/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_ports/mem.h" #include "av1/encoder/aq_variance.h" #include "av1/common/seg_common.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/segmentation.h" #include "av1/encoder/dwt.h" #include "aom_ports/system_state.h" #define ENERGY_MIN (-4) #define ENERGY_MAX (1) #define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1) #define ENERGY_IN_BOUNDS(energy) \ assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX) static const double rate_ratio[MAX_SEGMENTS] = { 2.5, 2.0, 1.5, 1.0, 0.75, 1.0, 1.0, 1.0 }; static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 }; #define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN] DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 }; DECLARE_ALIGNED(16, static const uint16_t, av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; unsigned int av1_vaq_segment_id(int energy) { ENERGY_IN_BOUNDS(energy); return SEGMENT_ID(energy); } void av1_vaq_frame_setup(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; struct segmentation *seg = &cm->seg; int i; int resolution_change = cm->prev_frame && (cm->width != cm->prev_frame->width || cm->height != cm->prev_frame->height); if (resolution_change) { memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); av1_clearall_segfeatures(seg); aom_clear_system_state(); av1_disable_segmentation(seg); return; } if (frame_is_intra_only(cm) || cm->error_resilient_mode || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { cpi->vaq_refresh = 1; av1_enable_segmentation(seg); av1_clearall_segfeatures(seg); aom_clear_system_state(); for (i = 0; i < MAX_SEGMENTS; ++i) { int qindex_delta = av1_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex, rate_ratio[i], cm->seq_params.bit_depth); // We don't allow qindex 0 in a segment if the base value is not 0. // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment // Q delta is sometimes applied without going back around the rd loop. // This could lead to an illegal combination of partition size and q. if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { qindex_delta = -cm->base_qindex + 1; } av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q); } } } /* TODO(agrange, paulwilkins): The block_variance calls the unoptimized versions * of variance() and highbd_8_variance(). It should not. */ static void aq_variance(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int w, int h, unsigned int *sse, int *sum) { int i, j; *sum = 0; *sse = 0; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { const int diff = a[j] - b[j]; *sum += diff; *sse += diff * diff; } a += a_stride; b += b_stride; } } static void aq_highbd_variance64(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, uint64_t *sse, uint64_t *sum) { int i, j; uint16_t *a = CONVERT_TO_SHORTPTR(a8); uint16_t *b = CONVERT_TO_SHORTPTR(b8); *sum = 0; *sse = 0; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { const int diff = a[j] - b[j]; *sum += diff; *sse += diff * diff; } a += a_stride; b += b_stride; } } static void aq_highbd_8_variance(const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, int w, int h, unsigned int *sse, int *sum) { uint64_t sse_long = 0; uint64_t sum_long = 0; aq_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); *sse = (unsigned int)sse_long; *sum = (int)sum_long; } static unsigned int block_variance(const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bs) { MACROBLOCKD *xd = &x->e_mbd; unsigned int var, sse; int right_overflow = (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; int bottom_overflow = (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; if (right_overflow || bottom_overflow) { const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; int avg; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { aq_highbd_8_variance(x->plane[0].src.buf, x->plane[0].src.stride, CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, bw, bh, &sse, &avg); sse >>= 2 * (xd->bd - 8); avg >>= (xd->bd - 8); } else { aq_variance(x->plane[0].src.buf, x->plane[0].src.stride, av1_all_zeros, 0, bw, bh, &sse, &avg); } var = sse - (unsigned int)(((int64_t)avg * avg) / (bw * bh)); return (unsigned int)((uint64_t)var * 256) / (bw * bh); } else { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse); } else { var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, av1_all_zeros, 0, &sse); } return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs]; } } double av1_log_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { unsigned int var = block_variance(cpi, x, bs); aom_clear_system_state(); return log(var + 1.0); } #define DEFAULT_E_MIDPOINT 10.0 int av1_block_energy(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { double energy; double energy_midpoint; aom_clear_system_state(); energy_midpoint = (cpi->oxcf.pass == 2) ? cpi->twopass.mb_av_energy : DEFAULT_E_MIDPOINT; energy = av1_log_block_var(cpi, x, bs) - energy_midpoint; return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); } unsigned int haar_ac_energy(MACROBLOCK *x, BLOCK_SIZE bs) { MACROBLOCKD *xd = &x->e_mbd; int stride = x->plane[0].src.stride; uint8_t *buf = x->plane[0].src.buf; const int bw = MI_SIZE * mi_size_wide[bs]; const int bh = MI_SIZE * mi_size_high[bs]; int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; int var = 0; for (int r = 0; r < bh; r += 8) for (int c = 0; c < bw; c += 8) { var += av1_haar_ac_sad_8x8_uint8_input(buf + c + r * stride, stride, hbd); } return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs]; } double av1_log_block_wavelet_energy(MACROBLOCK *x, BLOCK_SIZE bs) { unsigned int haar_sad = haar_ac_energy(x, bs); aom_clear_system_state(); return log(haar_sad + 1.0); } int av1_block_wavelet_energy_level(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { double energy, energy_midpoint; aom_clear_system_state(); energy_midpoint = (cpi->oxcf.pass == 2) ? cpi->twopass.frame_avg_haar_energy : DEFAULT_E_MIDPOINT; energy = av1_log_block_wavelet_energy(x, bs) - energy_midpoint; return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); } int av1_compute_deltaq_from_energy_level(const AV1_COMP *const cpi, int block_var_level) { ENERGY_IN_BOUNDS(block_var_level); const int rate_level = SEGMENT_ID(block_var_level); const AV1_COMMON *const cm = &cpi->common; int qindex_delta = av1_compute_qdelta_by_rate( &cpi->rc, cm->frame_type, cm->base_qindex, rate_ratio[rate_level], cm->seq_params.bit_depth); if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { qindex_delta = -cm->base_qindex + 1; } return qindex_delta; }