffer(&temporal_bgsprite); for (int i = 0; i < y_block_height; ++i) { aom_free(gauss[i]); aom_free(mask[i]); } aom_free(gauss); aom_free(mask); #else // !BGSPRITE_ENABLE_SEGMENTATION av1_temporal_filter(cpi, &bgsprite, panorama, distance); #endif // BGSPRITE_ENABLE_SEGMENTATION aom_free_frame_buffer(&bgsprite); for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { aom_free(pano_stack[i][j]); } aom_free(pano_stack[i]); aom_free(blended_img[i]); } aom_free(pano_stack); aom_free(blended_img); } int av1_background_sprite(AV1_COMP *cpi, int distance) { #if BGSPRITE_ENABLE_METRICS // Do temporal filter if firstpass stats disable bgsprite. if (!cpi->bgsprite_allowed) { return 1; } #endif // BGSPRITE_ENABLE_METRICS YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; static const double identity_params[MAX_PARAMDIM - 1] = { 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 }; const int frames_after_arf = av1_lookahead_depth(cpi->lookahead) - distance - 1; int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; int frames_bwd; // Define the forward and backwards filter limits for this arnr group. if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > distance) frames_fwd = distance; frames_bwd = frames_fwd; #if CONFIG_EXT_REFS const GF_GROUP *const gf_group = &cpi->twopass.gf_group; if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) { cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 1; frames_fwd = 0; frames_bwd = 0; } else { cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 0; } #endif // CONFIG_EXT_REFS const int start_frame = distance + frames_fwd; const int frames_to_stitch = frames_bwd + 1 + frames_fwd; // Get frames to be included in background sprite. for (int frame = 0; frame < frames_to_stitch; ++frame) { const int which_buffer = start_frame - frame; struct lookahead_entry *buf = av1_lookahead_peek(cpi->lookahead, which_buffer); frames[frames_to_stitch - 1 - frame] = &buf->img; } // Allocate empty arrays for parameters between frames. double **params = aom_malloc(frames_to_stitch * sizeof(*params)); for (int i = 0; i < frames_to_stitch; ++i) { params[i] = aom_malloc(sizeof(identity_params)); memcpy(params[i], identity_params, sizeof(identity_params)); } // Use global motion to find affine transformations between frames. // params[i] will have the transform from frame[i] to frame[i-1]. // params[0] will have the identity matrix (has no previous frame). #if BGSPRITE_ENABLE_GME TransformationType model = AFFINE; int inliers_by_motion[RANSAC_NUM_MOTIONS]; for (int frame = 0; frame < frames_to_stitch - 1; ++frame) { const int global_motion_ret = compute_global_motion_feature_based( model, frames[frame + 1], frames[frame], #if CONFIG_HIGHBITDEPTH cpi->common.bit_depth, #endif // CONFIG_HIGHBITDEPTH inliers_by_motion, params[frame + 1], RANSAC_NUM_MOTIONS); // Quit if global motion had an error. if (global_motion_ret == 0) { for (int i = 0; i < frames_to_stitch; ++i) { aom_free(params[i]); } aom_free(params); return 1; } } #endif // BGSPRITE_ENABLE_GME // Compound the transformation parameters. for (int i = 1; i < frames_to_stitch; ++i) { multiply_params(params[i - 1], params[i], params[i]); } // Compute frame limits for final stitched images. int pano_x_max = INT_MIN; int pano_x_min = INT_MAX; int pano_y_max = INT_MIN; int pano_y_min = INT_MAX; int *x_max = aom_malloc(frames_to_stitch * sizeof(*x_max)); int *x_min = aom_malloc(frames_to_stitch * sizeof(*x_min)); int *y_max = aom_malloc(frames_to_stitch * sizeof(*y_max)); int *y_min = aom_malloc(frames_to_stitch * sizeof(*y_min)); find_limits(frames[0]->y_width, frames[0]->y_height, (const double **const)params, frames_to_stitch, x_min, x_max, y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max); // Center panorama on the ARF. const int center_idx = frames_bwd; assert(center_idx >= 0 && center_idx < frames_to_stitch); // Recompute transformations to adjust to center image. // Invert center image's transform. double inverse[MAX_PARAMDIM - 1] = { 0 }; invert_params(params[center_idx], inverse); // Multiply the inverse to all transformation parameters. for (int i = 0; i < frames_to_stitch; ++i) { multiply_params(inverse, params[i], params[i]); } // Recompute frame limits for new adjusted center. find_limits(frames[0]->y_width, frames[0]->y_height, (const double **const)params, frames_to_stitch, x_min, x_max, y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max); // Stitch Images and apply bgsprite filter. stitch_images(cpi, frames, frames_to_stitch, distance, center_idx, (const double **const)params, x_min, x_max, y_min, y_max, pano_x_min, pano_x_max, pano_y_min, pano_y_max, &cpi->alt_ref_buffer); // Free memory. for (int i = 0; i < frames_to_stitch; ++i) { aom_free(params[i]); } aom_free(params); aom_free(x_max); aom_free(x_min); aom_free(y_max); aom_free(y_min); return 0; } #undef _POSIX_C_SOURCE #undef BGSPRITE_BLENDING_MODE #undef BGSPRITE_INTERPOLATION #undef BGSPRITE_ENABLE_METRICS #undef BGSPRITE_ENABLE_SEGMENTATION #undef BGSPRITE_ENABLE_GME #undef BGSPRITE_MASK_BLOCK_SIZE #undef TRANSFORM_MAT_DIM