/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/mvref_common.h" #include "av1/common/pred_common.h" #include "av1/common/reconinter.h" #if CONFIG_EXT_INTRA #include "av1/common/reconintra.h" #endif // CONFIG_EXT_INTRA #include "av1/common/seg_common.h" #if CONFIG_WARPED_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_WARPED_MOTION #include "av1/decoder/decodeframe.h" #include "av1/decoder/decodemv.h" #include "aom_dsp/aom_dsp_common.h" #define ACCT_STR __func__ #define DEC_MISMATCH_DEBUG 0 static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) { return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR); } static int read_delta_qindex(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r, MB_MODE_INFO *const mbmi, int mi_col, int mi_row) { FRAME_COUNTS *counts = xd->counts; int sign, abs, reduced_delta_qindex = 0; BLOCK_SIZE bsize = mbmi->sb_type; const int b_col = mi_col & MAX_MIB_MASK; const int b_row = mi_row & MAX_MIB_MASK; const int read_delta_q_flag = (b_col == 0 && b_row == 0); int rem_bits, thr; int i, smallval; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; if ((bsize != BLOCK_LARGEST || mbmi->skip == 0) && read_delta_q_flag) { abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR); smallval = (abs < DELTA_Q_SMALL); if (counts) { for (i = 0; i < abs; ++i) counts->delta_q[i][1]++; if (smallval) counts->delta_q[abs][0]++; } if (!smallval) { rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; thr = (1 << rem_bits) + 1; abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; } if (abs) { sign = aom_read_bit(r, ACCT_STR); } else { sign = 1; } reduced_delta_qindex = sign ? -abs : abs; } return reduced_delta_qindex; } #if CONFIG_EXT_DELTA_Q static int read_delta_lflevel(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r, #if CONFIG_LOOPFILTER_LEVEL int lf_id, #endif MB_MODE_INFO *const mbmi, int mi_col, int mi_row) { FRAME_COUNTS *counts = xd->counts; int sign, abs, reduced_delta_lflevel = 0; BLOCK_SIZE bsize = mbmi->sb_type; const int b_col = mi_col & MAX_MIB_MASK; const int b_row = mi_row & MAX_MIB_MASK; const int read_delta_lf_flag = (b_col == 0 && b_row == 0); int rem_bits, thr; int i, smallval; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; if ((bsize != cm->sb_size || mbmi->skip == 0) && read_delta_lf_flag) { #if CONFIG_LOOPFILTER_LEVEL if (cm->delta_lf_multi) { assert(lf_id >= 0 && lf_id < FRAME_LF_COUNT); abs = aom_read_symbol(r, ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1, ACCT_STR); } else { abs = aom_read_symbol(r, ec_ctx->delta_lf_cdf, DELTA_LF_PROBS + 1, ACCT_STR); } #else abs = aom_read_symbol(r, ec_ctx->delta_lf_cdf, DELTA_LF_PROBS + 1, ACCT_STR); #endif // CONFIG_LOOPFILTER_LEVEL smallval = (abs < DELTA_LF_SMALL); if (counts) { #if CONFIG_LOOPFILTER_LEVEL if (cm->delta_lf_multi) { for (i = 0; i < abs; ++i) counts->delta_lf_multi[lf_id][i][1]++; if (smallval) counts->delta_lf_multi[lf_id][abs][0]++; } else { for (i = 0; i < abs; ++i) counts->delta_lf[i][1]++; if (smallval) counts->delta_lf[abs][0]++; } #else for (i = 0; i < abs; ++i) counts->delta_lf[i][1]++; if (smallval) counts->delta_lf[abs][0]++; #endif // CONFIG_LOOPFILTER_LEVEL } if (!smallval) { rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; thr = (1 << rem_bits) + 1; abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; } if (abs) { sign = aom_read_bit(r, ACCT_STR); } else { sign = 1; } reduced_delta_lflevel = sign ? -abs : abs; } return reduced_delta_lflevel; } #endif static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx, aom_reader *r, PREDICTION_MODE y_mode) { const UV_PREDICTION_MODE uv_mode = #if CONFIG_CFL aom_read_symbol(r, ec_ctx->uv_mode_cdf[y_mode], UV_INTRA_MODES, ACCT_STR); #else read_intra_mode(r, ec_ctx->uv_mode_cdf[y_mode]); #endif // CONFIG_CFL return uv_mode; } #if CONFIG_CFL static int read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r, int *signs_out) { const int joint_sign = aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs"); int idx = 0; // Magnitudes are only coded for nonzero values if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; idx = aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u") << CFL_ALPHABET_SIZE_LOG2; } if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; idx += aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v"); } *signs_out = joint_sign; return idx; } #endif #if CONFIG_INTERINTRA static INTERINTRA_MODE read_interintra_mode(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r, int size_group) { (void)cm; const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol( r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES, ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->interintra_mode[size_group][ii_mode]; return ii_mode; } #endif // CONFIG_INTERINTRA static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, MACROBLOCKD *xd, aom_reader *r, int16_t ctx) { FRAME_COUNTS *counts = xd->counts; int16_t mode_ctx = ctx & NEWMV_CTX_MASK; int is_newmv, is_zeromv, is_refmv; #if CONFIG_NEW_MULTISYMBOL is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0; #else is_newmv = aom_read(r, ec_ctx->newmv_prob[mode_ctx], ACCT_STR) == 0; #endif if (is_newmv) { if (counts) ++counts->newmv_mode[mode_ctx][0]; return NEWMV; } if (counts) ++counts->newmv_mode[mode_ctx][1]; if (ctx & (1 << ALL_ZERO_FLAG_OFFSET)) return ZEROMV; mode_ctx = (ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; #if CONFIG_NEW_MULTISYMBOL is_zeromv = aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0; #else is_zeromv = aom_read(r, ec_ctx->zeromv_prob[mode_ctx], ACCT_STR) == 0; #endif if (is_zeromv) { if (counts) ++counts->zeromv_mode[mode_ctx][0]; return ZEROMV; } if (counts) ++counts->zeromv_mode[mode_ctx][1]; mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; if (ctx & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; if (ctx & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; if (ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; #if CONFIG_NEW_MULTISYMBOL is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0; #else is_refmv = aom_read(r, ec_ctx->refmv_prob[mode_ctx], ACCT_STR) == 0; #endif if (is_refmv) { if (counts) ++counts->refmv_mode[mode_ctx][0]; return NEARESTMV; } else { if (counts) ++counts->refmv_mode[mode_ctx][1]; return NEARMV; } // Invalid prediction mode. assert(0); } static void read_drl_idx(FRAME_CONTEXT *ec_ctx, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, aom_reader *r) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); mbmi->ref_mv_idx = 0; if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV #if CONFIG_COMPOUND_SINGLEREF || mbmi->mode == SR_NEW_NEWMV #endif // CONFIG_COMPOUND_SINGLEREF ) { int idx; for (idx = 0; idx < 2; ++idx) { if (xd->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx); #if CONFIG_NEW_MULTISYMBOL int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); #else int drl_idx = aom_read(r, ec_ctx->drl_prob[drl_ctx], ACCT_STR); #endif mbmi->ref_mv_idx = idx + drl_idx; if (xd->counts) ++xd->counts->drl_mode[drl_ctx][drl_idx]; if (!drl_idx) return; } } } if (have_nearmv_in_inter_mode(mbmi->mode)) { int idx; // Offset the NEARESTMV mode. // TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV // mode is factored in. for (idx = 1; idx < 3; ++idx) { if (xd->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx); #if CONFIG_NEW_MULTISYMBOL int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); #else int drl_idx = aom_read(r, ec_ctx->drl_prob[drl_ctx], ACCT_STR); #endif mbmi->ref_mv_idx = idx + drl_idx - 1; if (xd->counts) ++xd->counts->drl_mode[drl_ctx][drl_idx]; if (!drl_idx) return; } } } } #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd, MODE_INFO *mi, aom_reader *r) { MB_MODE_INFO *mbmi = &mi->mbmi; #if !CONFIG_MOTION_VAR || !CONFIG_WARPED_MOTION || CONFIG_NEW_MULTISYMBOL || \ CONFIG_NCOBMC_ADAPT_WEIGHT (void)cm; #endif const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed( #if CONFIG_GLOBAL_MOTION 0, xd->global_motion, #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION xd, #endif mi); int motion_mode; FRAME_COUNTS *counts = xd->counts; if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION; #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION #if CONFIG_NCOBMC_ADAPT_WEIGHT if (last_motion_mode_allowed == NCOBMC_ADAPT_WEIGHT) { motion_mode = aom_read_symbol(r, xd->tile_ctx->ncobmc_cdf[mbmi->sb_type], OBMC_FAMILY_MODES, ACCT_STR); if (counts) ++counts->ncobmc[mbmi->sb_type][motion_mode]; return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); } else if (last_motion_mode_allowed == OBMC_CAUSAL) { motion_mode = aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR); if (counts) ++counts->obmc[mbmi->sb_type][motion_mode]; return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); } else { #else if (last_motion_mode_allowed == OBMC_CAUSAL) { #if CONFIG_NEW_MULTISYMBOL motion_mode = aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR); #else motion_mode = aom_read(r, cm->fc->obmc_prob[mbmi->sb_type], ACCT_STR); #endif if (counts) ++counts->obmc[mbmi->sb_type][motion_mode]; return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); } else { #endif // CONFIG_NCOBMC_ADAPT_WEIGHT #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION motion_mode = aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], MOTION_MODES, ACCT_STR); if (counts) ++counts->motion_mode[mbmi->sb_type][motion_mode]; return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION } #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION } #if CONFIG_NCOBMC_ADAPT_WEIGHT static void read_ncobmc_mode(MACROBLOCKD *xd, MODE_INFO *mi, NCOBMC_MODE ncobmc_mode[2], aom_reader *r) { MB_MODE_INFO *mbmi = &mi->mbmi; FRAME_COUNTS *counts = xd->counts; ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[mbmi->sb_type]; if (mbmi->motion_mode != NCOBMC_ADAPT_WEIGHT) return; ncobmc_mode[0] = aom_read_symbol(r, xd->tile_ctx->ncobmc_mode_cdf[ao_block], MAX_NCOBMC_MODES, ACCT_STR); if (counts) ++counts->ncobmc_mode[ao_block][ncobmc_mode[0]]; if (mi_size_wide[mbmi->sb_type] != mi_size_high[mbmi->sb_type]) { ncobmc_mode[1] = aom_read_symbol(r, xd->tile_ctx->ncobmc_mode_cdf[ao_block], MAX_NCOBMC_MODES, ACCT_STR); if (counts) ++counts->ncobmc_mode[ao_block][ncobmc_mode[1]]; } } #endif // CONFIG_NCOBMC_ADAPT_WEIGHT #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION static PREDICTION_MODE read_inter_compound_mode(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r, int16_t ctx) { (void)cm; const int mode = aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx], INTER_COMPOUND_MODES, ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->inter_compound_mode[ctx][mode]; assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode)); return NEAREST_NEARESTMV + mode; } #if CONFIG_COMPOUND_SINGLEREF static PREDICTION_MODE read_inter_singleref_comp_mode(MACROBLOCKD *xd, aom_reader *r, int16_t ctx) { const int mode = aom_read_symbol(r, xd->tile_ctx->inter_singleref_comp_mode_cdf[ctx], INTER_SINGLEREF_COMP_MODES, ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->inter_singleref_comp_mode[ctx][mode]; assert(is_inter_singleref_comp_mode(SR_NEAREST_NEARMV + mode)); return SR_NEAREST_NEARMV + mode; } #endif // CONFIG_COMPOUND_SINGLEREF static int read_segment_id(aom_reader *r, struct segmentation_probs *segp) { return aom_read_symbol(r, segp->tree_cdf, MAX_SEGMENTS, ACCT_STR); } #if CONFIG_VAR_TX static void read_tx_size_vartx(AV1_COMMON *cm, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, int blk_row, int blk_col, aom_reader *r) { #if CONFIG_NEW_MULTISYMBOL FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; #endif int is_split = 0; const int tx_row = blk_row >> 1; const int tx_col = blk_col >> 1; const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, mbmi->sb_type, tx_size); TX_SIZE(*const inter_tx_size) [MAX_MIB_SIZE] = (TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; assert(tx_size > TX_4X4); if (depth == MAX_VARTX_DEPTH) { int idx, idy; inter_tx_size[0][0] = tx_size; for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy) for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx) inter_tx_size[idy][idx] = tx_size; mbmi->tx_size = tx_size; mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size)); txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); return; } #if CONFIG_NEW_MULTISYMBOL is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR); #else is_split = aom_read(r, cm->fc->txfm_partition_prob[ctx], ACCT_STR); #endif if (is_split) { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsl = tx_size_wide_unit[sub_txs]; int i; if (counts) ++counts->txfm_partition[ctx][1]; if (sub_txs == TX_4X4) { int idx, idy; inter_tx_size[0][0] = sub_txs; for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy) for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx) inter_tx_size[idy][idx] = inter_tx_size[0][0]; mbmi->tx_size = sub_txs; mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, sub_txs, tx_size); return; } assert(bsl > 0); for (i = 0; i < 4; ++i) { int offsetr = blk_row + (i >> 1) * bsl; int offsetc = blk_col + (i & 0x01) * bsl; read_tx_size_vartx(cm, xd, mbmi, counts, sub_txs, depth + 1, offsetr, offsetc, r); } } else { int idx, idy; inter_tx_size[0][0] = tx_size; for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy) for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx) inter_tx_size[idy][idx] = tx_size; mbmi->tx_size = tx_size; mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size)); if (counts) ++counts->txfm_partition[ctx][0]; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); } } #endif static TX_SIZE read_selected_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int32_t tx_size_cat, aom_reader *r) { FRAME_COUNTS *counts = xd->counts; const int ctx = get_tx_size_context(xd); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], tx_size_cat + 2, ACCT_STR); const TX_SIZE tx_size = depth_to_tx_size(depth); #if CONFIG_RECT_TX assert(!is_rect_tx(tx_size)); #endif // CONFIG_RECT_TX if (counts) ++counts->tx_size[tx_size_cat][ctx][depth]; return tx_size; } static TX_SIZE read_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int is_inter, int allow_select_inter, aom_reader *r) { const TX_MODE tx_mode = cm->tx_mode; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return TX_4X4; if (block_signals_txsize(bsize)) { if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { const int32_t tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize] : intra_tx_size_cat_lookup[bsize]; const TX_SIZE coded_tx_size = read_selected_tx_size(cm, xd, tx_size_cat, r); #if CONFIG_RECT_TX && (CONFIG_EXT_TX || CONFIG_VAR_TX) if (coded_tx_size > max_txsize_lookup[bsize]) { assert(coded_tx_size == max_txsize_lookup[bsize] + 1); #if CONFIG_RECT_TX_EXT if (is_quarter_tx_allowed(xd, &xd->mi[0]->mbmi, is_inter)) { int quarter_tx; if (quarter_txsize_lookup[bsize] != max_txsize_lookup[bsize]) { #if CONFIG_NEW_MULTISYMBOL quarter_tx = aom_read_symbol(r, cm->fc->quarter_tx_size_cdf, 2, ACCT_STR); #else quarter_tx = aom_read(r, cm->fc->quarter_tx_size_prob, ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->quarter_tx_size[quarter_tx]; #endif } else { quarter_tx = 1; } return quarter_tx ? quarter_txsize_lookup[bsize] : max_txsize_rect_lookup[bsize]; } #endif // CONFIG_RECT_TX_EXT return max_txsize_rect_lookup[bsize]; } #else assert(coded_tx_size <= max_txsize_lookup[bsize]); #endif // CONFIG_RECT_TX && (CONFIG_EXT_TX || CONFIG_VAR_TX) return coded_tx_size; } else { return tx_size_from_tx_mode(bsize, tx_mode, is_inter); } } else { #if CONFIG_EXT_TX && CONFIG_RECT_TX assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); return max_txsize_rect_lookup[bsize]; #else return TX_4X4; #endif // CONFIG_EXT_TX && CONFIG_RECT_TX } } static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y, segment_id = INT_MAX; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) segment_id = AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis, int segment_id) { int x, y; assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_offset, int x_mis, int y_mis, aom_reader *r) { struct segmentation *const seg = &cm->seg; FRAME_COUNTS *counts = xd->counts; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; struct segmentation_probs *const segp = &ec_ctx->seg; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation assert(seg->update_map && !seg->temporal_update); segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_total[segment_id]; set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static void copy_segment_id(const AV1_COMMON *cm, const uint8_t *last_segment_ids, uint8_t *current_segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) current_segment_ids[mi_offset + y * cm->mi_cols + x] = last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x] : 0; } static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { struct segmentation *const seg = &cm->seg; FRAME_COUNTS *counts = xd->counts; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; struct segmentation_probs *const segp = &ec_ctx->seg; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; int predicted_segment_id, segment_id; const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = mi_size_wide[mbmi->sb_type]; const int bh = mi_size_high[mbmi->sb_type]; // TODO(slavarnway): move x_mis, y_mis into xd ????? const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw); const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh); if (!seg->enabled) return 0; // Default for disabled segmentation predicted_segment_id = cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset, x_mis, y_mis) : 0; if (!seg->update_map) { copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, mi_offset, x_mis, y_mis); return predicted_segment_id; } if (seg->temporal_update) { const int ctx = av1_get_pred_context_seg_id(xd); #if CONFIG_NEW_MULTISYMBOL aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx]; mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR); #else const aom_prob pred_prob = segp->pred_probs[ctx]; mbmi->seg_id_predicted = aom_read(r, pred_prob, ACCT_STR); #endif if (counts) ++counts->seg.pred[ctx][mbmi->seg_id_predicted]; if (mbmi->seg_id_predicted) { segment_id = predicted_segment_id; } else { segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_mispred[segment_id]; } } else { segment_id = read_segment_id(r, segp); if (counts) ++counts->seg.tree_total[segment_id]; } set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = av1_get_skip_context(xd); #if CONFIG_NEW_MULTISYMBOL FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const int skip = aom_read_symbol(r, ec_ctx->skip_cdfs[ctx], 2, ACCT_STR); #else const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR); #endif FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->skip[ctx][skip]; return skip; } } #if CONFIG_PALETTE_DELTA_ENCODING // Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1]) // and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into // one single sorted list(colors[...]). static void merge_colors(uint16_t *colors, uint16_t *cached_colors, int n_colors, int n_cached_colors) { if (n_cached_colors == 0) return; int cache_idx = 0, trans_idx = n_cached_colors; for (int i = 0; i < n_colors; ++i) { if (cache_idx < n_cached_colors && (trans_idx >= n_colors || cached_colors[cache_idx] <= colors[trans_idx])) { colors[i] = cached_colors[cache_idx++]; } else { assert(trans_idx < n_colors); colors[i] = colors[trans_idx++]; } } } static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth, PALETTE_MODE_INFO *const pmi, aom_reader *r) { uint16_t color_cache[2 * PALETTE_MAX_SIZE]; uint16_t cached_colors[PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 0, color_cache); const int n = pmi->palette_size[0]; int idx = 0; for (int i = 0; i < n_cache && idx < n; ++i) if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; if (idx < n) { const int n_cached_colors = idx; pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); if (idx < n) { const int min_bits = bit_depth - 3; int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1; for (; idx < n; ++idx) { assert(range >= 0); const int delta = aom_read_literal(r, bits, ACCT_STR) + 1; pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, 0, (1 << bit_depth) - 1); range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); bits = AOMMIN(bits, av1_ceil_log2(range)); } } merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors); } else { memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0])); } } static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth, PALETTE_MODE_INFO *const pmi, aom_reader *r) { const int n = pmi->palette_size[1]; // U channel colors. uint16_t color_cache[2 * PALETTE_MAX_SIZE]; uint16_t cached_colors[PALETTE_MAX_SIZE]; const int n_cache = av1_get_palette_cache(xd, 1, color_cache); int idx = 0; for (int i = 0; i < n_cache && idx < n; ++i) if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; if (idx < n) { const int n_cached_colors = idx; idx += PALETTE_MAX_SIZE; pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); if (idx < PALETTE_MAX_SIZE + n) { const int min_bits = bit_depth - 3; int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); int range = (1 << bit_depth) - pmi->palette_colors[idx - 1]; for (; idx < PALETTE_MAX_SIZE + n; ++idx) { assert(range >= 0); const int delta = aom_read_literal(r, bits, ACCT_STR); pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, 0, (1 << bit_depth) - 1); range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); bits = AOMMIN(bits, av1_ceil_log2(range)); } } merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n, n_cached_colors); } else { memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n * sizeof(cached_colors[0])); } // V channel colors. if (aom_read_bit(r, ACCT_STR)) { // Delta encoding. const int min_bits_v = bit_depth - 4; const int max_val = 1 << bit_depth; int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR); pmi->palette_colors[2 * PALETTE_MAX_SIZE] = aom_read_literal(r, bit_depth, ACCT_STR); for (int i = 1; i < n; ++i) { int delta = aom_read_literal(r, bits, ACCT_STR); if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta; int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta; if (val < 0) val += max_val; if (val >= max_val) val -= max_val; pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val; } } else { for (int i = 0; i < n; ++i) { pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = aom_read_literal(r, bit_depth, ACCT_STR); } } } #endif // CONFIG_PALETTE_DELTA_ENCODING static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const BLOCK_SIZE bsize = mbmi->sb_type; PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_LARGEST); const int block_palette_idx = bsize - BLOCK_8X8; int modev; if (mbmi->mode == DC_PRED) { int palette_y_mode_ctx = 0; if (above_mi) { palette_y_mode_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); } if (left_mi) { palette_y_mode_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); } #if CONFIG_NEW_MULTISYMBOL modev = aom_read_symbol( r, xd->tile_ctx->palette_y_mode_cdf[block_palette_idx][palette_y_mode_ctx], 2, ACCT_STR); #else modev = aom_read( r, av1_default_palette_y_mode_prob[block_palette_idx][palette_y_mode_ctx], ACCT_STR); #endif if (modev) { pmi->palette_size[0] = aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[block_palette_idx], PALETTE_SIZES, ACCT_STR) + 2; #if CONFIG_PALETTE_DELTA_ENCODING read_palette_colors_y(xd, cm->bit_depth, pmi, r); #else for (int i = 0; i < pmi->palette_size[0]; ++i) pmi->palette_colors[i] = aom_read_literal(r, cm->bit_depth, ACCT_STR); #endif // CONFIG_PALETTE_DELTA_ENCODING } } if (mbmi->uv_mode == UV_DC_PRED) { const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); #if CONFIG_NEW_MULTISYMBOL modev = aom_read_symbol( r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR); #else modev = aom_read(r, av1_default_palette_uv_mode_prob[palette_uv_mode_ctx], ACCT_STR); #endif if (modev) { pmi->palette_size[1] = aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[block_palette_idx], PALETTE_SIZES, ACCT_STR) + 2; #if CONFIG_PALETTE_DELTA_ENCODING read_palette_colors_uv(xd, cm->bit_depth, pmi, r); #else for (int i = 0; i < pmi->palette_size[1]; ++i) { pmi->palette_colors[PALETTE_MAX_SIZE + i] = aom_read_literal(r, cm->bit_depth, ACCT_STR); pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = aom_read_literal(r, cm->bit_depth, ACCT_STR); } #endif // CONFIG_PALETTE_DELTA_ENCODING } } } #if CONFIG_FILTER_INTRA static void read_filter_intra_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; FRAME_COUNTS *counts = xd->counts; FILTER_INTRA_MODE_INFO *filter_intra_mode_info = &mbmi->filter_intra_mode_info; if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0) { filter_intra_mode_info->use_filter_intra_mode[0] = aom_read(r, cm->fc->filter_intra_probs[0], ACCT_STR); if (filter_intra_mode_info->use_filter_intra_mode[0]) { filter_intra_mode_info->filter_intra_mode[0] = av1_read_uniform(r, FILTER_INTRA_MODES); } if (counts) { ++counts ->filter_intra[0][filter_intra_mode_info->use_filter_intra_mode[0]]; } } #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) return; #else (void)mi_row; (void)mi_col; #endif // CONFIG_CB4X4 if (mbmi->uv_mode == UV_DC_PRED && mbmi->palette_mode_info.palette_size[1] == 0) { filter_intra_mode_info->use_filter_intra_mode[1] = aom_read(r, cm->fc->filter_intra_probs[1], ACCT_STR); if (filter_intra_mode_info->use_filter_intra_mode[1]) { filter_intra_mode_info->filter_intra_mode[1] = av1_read_uniform(r, FILTER_INTRA_MODES); } if (counts) { ++counts ->filter_intra[1][filter_intra_mode_info->use_filter_intra_mode[1]]; } } } #endif // CONFIG_FILTER_INTRA #if CONFIG_EXT_INTRA static void read_intra_angle_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *r) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; #if CONFIG_INTRA_INTERP FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; const int ctx = av1_get_pred_context_intra_interp(xd); int p_angle; #endif // CONFIG_INTRA_INTERP (void)cm; mbmi->angle_delta[0] = 0; mbmi->angle_delta[1] = 0; #if CONFIG_INTRA_INTERP mbmi->intra_filter = INTRA_FILTER_LINEAR; #endif // CONFIG_INTRA_INTERP if (!av1_use_angle_delta(bsize)) return; if (av1_is_directional_mode(mbmi->mode, bsize)) { mbmi->angle_delta[0] = av1_read_uniform(r, 2 * MAX_ANGLE_DELTA + 1) - MAX_ANGLE_DELTA; #if CONFIG_INTRA_INTERP p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (av1_is_intra_filter_switchable(p_angle)) { FRAME_COUNTS *counts = xd->counts; mbmi->intra_filter = aom_read_symbol(r, ec_ctx->intra_filter_cdf[ctx], INTRA_FILTERS, ACCT_STR); if (counts) ++counts->intra_filter[ctx][mbmi->intra_filter]; } #endif // CONFIG_INTRA_INTERP } if (av1_is_directional_mode(get_uv_mode(mbmi->uv_mode), bsize)) { mbmi->angle_delta[1] = av1_read_uniform(r, 2 * MAX_ANGLE_DELTA + 1) - MAX_ANGLE_DELTA; } } #endif // CONFIG_EXT_INTRA void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, #if CONFIG_SUPERTX int supertx_enabled, #endif #if CONFIG_TXK_SEL int blk_row, int blk_col, int block, int plane, TX_SIZE tx_size, #endif aom_reader *r) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; const int inter_block = is_inter_block(mbmi); #if !CONFIG_TXK_SEL #if CONFIG_VAR_TX const TX_SIZE tx_size = inter_block ? mbmi->min_tx_size : mbmi->tx_size; #else const TX_SIZE tx_size = mbmi->tx_size; #endif #endif // !CONFIG_TXK_SEL FRAME_CONTEXT *ec_ctx = xd->tile_ctx; #if !CONFIG_TXK_SEL TX_TYPE *tx_type = &mbmi->tx_type; #else // only y plane's tx_type is transmitted if (plane > 0) return; (void)block; TX_TYPE *tx_type = &mbmi->txk_type[(blk_row << 4) + blk_col]; #endif #if CONFIG_LGT_FROM_PRED mbmi->use_lgt = 0; #endif if (!FIXED_TX_TYPE) { #if CONFIG_EXT_TX const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; if (get_ext_tx_types(tx_size, mbmi->sb_type, inter_block, cm->reduced_tx_set_used) > 1 && ((!cm->seg.enabled && cm->base_qindex > 0) || (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { const TxSetType tx_set_type = get_ext_tx_set_type( tx_size, mbmi->sb_type, inter_block, cm->reduced_tx_set_used); const int eset = get_ext_tx_set(tx_size, mbmi->sb_type, inter_block, cm->reduced_tx_set_used); // eset == 0 should correspond to a set with only DCT_DCT and // there is no need to read the tx_type assert(eset != 0); #if !CONFIG_LGT_FROM_PRED if (inter_block) { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; } else if (ALLOW_INTRA_EXT_TX) { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; } #else // only signal tx_type when lgt is not allowed or not selected if (inter_block) { if (LGT_FROM_PRED_INTER) { if (is_lgt_allowed(mbmi->mode, tx_size) && !cm->reduced_tx_set_used) { mbmi->use_lgt = aom_read(r, ec_ctx->inter_lgt_prob[square_tx_size], ACCT_STR); #if CONFIG_ENTROPY_STATS if (counts) ++counts->inter_lgt[square_tx_size][mbmi->use_lgt]; #endif // CONFIG_ENTROPY_STATS } if (!mbmi->use_lgt) { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts->inter_ext_tx[eset][square_tx_size][*tx_type]; #endif // CONFIG_ENTROPY_STATS } else { *tx_type = DCT_DCT; // assign a dummy tx_type } } else { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts->inter_ext_tx[eset][square_tx_size][*tx_type]; #endif // CONFIG_ENTROPY_STATS } } else if (ALLOW_INTRA_EXT_TX) { if (LGT_FROM_PRED_INTRA) { if (is_lgt_allowed(mbmi->mode, tx_size) && !cm->reduced_tx_set_used) { mbmi->use_lgt = aom_read(r, ec_ctx->intra_lgt_prob[square_tx_size][mbmi->mode], ACCT_STR); #if CONFIG_ENTROPY_STATS if (counts) ++counts->intra_lgt[square_tx_size][mbmi->mode][mbmi->use_lgt]; #endif // CONFIG_ENTROPY_STATS } if (!mbmi->use_lgt) { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts ->intra_ext_tx[eset][square_tx_size][mbmi->mode][*tx_type]; #endif // CONFIG_ENTROPY_STATS } else { *tx_type = DCT_DCT; // assign a dummy tx_type } } else { *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode], av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts->intra_ext_tx[eset][square_tx_size][mbmi->mode][*tx_type]; #endif // CONFIG_ENTROPY_STATS } } #endif // CONFIG_LGT_FROM_PRED } else { *tx_type = DCT_DCT; } #else // CONFIG_EXT_TX if (tx_size < TX_32X32 && ((!cm->seg.enabled && cm->base_qindex > 0) || (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { #if CONFIG_ENTROPY_STATS FRAME_COUNTS *counts = xd->counts; #endif // CONFIG_ENTROPY_STATS if (inter_block) { *tx_type = av1_ext_tx_inv[aom_read_symbol( r, ec_ctx->inter_ext_tx_cdf[tx_size], TX_TYPES, ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts->inter_ext_tx[tx_size][*tx_type]; #endif // CONFIG_ENTROPY_STATS } else { const TX_TYPE tx_type_nom = intra_mode_to_tx_type_context[mbmi->mode]; *tx_type = av1_ext_tx_inv[aom_read_symbol( r, ec_ctx->intra_ext_tx_cdf[tx_size][tx_type_nom], TX_TYPES, ACCT_STR)]; #if CONFIG_ENTROPY_STATS if (counts) ++counts->intra_ext_tx[tx_size][tx_type_nom][*tx_type]; #endif // CONFIG_ENTROPY_STATS } } else { *tx_type = DCT_DCT; } #endif // CONFIG_EXT_TX } #if FIXED_TX_TYPE assert(mbmi->tx_type == DCT_DCT); #endif } #if CONFIG_INTRABC static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, nmv_context *ctx, nmv_context_counts *counts, MvSubpelPrecision precision); static INLINE int is_mv_valid(const MV *mv); static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv, const int_mv *ref_mv, int mi_row, int mi_col, BLOCK_SIZE bsize, aom_reader *r) { FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; FRAME_COUNTS *counts = xd->counts; nmv_context_counts *const dv_counts = counts ? &counts->dv : NULL; read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, dv_counts, MV_SUBPEL_NONE); int valid = is_mv_valid(&mv->as_mv) && is_dv_valid(mv->as_mv, &xd->tile, mi_row, mi_col, bsize); return valid; } #endif // CONFIG_INTRABC static void read_intra_frame_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const BLOCK_SIZE bsize = mbmi->sb_type; int i; const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; // TODO(slavarnway): move x_mis, y_mis into xd ????? const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw); const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh); FRAME_CONTEXT *ec_ctx = xd->tile_ctx; mbmi->segment_id = read_intra_segment_id(cm, xd, mi_offset, x_mis, y_mis, r); mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); if (cm->delta_q_present_flag) { xd->current_qindex = xd->prev_qindex + read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res; /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */ xd->current_qindex = clamp(xd->current_qindex, 1, MAXQ); xd->prev_qindex = xd->current_qindex; #if CONFIG_EXT_DELTA_Q if (cm->delta_lf_present_flag) { #if CONFIG_LOOPFILTER_LEVEL if (cm->delta_lf_multi) { for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) { mbmi->curr_delta_lf[lf_id] = xd->curr_delta_lf[lf_id] = xd->prev_delta_lf[lf_id] + read_delta_lflevel(cm, xd, r, lf_id, mbmi, mi_col, mi_row) * cm->delta_lf_res; xd->prev_delta_lf[lf_id] = xd->curr_delta_lf[lf_id]; } } else { mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base = xd->prev_delta_lf_from_base + read_delta_lflevel(cm, xd, r, -1, mbmi, mi_col, mi_row) * cm->delta_lf_res; xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base; } #else const int current_delta_lf_from_base = xd->prev_delta_lf_from_base + read_delta_lflevel(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_lf_res; mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base = clamp(current_delta_lf_from_base, 0, MAX_LOOP_FILTER); xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base; #endif // CONFIG_LOOPFILTER_LEVEL } #endif } mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE_FRAME; #if CONFIG_INTRABC if (av1_allow_intrabc(bsize, cm)) { mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR); if (mbmi->use_intrabc) { mbmi->tx_size = read_tx_size(cm, xd, 1, !mbmi->skip, r); mbmi->mode = mbmi->uv_mode = UV_DC_PRED; mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; int_mv ref_mvs[MAX_MV_REF_CANDIDATES]; av1_find_mv_refs(cm, xd, mi, INTRA_FRAME, &xd->ref_mv_count[INTRA_FRAME], xd->ref_mv_stack[INTRA_FRAME], NULL, ref_mvs, mi_row, mi_col, NULL, NULL, inter_mode_ctx); int_mv nearestmv, nearmv; av1_find_best_ref_mvs(0, ref_mvs, &nearestmv, &nearmv); int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; if (dv_ref.as_int == 0) av1_find_ref_dv(&dv_ref, mi_row, mi_col); xd->corrupted |= !assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, mi_row, mi_col, bsize, r); #if CONFIG_VAR_TX // TODO(aconverse@google.com): Evaluate allowing VAR TX on intrabc blocks const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int height = block_size_high[bsize] >> tx_size_high_log2[0]; int idx, idy; for (idy = 0; idy < height; ++idy) for (idx = 0; idx < width; ++idx) mbmi->inter_tx_size[idy >> 1][idx >> 1] = mbmi->tx_size; mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); #endif // CONFIG_VAR_TX #if CONFIG_EXT_TX && !CONFIG_TXK_SEL av1_read_tx_type(cm, xd, #if CONFIG_SUPERTX 0, #endif r); #endif // CONFIG_EXT_TX && !CONFIG_TXK_SEL return; } } #endif // CONFIG_INTRABC mbmi->tx_size = read_tx_size(cm, xd, 0, 1, r); #if CONFIG_CB4X4 (void)i; mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 0)); #else switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode( r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, i)); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 0)); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 1)); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 0)); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 2)); break; default: mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 0)); } #endif #if CONFIG_CB4X4 if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) { #if CONFIG_CFL xd->cfl->is_chroma_reference = 1; #endif // CONFIG_CFL #endif // CONFIG_CB4X4 mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, mbmi->mode); #if CONFIG_CFL if (mbmi->uv_mode == UV_CFL_PRED) { mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs); xd->cfl->store_y = 1; } else { xd->cfl->store_y = 0; } #endif // CONFIG_CFL #if CONFIG_CB4X4 } else { // Avoid decoding angle_info if there is is no chroma prediction mbmi->uv_mode = UV_DC_PRED; #if CONFIG_CFL xd->cfl->is_chroma_reference = 0; xd->cfl->store_y = 1; #endif } #endif #if CONFIG_EXT_INTRA read_intra_angle_info(cm, xd, r); #endif // CONFIG_EXT_INTRA mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) read_palette_mode_info(cm, xd, r); #if CONFIG_FILTER_INTRA mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; if (bsize >= BLOCK_8X8 || CONFIG_CB4X4) read_filter_intra_mode_info(cm, xd, mi_row, mi_col, r); #endif // CONFIG_FILTER_INTRA #if !CONFIG_TXK_SEL av1_read_tx_type(cm, xd, #if CONFIG_SUPERTX 0, #endif r); #endif // !CONFIG_TXK_SEL } static int read_mv_component(aom_reader *r, nmv_component *mvcomp, #if CONFIG_INTRABC || CONFIG_AMVR int use_subpel, #endif // CONFIG_INTRABC || CONFIG_AMVR int usehp) { int mag, d, fr, hp; #if CONFIG_NEW_MULTISYMBOL const int sign = aom_read_bit(r, ACCT_STR); #else const int sign = aom_read(r, mvcomp->sign, ACCT_STR); #endif const int mv_class = aom_read_symbol(r, mvcomp->class_cdf, MV_CLASSES, ACCT_STR); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { #if CONFIG_NEW_MULTISYMBOL d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR); #else d = aom_read(r, mvcomp->class0[0], ACCT_STR); #endif mag = 0; } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; #if CONFIG_NEW_MULTISYMBOL for (i = 0; i < n; ++i) d |= aom_read_symbol(r, mvcomp->bits_cdf[(i + 1) / 2], 2, ACCT_STR) << i; #else for (i = 0; i < n; ++i) d |= aom_read(r, mvcomp->bits[i], ACCT_STR) << i; #endif mag = CLASS0_SIZE << (mv_class + 2); } #if CONFIG_INTRABC || CONFIG_AMVR if (use_subpel) { #endif // CONFIG_INTRABC || CONFIG_AMVR // Fractional part fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, MV_FP_SIZE, ACCT_STR); // High precision part (if hp is not used, the default value of the hp is 1) #if CONFIG_NEW_MULTISYMBOL hp = usehp ? aom_read_symbol( r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2, ACCT_STR) : 1; #else hp = usehp ? aom_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp, ACCT_STR) : 1; #endif #if CONFIG_INTRABC || CONFIG_AMVR } else { fr = 3; hp = 1; } #endif // CONFIG_INTRABC || CONFIG_AMVR // Result mag += ((d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, nmv_context *ctx, nmv_context_counts *counts, MvSubpelPrecision precision) { MV_JOINT_TYPE joint_type; MV diff = { 0, 0 }; joint_type = (MV_JOINT_TYPE)aom_read_symbol(r, ctx->joint_cdf, MV_JOINTS, ACCT_STR); if (mv_joint_vertical(joint_type)) diff.row = read_mv_component(r, &ctx->comps[0], #if CONFIG_INTRABC || CONFIG_AMVR precision > MV_SUBPEL_NONE, #endif // CONFIG_INTRABC || CONFIG_AMVR precision > MV_SUBPEL_LOW_PRECISION); if (mv_joint_horizontal(joint_type)) diff.col = read_mv_component(r, &ctx->comps[1], #if CONFIG_INTRABC || CONFIG_AMVR precision > MV_SUBPEL_NONE, #endif // CONFIG_INTRABC || CONFIG_AMVR precision > MV_SUBPEL_LOW_PRECISION); av1_inc_mv(&diff, counts, precision); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, aom_reader *r) { if (!is_comp_ref_allowed(xd->mi[0]->mbmi.sb_type)) return SINGLE_REFERENCE; if (cm->reference_mode == REFERENCE_MODE_SELECT) { const int ctx = av1_get_reference_mode_context(cm, xd); #if CONFIG_NEW_MULTISYMBOL const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol( r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR); #else const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read(r, cm->fc->comp_inter_prob[ctx], ACCT_STR); #endif FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->comp_inter[ctx][mode]; return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE } else { return cm->reference_mode; } } #if CONFIG_NEW_MULTISYMBOL #define READ_REF_BIT(pname) \ aom_read_symbol(r, av1_get_pred_cdf_##pname(cm, xd), 2, ACCT_STR) #define READ_REF_BIT2(pname) \ aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR) #else #define READ_REF_BIT(pname) \ aom_read(r, av1_get_pred_prob_##pname(cm, xd), ACCT_STR) #define READ_REF_BIT2(pname) \ aom_read(r, av1_get_pred_prob_##pname(cm, xd), ACCT_STR) #endif #if CONFIG_EXT_COMP_REFS static COMP_REFERENCE_TYPE read_comp_reference_type(AV1_COMMON *cm, const MACROBLOCKD *xd, aom_reader *r) { const int ctx = av1_get_comp_reference_type_context(xd); #if USE_UNI_COMP_REFS COMP_REFERENCE_TYPE comp_ref_type; #if CONFIG_VAR_REFS if ((L_OR_L2(cm) || L3_OR_G(cm)) && BWD_OR_ALT(cm)) { if (L_AND_L2(cm) || L_AND_L3(cm) || L_AND_G(cm) || BWD_AND_ALT(cm)) { #endif // CONFIG_VAR_REFS #if CONFIG_NEW_MULTISYMBOL (void)cm; comp_ref_type = (COMP_REFERENCE_TYPE)aom_read_symbol( r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR); #else comp_ref_type = (COMP_REFERENCE_TYPE)aom_read( r, cm->fc->comp_ref_type_prob[ctx], ACCT_STR); #endif #if CONFIG_VAR_REFS } else { comp_ref_type = BIDIR_COMP_REFERENCE; } } else { comp_ref_type = UNIDIR_COMP_REFERENCE; } #endif // CONFIG_VAR_REFS #else // !USE_UNI_COMP_REFS // TODO(zoeliu): Temporarily turn off uni-directional comp refs const COMP_REFERENCE_TYPE comp_ref_type = BIDIR_COMP_REFERENCE; #endif // USE_UNI_COMP_REFS FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->comp_ref_type[ctx][comp_ref_type]; return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE } #endif // CONFIG_EXT_COMP_REFS // Read the referncence frame static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { FRAME_COUNTS *counts = xd->counts; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE_FRAME; } else { const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (mode == COMPOUND_REFERENCE) { #if CONFIG_EXT_COMP_REFS const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(cm, xd, r); #if !USE_UNI_COMP_REFS // TODO(zoeliu): Temporarily turn off uni-directional comp refs assert(comp_ref_type == BIDIR_COMP_REFERENCE); #endif // !USE_UNI_COMP_REFS if (comp_ref_type == UNIDIR_COMP_REFERENCE) { const int ctx = av1_get_pred_context_uni_comp_ref_p(xd); int bit; #if CONFIG_VAR_REFS if ((L_AND_L2(cm) || L_AND_L3(cm) || L_AND_G(cm)) && BWD_AND_ALT(cm)) #endif // CONFIG_VAR_REFS bit = READ_REF_BIT2(uni_comp_ref_p); #if CONFIG_VAR_REFS else bit = BWD_AND_ALT(cm); #endif // CONFIG_VAR_REFS if (counts) ++counts->uni_comp_ref[ctx][0][bit]; if (bit) { ref_frame[0] = BWDREF_FRAME; ref_frame[1] = ALTREF_FRAME; } else { const int ctx1 = av1_get_pred_context_uni_comp_ref_p1(xd); int bit1; #if CONFIG_VAR_REFS if (L_AND_L2(cm) && (L_AND_L3(cm) || L_AND_G(cm))) #endif // CONFIG_VAR_REFS bit1 = READ_REF_BIT2(uni_comp_ref_p1); #if CONFIG_VAR_REFS else bit1 = L_AND_L3(cm) || L_AND_G(cm); #endif // CONFIG_VAR_REFS if (counts) ++counts->uni_comp_ref[ctx1][1][bit1]; if (bit1) { const int ctx2 = av1_get_pred_context_uni_comp_ref_p2(xd); int bit2; #if CONFIG_VAR_REFS if (L_AND_L3(cm) && L_AND_G(cm)) #endif // CONFIG_VAR_REFS bit2 = READ_REF_BIT2(uni_comp_ref_p2); #if CONFIG_VAR_REFS else bit2 = L_AND_G(cm); #endif // CONFIG_VAR_REFS if (counts) ++counts->uni_comp_ref[ctx2][2][bit2]; if (bit2) { ref_frame[0] = LAST_FRAME; ref_frame[1] = GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; ref_frame[1] = LAST3_FRAME; } } else { ref_frame[0] = LAST_FRAME; ref_frame[1] = LAST2_FRAME; } } return; } assert(comp_ref_type == BIDIR_COMP_REFERENCE); #endif // CONFIG_EXT_COMP_REFS // Normative in decoder (for low delay) #if CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS const int idx = 1; #else // !(CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS) #if CONFIG_EXT_REFS const int idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; #else // !CONFIG_EXT_REFS const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; #endif // CONFIG_EXT_REFS #endif // CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS) const int ctx = av1_get_pred_context_comp_ref_p(cm, xd); #if CONFIG_VAR_REFS int bit; // Test need to explicitly code (L,L2) vs (L3,G) branch node in tree if (L_OR_L2(cm) && L3_OR_G(cm)) bit = READ_REF_BIT(comp_ref_p); else bit = L3_OR_G(cm); #else // !CONFIG_VAR_REFS const int bit = READ_REF_BIT(comp_ref_p); #endif // CONFIG_VAR_REFS if (counts) ++counts->comp_ref[ctx][0][bit]; #if CONFIG_EXT_REFS // Decode forward references. if (!bit) { const int ctx1 = av1_get_pred_context_comp_ref_p1(cm, xd); #if CONFIG_VAR_REFS int bit1; // Test need to explicitly code (L) vs (L2) branch node in tree if (L_AND_L2(cm)) bit1 = READ_REF_BIT(comp_ref_p1); else bit1 = LAST_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit1 = READ_REF_BIT(comp_ref_p1); #endif // CONFIG_VAR_REFS if (counts) ++counts->comp_ref[ctx1][1][bit1]; ref_frame[!idx] = cm->comp_fwd_ref[bit1 ? 0 : 1]; } else { const int ctx2 = av1_get_pred_context_comp_ref_p2(cm, xd); #if CONFIG_VAR_REFS int bit2; // Test need to explicitly code (L3) vs (G) branch node in tree if (L3_AND_G(cm)) bit2 = READ_REF_BIT(comp_ref_p2); else bit2 = GOLDEN_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit2 = READ_REF_BIT(comp_ref_p2); #endif // CONFIG_VAR_REFS if (counts) ++counts->comp_ref[ctx2][2][bit2]; ref_frame[!idx] = cm->comp_fwd_ref[bit2 ? 3 : 2]; } // Decode backward references. const int ctx_bwd = av1_get_pred_context_comp_bwdref_p(cm, xd); #if CONFIG_VAR_REFS int bit_bwd; // Test need to explicitly code (BWD/ALT2) vs (ALT) branch node in tree const int bit_bwd_uncertain = BWD_OR_ALT2(cm) && ALTREF_IS_VALID(cm); if (bit_bwd_uncertain) bit_bwd = READ_REF_BIT(comp_bwdref_p); else bit_bwd = ALTREF_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit_bwd = READ_REF_BIT(comp_bwdref_p); #endif // CONFIG_VAR_REFS if (counts) ++counts->comp_bwdref[ctx_bwd][0][bit_bwd]; if (!bit_bwd) { const int ctx1_bwd = av1_get_pred_context_comp_bwdref_p1(cm, xd); #if CONFIG_VAR_REFS int bit1_bwd; if (BWD_AND_ALT2(cm)) bit1_bwd = READ_REF_BIT(comp_bwdref_p1); else bit1_bwd = ALTREF2_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1); #endif // CONFIG_VAR_REFS if (counts) ++counts->comp_bwdref[ctx1_bwd][1][bit1_bwd]; ref_frame[idx] = cm->comp_bwd_ref[bit1_bwd]; } else { ref_frame[idx] = cm->comp_bwd_ref[2]; } #else // !CONFIG_EXT_REFS ref_frame[!idx] = cm->comp_var_ref[bit]; ref_frame[idx] = cm->comp_fixed_ref; #endif // CONFIG_EXT_REFS } else if (mode == SINGLE_REFERENCE) { #if CONFIG_EXT_REFS const int ctx0 = av1_get_pred_context_single_ref_p1(xd); #if CONFIG_VAR_REFS int bit0; // Test need to explicitly code (L,L2,L3,G) vs (BWD,ALT2,ALT) branch node // in tree if ((L_OR_L2(cm) || L3_OR_G(cm)) && (BWD_OR_ALT2(cm) || ALTREF_IS_VALID(cm))) bit0 = READ_REF_BIT(single_ref_p1); else bit0 = (BWD_OR_ALT2(cm) || ALTREF_IS_VALID(cm)); #else // !CONFIG_VAR_REFS const int bit0 = READ_REF_BIT(single_ref_p1); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = av1_get_pred_context_single_ref_p2(xd); #if CONFIG_VAR_REFS int bit1; // Test need to explicitly code (BWD/ALT2) vs (ALT) branch node in tree const int bit1_uncertain = BWD_OR_ALT2(cm) && ALTREF_IS_VALID(cm); if (bit1_uncertain) bit1 = READ_REF_BIT(single_ref_p2); else bit1 = ALTREF_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit1 = READ_REF_BIT(single_ref_p2); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx1][1][bit1]; if (!bit1) { const int ctx5 = av1_get_pred_context_single_ref_p6(xd); #if CONFIG_VAR_REFS int bit5; if (BWD_AND_ALT2(cm)) bit5 = READ_REF_BIT(single_ref_p6); else bit5 = ALTREF2_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit5 = READ_REF_BIT(single_ref_p6); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx5][5][bit5]; ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME; } else { ref_frame[0] = ALTREF_FRAME; } } else { const int ctx2 = av1_get_pred_context_single_ref_p3(xd); #if CONFIG_VAR_REFS int bit2; // Test need to explicitly code (L,L2) vs (L3,G) branch node in tree if (L_OR_L2(cm) && L3_OR_G(cm)) bit2 = READ_REF_BIT(single_ref_p3); else bit2 = L3_OR_G(cm); #else // !CONFIG_VAR_REFS const int bit2 = READ_REF_BIT(single_ref_p3); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx2][2][bit2]; if (bit2) { const int ctx4 = av1_get_pred_context_single_ref_p5(xd); #if CONFIG_VAR_REFS int bit4; // Test need to explicitly code (L3) vs (G) branch node in tree if (L3_AND_G(cm)) bit4 = READ_REF_BIT(single_ref_p5); else bit4 = GOLDEN_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit4 = READ_REF_BIT(single_ref_p5); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx4][4][bit4]; ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME; } else { const int ctx3 = av1_get_pred_context_single_ref_p4(xd); #if CONFIG_VAR_REFS int bit3; // Test need to explicitly code (L) vs (L2) branch node in tree if (L_AND_L2(cm)) bit3 = READ_REF_BIT(single_ref_p4); else bit3 = LAST2_IS_VALID(cm); #else // !CONFIG_VAR_REFS const int bit3 = READ_REF_BIT(single_ref_p4); #endif // CONFIG_VAR_REFS if (counts) ++counts->single_ref[ctx3][3][bit3]; ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME; } } #else // !CONFIG_EXT_REFS const int ctx0 = av1_get_pred_context_single_ref_p1(xd); const int bit0 = READ_REF_BIT(single_ref_p1); if (counts) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = av1_get_pred_context_single_ref_p2(xd); const int bit1 = READ_REF_BIT(single_ref_p2); if (counts) ++counts->single_ref[ctx1][1][bit1]; ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; } #endif // CONFIG_EXT_REFS ref_frame[1] = NONE_FRAME; } else { assert(0 && "Invalid prediction mode."); } } } static INLINE void read_mb_interp_filter(AV1_COMMON *const cm, MACROBLOCKD *const xd, MB_MODE_INFO *const mbmi, aom_reader *r) { FRAME_COUNTS *counts = xd->counts; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; if (!av1_is_interp_needed(xd)) { set_default_interp_filters(mbmi, cm->interp_filter); return; } if (cm->interp_filter != SWITCHABLE) { mbmi->interp_filters = av1_broadcast_interp_filter(cm->interp_filter); } else { #if CONFIG_DUAL_FILTER InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }; for (int dir = 0; dir < 2; ++dir) { if (has_subpel_mv_component(xd->mi[0], xd, dir) || (mbmi->ref_frame[1] > INTRA_FRAME && has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { const int ctx = av1_get_pred_context_switchable_interp(xd, dir); ref0_filter[dir] = (InterpFilter)aom_read_symbol(r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR); if (counts) ++counts->switchable_interp[ctx][ref0_filter[dir]]; } } // The index system works as: (0, 1) -> (vertical, horizontal) filter types mbmi->interp_filters = av1_make_interp_filters(ref0_filter[0], ref0_filter[1]); #else // CONFIG_DUAL_FILTER const int ctx = av1_get_pred_context_switchable_interp(xd); InterpFilter filter = (InterpFilter)aom_read_symbol( r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR); mbmi->interp_filters = av1_broadcast_interp_filter(filter); if (counts) ++counts->switchable_interp[ctx][filter]; #endif // CONFIG_DUAL_FILTER } } static void read_intra_block_mode_info(AV1_COMMON *const cm, const int mi_row, const int mi_col, MACROBLOCKD *const xd, MODE_INFO *mi, aom_reader *r) { MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; int i; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE_FRAME; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; #if CONFIG_CB4X4 (void)i; mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]); #else switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode(r, ec_ctx->y_mode_cdf[0]); mbmi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode(r, ec_ctx->y_mode_cdf[0]); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[0]); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode(r, ec_ctx->y_mode_cdf[0]); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[0]); break; default: mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]); } #endif #if CONFIG_CB4X4 if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y)) { mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, mbmi->mode); #else mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, mbmi->mode); (void)mi_row; (void)mi_col; #endif #if CONFIG_CFL if (mbmi->uv_mode == UV_CFL_PRED) { mbmi->cfl_alpha_idx = read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs); xd->cfl->store_y = 1; } else { xd->cfl->store_y = 0; } #endif // CONFIG_CFL #if CONFIG_CB4X4 } else { // Avoid decoding angle_info if there is is no chroma prediction mbmi->uv_mode = UV_DC_PRED; #if CONFIG_CFL xd->cfl->is_chroma_reference = 0; xd->cfl->store_y = 1; #endif } #endif // Explicitly ignore cm here to avoid a compile warning if none of // ext-intra, palette and filter-intra are enabled. (void)cm; #if CONFIG_EXT_INTRA read_intra_angle_info(cm, xd, r); #endif // CONFIG_EXT_INTRA mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) read_palette_mode_info(cm, xd, r); #if CONFIG_FILTER_INTRA mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; if (bsize >= BLOCK_8X8 || CONFIG_CB4X4) read_filter_intra_mode_info(cm, xd, mi_row, mi_col, r); #endif // CONFIG_FILTER_INTRA } static INLINE int is_mv_valid(const MV *mv) { return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && mv->col < MV_UPP; } static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd, PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame[2], int block, int_mv mv[2], int_mv ref_mv[2], int_mv nearest_mv[2], int_mv near_mv[2], int mi_row, int mi_col, int is_compound, int allow_hp, aom_reader *r) { int i; int ret = 1; FRAME_CONTEXT *ec_ctx = xd->tile_ctx; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; #if CONFIG_CB4X4 int_mv *pred_mv = mbmi->pred_mv; (void)block; #else int_mv *pred_mv = (bsize >= BLOCK_8X8) ? mbmi->pred_mv : xd->mi[0]->bmi[block].pred_mv; #endif // CONFIG_CB4X4 (void)ref_frame; (void)cm; (void)mi_row; (void)mi_col; (void)bsize; #if CONFIG_AMVR if (cm->cur_frame_mv_precision_level) { allow_hp = MV_SUBPEL_NONE; } #endif switch (mode) { case NEWMV: { FRAME_COUNTS *counts = xd->counts; for (i = 0; i < 1 + is_compound; ++i) { int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[i].as_mv); pred_mv[i].as_int = ref_mv[i].as_int; } break; } case NEARESTMV: { mv[0].as_int = nearest_mv[0].as_int; if (is_compound) mv[1].as_int = nearest_mv[1].as_int; pred_mv[0].as_int = nearest_mv[0].as_int; if (is_compound) pred_mv[1].as_int = nearest_mv[1].as_int; break; } case NEARMV: { mv[0].as_int = near_mv[0].as_int; if (is_compound) mv[1].as_int = near_mv[1].as_int; pred_mv[0].as_int = near_mv[0].as_int; if (is_compound) pred_mv[1].as_int = near_mv[1].as_int; break; } case ZEROMV: { #if CONFIG_GLOBAL_MOTION mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, block #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int; if (is_compound) mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, block #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int; #else mv[0].as_int = 0; if (is_compound) mv[1].as_int = 0; #endif // CONFIG_GLOBAL_MOTION pred_mv[0].as_int = mv[0].as_int; if (is_compound) pred_mv[1].as_int = mv[1].as_int; break; } #if CONFIG_COMPOUND_SINGLEREF case SR_NEAREST_NEARMV: { assert(!is_compound); mv[0].as_int = nearest_mv[0].as_int; mv[1].as_int = near_mv[0].as_int; break; } /* case SR_NEAREST_NEWMV: { assert(!is_compound); mv[0].as_int = nearest_mv[0].as_int; FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[1].as_mv); break; }*/ case SR_NEAR_NEWMV: { assert(!is_compound); mv[0].as_int = near_mv[0].as_int; FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case SR_ZERO_NEWMV: { assert(!is_compound); #if CONFIG_GLOBAL_MOTION mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, block) .as_int; #else mv[0].as_int = 0; #endif // CONFIG_GLOBAL_MOTION FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case SR_NEW_NEWMV: { assert(!is_compound); FRAME_COUNTS *counts = xd->counts; for (i = 0; i < 2; ++i) { int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[i].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[i].as_mv); } break; } #endif // CONFIG_COMPOUND_SINGLEREF case NEW_NEWMV: { FRAME_COUNTS *counts = xd->counts; assert(is_compound); for (i = 0; i < 2; ++i) { int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[i].as_mv); } break; } case NEAREST_NEARESTMV: { assert(is_compound); mv[0].as_int = nearest_mv[0].as_int; mv[1].as_int = nearest_mv[1].as_int; break; } case NEAR_NEARMV: { assert(is_compound); mv[0].as_int = near_mv[0].as_int; mv[1].as_int = near_mv[1].as_int; break; } case NEW_NEARESTMV: { FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); assert(is_compound); ret = ret && is_mv_valid(&mv[0].as_mv); mv[1].as_int = nearest_mv[1].as_int; break; } case NEAREST_NEWMV: { FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx); nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; mv[0].as_int = nearest_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, mv_counts, allow_hp); assert(is_compound); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case NEAR_NEWMV: { FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; mv[0].as_int = near_mv[0].as_int; read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, mv_counts, allow_hp); assert(is_compound); ret = ret && is_mv_valid(&mv[1].as_mv); break; } case NEW_NEARMV: { FRAME_COUNTS *counts = xd->counts; int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx); nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx]; nmv_context_counts *const mv_counts = counts ? &counts->mv[nmv_ctx] : NULL; read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp); assert(is_compound); ret = ret && is_mv_valid(&mv[0].as_mv); mv[1].as_int = near_mv[1].as_int; break; } case ZERO_ZEROMV: { assert(is_compound); #if CONFIG_GLOBAL_MOTION mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, block #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int; mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, block #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int; #else mv[0].as_int = 0; mv[1].as_int = 0; #endif // CONFIG_GLOBAL_MOTION break; } default: { return 0; } } return ret; } static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } else { const int ctx = av1_get_intra_inter_context(xd); #if CONFIG_NEW_MULTISYMBOL FRAME_CONTEXT *ec_ctx = xd->tile_ctx; const int is_inter = aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR); #else const int is_inter = aom_read(r, cm->fc->intra_inter_prob[ctx], ACCT_STR); #endif FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->intra_inter[ctx][is_inter]; return is_inter; } } #if CONFIG_COMPOUND_SINGLEREF static int read_is_inter_singleref_comp_mode(AV1_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) return 0; const int ctx = av1_get_inter_mode_context(xd); const int is_singleref_comp_mode = aom_read(r, cm->fc->comp_inter_mode_prob[ctx], ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->comp_inter_mode[ctx][is_singleref_comp_mode]; return is_singleref_comp_mode; } #endif // CONFIG_COMPOUND_SINGLEREF static void fpm_sync(void *const data, int mi_row) { AV1Decoder *const pbi = (AV1Decoder *)data; av1_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame, mi_row << pbi->common.mib_size_log2); } #if DEC_MISMATCH_DEBUG static void dec_dump_logs(AV1_COMMON *cm, MODE_INFO *const mi, int mi_row, int mi_col, int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES], int16_t mode_ctx) { int_mv mv[2] = { { 0 } }; int ref; MB_MODE_INFO *const mbmi = &mi->mbmi; for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) mv[ref].as_mv = mbmi->mv[ref].as_mv; const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; int16_t zeromv_ctx = -1; int16_t refmv_ctx = -1; if (mbmi->mode != NEWMV) { if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) assert(mbmi->mode == ZEROMV); zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; if (mbmi->mode != ZEROMV) { refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6; if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7; if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8; } } int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); #define FRAME_TO_CHECK 1 if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { printf( "=== DECODER ===: " "Frame=%d, (mi_row,mi_col)=(%d,%d), mode=%d, bsize=%d, " "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " "ref[1]=%d, motion_mode=%d, inter_mode_ctx=%d, mode_ctx=%d, " "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d\n", cm->current_video_frame, mi_row, mi_col, mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1], mbmi->motion_mode, inter_mode_ctx[ref_frame_type], mode_ctx, newmv_ctx, zeromv_ctx, refmv_ctx); } } #endif // DEC_MISMATCH_DEBUG static void read_inter_block_mode_info(AV1Decoder *const pbi, MACROBLOCKD *const xd, MODE_INFO *const mi, #if CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r, int supertx_enabled) { #else int mi_row, int mi_col, aom_reader *r) { #endif // CONFIG_MOTION_VAR && CONFIG_SUPERTX AV1_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; const int unify_bsize = CONFIG_CB4X4; int_mv nearestmv[2], nearmv[2]; int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; int ref, is_compound; #if CONFIG_COMPOUND_SINGLEREF int is_singleref_comp_mode = 0; #endif // CONFIG_COMPOUND_SINGLEREF int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; int16_t compound_inter_mode_ctx[MODE_CTX_REF_FRAMES]; int16_t mode_ctx = 0; #if CONFIG_WARPED_MOTION int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; #if WARPED_MOTION_SORT_SAMPLES int pts_mv[SAMPLES_ARRAY_SIZE]; #endif // WARPED_MOTION_SORT_SAMPLES #endif // CONFIG_WARPED_MOTION FRAME_CONTEXT *ec_ctx = xd->tile_ctx; assert(NELEMENTS(mode_2_counter) == MB_MODE_COUNT); mbmi->uv_mode = UV_DC_PRED; mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; memset(ref_mvs, 0, sizeof(ref_mvs)); read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame); is_compound = has_second_ref(mbmi); #if CONFIG_EXT_COMP_REFS #if !USE_UNI_COMP_REFS // NOTE: uni-directional comp refs disabled if (is_compound) assert(mbmi->ref_frame[0] < BWDREF_FRAME && mbmi->ref_frame[1] >= BWDREF_FRAME); #endif // !USE_UNI_COMP_REFS #endif // CONFIG_EXT_COMP_REFS #if CONFIG_COMPOUND_SINGLEREF if (!is_compound) is_singleref_comp_mode = read_is_inter_singleref_comp_mode(cm, xd, mbmi->segment_id, r); #endif // CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + is_compound; ++ref) { MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; av1_find_mv_refs(cm, xd, mi, frame, &xd->ref_mv_count[frame], xd->ref_mv_stack[frame], compound_inter_mode_ctx, ref_mvs[frame], mi_row, mi_col, fpm_sync, (void *)pbi, inter_mode_ctx); } if (is_compound) { MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame); av1_find_mv_refs(cm, xd, mi, ref_frame, &xd->ref_mv_count[ref_frame], xd->ref_mv_stack[ref_frame], compound_inter_mode_ctx, ref_mvs[ref_frame], mi_row, mi_col, fpm_sync, (void *)pbi, inter_mode_ctx); if (xd->ref_mv_count[ref_frame] < 2) { MV_REFERENCE_FRAME rf[2]; int_mv zeromv[2]; av1_set_ref_frame(rf, ref_frame); #if CONFIG_GLOBAL_MOTION zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[rf[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, 0 #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int; zeromv[1].as_int = (rf[1] != NONE_FRAME) ? gm_get_motion_vector(&cm->global_motion[rf[1]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, 0 #if CONFIG_AMVR , cm->cur_frame_mv_precision_level #endif ) .as_int : 0; #else zeromv[0].as_int = zeromv[1].as_int = 0; #endif for (ref = 0; ref < 2; ++ref) { if (rf[ref] == NONE_FRAME) continue; #if CONFIG_AMVR lower_mv_precision(&ref_mvs[rf[ref]][0].as_mv, allow_hp, cm->cur_frame_mv_precision_level); lower_mv_precision(&ref_mvs[rf[ref]][1].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&ref_mvs[rf[ref]][0].as_mv, allow_hp); lower_mv_precision(&ref_mvs[rf[ref]][1].as_mv, allow_hp); #endif if (ref_mvs[rf[ref]][0].as_int != zeromv[ref].as_int || ref_mvs[rf[ref]][1].as_int != zeromv[ref].as_int) inter_mode_ctx[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET); } } } #if CONFIG_COMPOUND_SINGLEREF if (is_compound || is_singleref_comp_mode) #else // !CONFIG_COMPOUND_SINGLEREF if (is_compound) #endif // CONFIG_COMPOUND_SINGLEREF mode_ctx = compound_inter_mode_ctx[mbmi->ref_frame[0]]; else mode_ctx = av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, -1); mbmi->ref_mv_idx = 0; #if CONFIG_SEGMENT_ZEROMV if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) || segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_ZEROMV)) { #else if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { #endif mbmi->mode = ZEROMV; if (bsize < BLOCK_8X8 && !unify_bsize) { aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Invalid usage of segment feature on small blocks"); return; } } else { if (bsize >= BLOCK_8X8 || unify_bsize) { if (is_compound) mbmi->mode = read_inter_compound_mode(cm, xd, r, mode_ctx); #if CONFIG_COMPOUND_SINGLEREF else if (is_singleref_comp_mode) mbmi->mode = read_inter_singleref_comp_mode(xd, r, mode_ctx); #endif // CONFIG_COMPOUND_SINGLEREF else mbmi->mode = read_inter_mode(ec_ctx, xd, r, mode_ctx); if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV || #if CONFIG_COMPOUND_SINGLEREF mbmi->mode == SR_NEW_NEWMV || #endif // CONFIG_COMPOUND_SINGLEREF have_nearmv_in_inter_mode(mbmi->mode)) read_drl_idx(ec_ctx, xd, mbmi, r); } } if ((bsize < BLOCK_8X8 && !unify_bsize) || (mbmi->mode != ZEROMV && mbmi->mode != ZERO_ZEROMV)) { for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_AMVR av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]], &nearestmv[ref], &nearmv[ref], cm->cur_frame_mv_precision_level); #else av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]], &nearestmv[ref], &nearmv[ref]); #endif } } #if CONFIG_COMPOUND_SINGLEREF if ((is_compound || is_singleref_comp_mode) && (bsize >= BLOCK_8X8 || unify_bsize) && mbmi->mode != ZERO_ZEROMV) #else // !CONFIG_COMPOUND_SINGLEREF if (is_compound && (bsize >= BLOCK_8X8 || unify_bsize) && mbmi->mode != ZERO_ZEROMV) #endif // CONFIG_COMPOUND_SINGLEREF { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (xd->ref_mv_count[ref_frame_type] > 0) { if (mbmi->mode == NEAREST_NEARESTMV) { nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv; nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv; #if CONFIG_AMVR lower_mv_precision(&nearestmv[0].as_mv, allow_hp, cm->cur_frame_mv_precision_level); lower_mv_precision(&nearestmv[1].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&nearestmv[0].as_mv, allow_hp); lower_mv_precision(&nearestmv[1].as_mv, allow_hp); #endif } else if (mbmi->mode == NEAREST_NEWMV #if CONFIG_COMPOUND_SINGLEREF || mbmi->mode == SR_NEAREST_NEARMV // || mbmi->mode == SR_NEAREST_NEWMV #endif // CONFIG_COMPOUND_SINGLEREF ) { nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv; #if CONFIG_AMVR lower_mv_precision(&nearestmv[0].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&nearestmv[0].as_mv, allow_hp); #endif } else if (mbmi->mode == NEW_NEARESTMV) { nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv; #if CONFIG_AMVR lower_mv_precision(&nearestmv[1].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&nearestmv[1].as_mv, allow_hp); #endif } } if (xd->ref_mv_count[ref_frame_type] > 1) { int ref_mv_idx = 1 + mbmi->ref_mv_idx; #if CONFIG_COMPOUND_SINGLEREF if (is_compound) { #endif // CONFIG_COMPOUND_SINGLEREF if (compound_ref0_mode(mbmi->mode) == NEARMV) { nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; #if CONFIG_AMVR lower_mv_precision(&nearmv[0].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&nearmv[0].as_mv, allow_hp); #endif } if (compound_ref1_mode(mbmi->mode) == NEARMV) { nearmv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; #if CONFIG_AMVR lower_mv_precision(&nearmv[1].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&nearmv[1].as_mv, allow_hp); #endif } #if CONFIG_COMPOUND_SINGLEREF } else { assert(is_singleref_comp_mode); if (compound_ref0_mode(mbmi->mode) == NEARMV || compound_ref1_mode(mbmi->mode) == NEARMV) { nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; lower_mv_precision(&nearmv[0].as_mv, allow_hp); } } #endif // CONFIG_COMPOUND_SINGLEREF } } else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) { int_mv cur_mv = xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv; nearmv[0] = cur_mv; } #if !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION read_mb_interp_filter(cm, xd, mbmi, r); #endif // !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION if (bsize < BLOCK_8X8 && !unify_bsize) { const int num_4x4_w = 1 << xd->bmode_blocks_wl; const int num_4x4_h = 1 << xd->bmode_blocks_hl; int idx, idy; PREDICTION_MODE b_mode; int_mv nearest_sub8x8[2], near_sub8x8[2]; int_mv ref_mv[2][2]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { int_mv block[2]; const int j = idy * 2 + idx; int_mv ref_mv_s8[2]; if (!is_compound) mode_ctx = av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, j); if (is_compound) b_mode = read_inter_compound_mode(cm, xd, r, mode_ctx); else b_mode = read_inter_mode(ec_ctx, xd, r, mode_ctx); if (b_mode != ZEROMV && b_mode != ZERO_ZEROMV) { CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE]; uint8_t ref_mv_count[2]; for (ref = 0; ref < 1 + is_compound; ++ref) { int_mv mv_ref_list[MAX_MV_REF_CANDIDATES]; av1_update_mv_context(cm, xd, mi, mbmi->ref_frame[ref], mv_ref_list, j, mi_row, mi_col, NULL); av1_append_sub8x8_mvs_for_idx(cm, xd, j, ref, mi_row, mi_col, ref_mv_stack[ref], &ref_mv_count[ref], mv_ref_list, &nearest_sub8x8[ref], &near_sub8x8[ref]); if (have_newmv_in_inter_mode(b_mode)) { mv_ref_list[0].as_int = nearest_sub8x8[ref].as_int; mv_ref_list[1].as_int = near_sub8x8[ref].as_int; #if CONFIG_AMVR av1_find_best_ref_mvs(allow_hp, mv_ref_list, &ref_mv[0][ref], &ref_mv[1][ref], cm->cur_frame_mv_precision_level); #else av1_find_best_ref_mvs(allow_hp, mv_ref_list, &ref_mv[0][ref], &ref_mv[1][ref]); #endif } } } for (ref = 0; ref < 1 + is_compound && b_mode != ZEROMV; ++ref) { ref_mv_s8[ref] = nearest_sub8x8[ref]; #if CONFIG_AMVR lower_mv_precision(&ref_mv_s8[ref].as_mv, allow_hp, cm->cur_frame_mv_precision_level); #else lower_mv_precision(&ref_mv_s8[ref].as_mv, allow_hp); #endif } (void)ref_mv_s8; if (!assign_mv(cm, xd, b_mode, mbmi->ref_frame, j, block, ref_mv[0], nearest_sub8x8, near_sub8x8, mi_row, mi_col, is_compound, allow_hp, r)) { aom_merge_corrupted_flag(&xd->corrupted, 1); break; }; mi->bmi[j].as_mv[0].as_int = block[0].as_int; mi->bmi[j].as_mode = b_mode; if (is_compound) mi->bmi[j].as_mv[1].as_int = block[1].as_int; if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; } } mbmi->pred_mv[0].as_int = mi->bmi[3].pred_mv[0].as_int; mbmi->pred_mv[1].as_int = mi->bmi[3].pred_mv[1].as_int; mi->mbmi.mode = b_mode; mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } else { int_mv ref_mv[2]; ref_mv[0] = nearestmv[0]; ref_mv[1] = nearestmv[1]; if (is_compound) { int ref_mv_idx = mbmi->ref_mv_idx; // Special case: NEAR_NEWMV and NEW_NEARMV modes use // 1 + mbmi->ref_mv_idx (like NEARMV) instead of // mbmi->ref_mv_idx (like NEWMV) if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) ref_mv_idx = 1 + mbmi->ref_mv_idx; if (compound_ref0_mode(mbmi->mode) == NEWMV) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (xd->ref_mv_count[ref_frame_type] > 1) { ref_mv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; clamp_mv_ref(&ref_mv[0].as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } nearestmv[0] = ref_mv[0]; } if (compound_ref1_mode(mbmi->mode) == NEWMV) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (xd->ref_mv_count[ref_frame_type] > 1) { ref_mv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; clamp_mv_ref(&ref_mv[1].as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } nearestmv[1] = ref_mv[1]; } #if CONFIG_COMPOUND_SINGLEREF } else if (is_singleref_comp_mode) { int ref_mv_idx = mbmi->ref_mv_idx; // Special case: SR_NEAR_NEWMV use 1 + mbmi->ref_mv_idx (like NEARMV) // instead of mbmi->ref_mv_idx (like NEWMV) if (mbmi->mode == SR_NEAR_NEWMV) ref_mv_idx = 1 + mbmi->ref_mv_idx; if (compound_ref0_mode(mbmi->mode) == NEWMV || compound_ref1_mode(mbmi->mode) == NEWMV) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (xd->ref_mv_count[ref_frame_type] > 1) { ref_mv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; clamp_mv_ref(&ref_mv[0].as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } // TODO(zoeliu): To further investigate why this would not cause a // mismatch for the mode of SR_NEAREST_NEWMV. nearestmv[0] = ref_mv[0]; } #endif // CONFIG_COMPOUND_SINGLEREF } else { if (mbmi->mode == NEWMV) { for (ref = 0; ref < 1 + is_compound; ++ref) { uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (xd->ref_mv_count[ref_frame_type] > 1) { ref_mv[ref] = (ref == 0) ? xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx].this_mv : xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] .comp_mv; clamp_mv_ref(&ref_mv[ref].as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } nearestmv[ref] = ref_mv[ref]; } } } int mv_corrupted_flag = !assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, 0, mbmi->mv, ref_mv, nearestmv, nearmv, mi_row, mi_col, is_compound, allow_hp, r); aom_merge_corrupted_flag(&xd->corrupted, mv_corrupted_flag); } #if CONFIG_INTERINTRA mbmi->use_wedge_interintra = 0; if (cm->reference_mode != COMPOUND_REFERENCE && #if CONFIG_SUPERTX !supertx_enabled && #endif cm->allow_interintra_compound && is_interintra_allowed(mbmi)) { const int bsize_group = size_group_lookup[bsize]; #if CONFIG_NEW_MULTISYMBOL const int interintra = aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR); #else const int interintra = aom_read(r, cm->fc->interintra_prob[bsize_group], ACCT_STR); #endif if (xd->counts) xd->counts->interintra[bsize_group][interintra]++; assert(mbmi->ref_frame[1] == NONE_FRAME); if (interintra) { const INTERINTRA_MODE interintra_mode = read_interintra_mode(cm, xd, r, bsize_group); mbmi->ref_frame[1] = INTRA_FRAME; mbmi->interintra_mode = interintra_mode; #if CONFIG_EXT_INTRA mbmi->angle_delta[0] = 0; mbmi->angle_delta[1] = 0; #if CONFIG_INTRA_INTERP mbmi->intra_filter = INTRA_FILTER_LINEAR; #endif // CONFIG_INTRA_INTERP #endif // CONFIG_EXT_INTRA #if CONFIG_FILTER_INTRA mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; #endif // CONFIG_FILTER_INTRA if (is_interintra_wedge_used(bsize)) { #if CONFIG_NEW_MULTISYMBOL mbmi->use_wedge_interintra = aom_read_symbol( r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR); #else mbmi->use_wedge_interintra = aom_read(r, cm->fc->wedge_interintra_prob[bsize], ACCT_STR); #endif if (xd->counts) xd->counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; if (mbmi->use_wedge_interintra) { mbmi->interintra_wedge_index = aom_read_literal(r, get_wedge_bits_lookup(bsize), ACCT_STR); mbmi->interintra_wedge_sign = 0; } } } } #endif // CONFIG_INTERINTRA #if CONFIG_WARPED_MOTION for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; } #endif #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION mbmi->motion_mode = SIMPLE_TRANSLATION; #if CONFIG_WARPED_MOTION if (mbmi->sb_type >= BLOCK_8X8 && !has_second_ref(mbmi)) #if WARPED_MOTION_SORT_SAMPLES mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref, pts_mv); #else mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); #endif // WARPED_MOTION_SORT_SAMPLES #endif // CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); #endif #if CONFIG_SUPERTX if (!supertx_enabled) { #endif // CONFIG_SUPERTX if (mbmi->ref_frame[1] != INTRA_FRAME) mbmi->motion_mode = read_motion_mode(cm, xd, mi, r); #if CONFIG_NCOBMC_ADAPT_WEIGHT read_ncobmc_mode(xd, mi, mbmi->ncobmc_mode, r); #endif #if CONFIG_COMPOUND_SINGLEREF if (is_singleref_comp_mode) assert(mbmi->motion_mode == SIMPLE_TRANSLATION); #endif // CONFIG_COMPOUND_SINGLEREF #if CONFIG_WARPED_MOTION if (mbmi->motion_mode == WARPED_CAUSAL) { mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE; #if WARPED_MOTION_SORT_SAMPLES if (mbmi->num_proj_ref[0] > 1) mbmi->num_proj_ref[0] = sortSamples(pts_mv, &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref[0]); #endif // WARPED_MOTION_SORT_SAMPLES if (find_projection(mbmi->num_proj_ref[0], pts, pts_inref, bsize, mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, &mbmi->wm_params[0], mi_row, mi_col)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Invalid Warped Model"); } } #endif // CONFIG_WARPED_MOTION #if CONFIG_SUPERTX } #endif // CONFIG_SUPERTX #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION mbmi->interinter_compound_type = COMPOUND_AVERAGE; if ( #if CONFIG_COMPOUND_SINGLEREF is_inter_anyref_comp_mode(mbmi->mode) #else // !CONFIG_COMPOUND_SINGLEREF cm->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) #endif // CONFIG_COMPOUND_SINGLEREF #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION && mbmi->motion_mode == SIMPLE_TRANSLATION #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION ) { if (is_any_masked_compound_used(bsize)) { #if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE if (cm->allow_masked_compound) { #if CONFIG_WEDGE && CONFIG_COMPOUND_SEGMENT if (!is_interinter_compound_used(COMPOUND_WEDGE, bsize)) mbmi->interinter_compound_type = aom_read_bit(r, ACCT_STR) ? COMPOUND_AVERAGE : COMPOUND_SEG; else #endif // CONFIG_WEDGE && CONFIG_COMPOUND_SEGMENT mbmi->interinter_compound_type = aom_read_symbol( r, ec_ctx->compound_type_cdf[bsize], COMPOUND_TYPES, ACCT_STR); #if CONFIG_WEDGE if (mbmi->interinter_compound_type == COMPOUND_WEDGE) { assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); mbmi->wedge_index = aom_read_literal(r, get_wedge_bits_lookup(bsize), ACCT_STR); mbmi->wedge_sign = aom_read_bit(r, ACCT_STR); } #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT if (mbmi->interinter_compound_type == COMPOUND_SEG) { mbmi->mask_type = aom_read_literal(r, MAX_SEG_MASK_BITS, ACCT_STR); } #endif // CONFIG_COMPOUND_SEGMENT } #endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE } else { mbmi->interinter_compound_type = COMPOUND_AVERAGE; } if (xd->counts) xd->counts->compound_interinter[bsize][mbmi->interinter_compound_type]++; } #if CONFIG_DUAL_FILTER || CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION read_mb_interp_filter(cm, xd, mbmi, r); #endif // CONFIG_DUAL_FILTER || CONFIG_WARPED_MOTION #if DEC_MISMATCH_DEBUG dec_dump_logs(cm, mi, mi_row, mi_col, inter_mode_ctx, mode_ctx); #endif // DEC_MISMATCH_DEBUG } static void read_inter_frame_mode_info(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r) { AV1_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; int inter_block = 1; #if CONFIG_VAR_TX BLOCK_SIZE bsize = mbmi->sb_type; #endif // CONFIG_VAR_TX mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r); #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r); if (cm->delta_q_present_flag) { xd->current_qindex = xd->prev_qindex + read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res; /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */ xd->current_qindex = clamp(xd->current_qindex, 1, MAXQ); xd->prev_qindex = xd->current_qindex; #if CONFIG_EXT_DELTA_Q if (cm->delta_lf_present_flag) { #if CONFIG_LOOPFILTER_LEVEL if (cm->delta_lf_multi) { for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) { mbmi->curr_delta_lf[lf_id] = xd->curr_delta_lf[lf_id] = xd->prev_delta_lf[lf_id] + read_delta_lflevel(cm, xd, r, lf_id, mbmi, mi_col, mi_row) * cm->delta_lf_res; xd->prev_delta_lf[lf_id] = xd->curr_delta_lf[lf_id]; } } else { mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base = xd->prev_delta_lf_from_base + read_delta_lflevel(cm, xd, r, -1, mbmi, mi_col, mi_row) * cm->delta_lf_res; xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base; } #else const int current_delta_lf_from_base = xd->prev_delta_lf_from_base + read_delta_lflevel(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_lf_res; mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base = clamp(current_delta_lf_from_base, 0, MAX_LOOP_FILTER); xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base; #endif // CONFIG_LOOPFILTER_LEVEL } #endif } #if CONFIG_SUPERTX if (!supertx_enabled) { #endif // CONFIG_SUPERTX inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r); #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2); xd->left_txfm_context = xd->left_txfm_context_buffer + ((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2); if (cm->tx_mode == TX_MODE_SELECT && #if CONFIG_CB4X4 bsize > BLOCK_4X4 && #else bsize >= BLOCK_8X8 && #endif !mbmi->skip && inter_block && !xd->lossless[mbmi->segment_id]) { const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int height = block_size_high[bsize] >> tx_size_wide_log2[0]; int idx, idy; int init_depth = (height != width) ? RECT_VARTX_DEPTH_INIT : SQR_VARTX_DEPTH_INIT; mbmi->min_tx_size = TX_SIZES_ALL; for (idy = 0; idy < height; idy += bh) for (idx = 0; idx < width; idx += bw) read_tx_size_vartx(cm, xd, mbmi, xd->counts, max_tx_size, init_depth, idy, idx, r); #if CONFIG_RECT_TX_EXT if (is_quarter_tx_allowed(xd, mbmi, inter_block) && mbmi->tx_size == max_tx_size) { int quarter_tx; if (quarter_txsize_lookup[bsize] != max_tx_size) { #if CONFIG_NEW_MULTISYMBOL quarter_tx = aom_read_symbol(r, cm->fc->quarter_tx_size_cdf, 2, ACCT_STR); #else quarter_tx = aom_read(r, cm->fc->quarter_tx_size_prob, ACCT_STR); if (xd->counts) ++xd->counts->quarter_tx_size[quarter_tx]; #endif } else { quarter_tx = 1; } if (quarter_tx) { mbmi->tx_size = quarter_txsize_lookup[bsize]; for (idy = 0; idy < tx_size_high_unit[max_tx_size] / 2; ++idy) for (idx = 0; idx < tx_size_wide_unit[max_tx_size] / 2; ++idx) mbmi->inter_tx_size[idy][idx] = mbmi->tx_size; mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); } } #endif } else { mbmi->tx_size = read_tx_size(cm, xd, inter_block, !mbmi->skip, r); if (inter_block) { const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; const int height = block_size_high[bsize] >> tx_size_high_log2[0]; int idx, idy; for (idy = 0; idy < height; ++idy) for (idx = 0; idx < width; ++idx) mbmi->inter_tx_size[idy >> 1][idx >> 1] = mbmi->tx_size; } mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd); } #else mbmi->tx_size = read_tx_size(cm, xd, inter_block, !mbmi->skip, r); #endif // CONFIG_VAR_TX #if CONFIG_SUPERTX } #if CONFIG_VAR_TX else if (inter_block) { const int width = num_4x4_blocks_wide_lookup[bsize]; const int height = num_4x4_blocks_high_lookup[bsize]; int idx, idy; xd->mi[0]->mbmi.tx_size = xd->supertx_size; for (idy = 0; idy < height; ++idy) for (idx = 0; idx < width; ++idx) xd->mi[0]->mbmi.inter_tx_size[idy >> 1][idx >> 1] = xd->supertx_size; } #endif // CONFIG_VAR_TX #endif // CONFIG_SUPERTX if (inter_block) read_inter_block_mode_info(pbi, xd, #if CONFIG_SUPERTX mi, mi_row, mi_col, r, supertx_enabled); #else mi, mi_row, mi_col, r); #endif // CONFIG_MOTION_VAR && CONFIG_SUPERTX else read_intra_block_mode_info(cm, mi_row, mi_col, xd, mi, r); #if !CONFIG_TXK_SEL av1_read_tx_type(cm, xd, #if CONFIG_SUPERTX supertx_enabled, #endif r); #endif // !CONFIG_TXK_SEL } static void av1_intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col, int x_mis, int y_mis) { #if CONFIG_TMV const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_cols, 1); MV_REF *frame_mvs = cm->cur_frame->mvs + ((mi_row & 0xfffe) >> 1) * frame_mvs_stride + ((mi_col & 0xfffe) >> 1); x_mis = ROUND_POWER_OF_TWO(x_mis, 1); y_mis = ROUND_POWER_OF_TWO(y_mis, 1); #else const int frame_mvs_stride = cm->mi_cols; MV_REF *frame_mvs = cm->cur_frame->mvs + (mi_row & 0xfffe) * frame_mvs_stride + (mi_col & 0xfffe); x_mis = AOMMAX(x_mis, 2); y_mis = AOMMAX(y_mis, 2); #endif // CONFIG_TMV int w, h; for (h = 0; h < y_mis; h++) { MV_REF *const frame_mv = frame_mvs + h * frame_mvs_stride; for (w = 0; w < x_mis; w++) { MV_REF *const mv = frame_mv + w; mv->ref_frame[0] = NONE_FRAME; mv->ref_frame[1] = NONE_FRAME; } } } void av1_read_mode_info(AV1Decoder *const pbi, MACROBLOCKD *xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r, int x_mis, int y_mis) { AV1_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; #if CONFIG_INTRABC mi->mbmi.use_intrabc = 0; #endif // CONFIG_INTRABC if (frame_is_intra_only(cm)) { read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r); av1_intra_copy_frame_mvs(cm, mi_row, mi_col, x_mis, y_mis); } else { read_inter_frame_mode_info(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r); av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); } }