/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // qsort() #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "./av1_rtcd.h" #include "aom/aom_codec.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/bitreader.h" #include "aom_dsp/bitreader_buffer.h" #include "aom_dsp/binary_codes_reader.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/mem_ops.h" #include "aom_scale/aom_scale.h" #include "aom_util/aom_thread.h" #if CONFIG_BITSTREAM_DEBUG #include "aom_util/debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG #include "av1/common/alloccommon.h" #if CONFIG_CDEF #include "av1/common/cdef.h" #include "av1/common/clpf.h" #endif #if CONFIG_INSPECTION #include "av1/decoder/inspection.h" #endif #include "av1/common/common.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/idct.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/seg_common.h" #include "av1/common/thread_common.h" #include "av1/common/tile_common.h" #include "av1/decoder/decodeframe.h" #include "av1/decoder/decodemv.h" #include "av1/decoder/decoder.h" #if CONFIG_LV_MAP #include "av1/decoder/decodetxb.h" #endif #include "av1/decoder/detokenize.h" #include "av1/decoder/dsubexp.h" #if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION #define MAX_AV1_HEADER_SIZE 80 #define ACCT_STR __func__ #if CONFIG_PVQ #include "av1/common/partition.h" #include "av1/common/pvq.h" #include "av1/common/scan.h" #include "av1/decoder/decint.h" #include "av1/decoder/pvq_decoder.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #endif #if CONFIG_CFL #include "av1/common/cfl.h" #endif static struct aom_read_bit_buffer *init_read_bit_buffer( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]); static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, size_t partition_size); static size_t read_uncompressed_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb); static int is_compound_reference_allowed(const AV1_COMMON *cm) { #if CONFIG_LOWDELAY_COMPOUND // Normative in decoder return !frame_is_intra_only(cm); #else int i; if (frame_is_intra_only(cm)) return 0; for (i = 1; i < INTER_REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; #endif } static void setup_compound_reference_mode(AV1_COMMON *cm) { #if CONFIG_EXT_REFS cm->comp_fwd_ref[0] = LAST_FRAME; cm->comp_fwd_ref[1] = LAST2_FRAME; cm->comp_fwd_ref[2] = LAST3_FRAME; cm->comp_fwd_ref[3] = GOLDEN_FRAME; cm->comp_bwd_ref[0] = BWDREF_FRAME; cm->comp_bwd_ref[1] = ALTREF_FRAME; #else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } #endif // CONFIG_EXT_REFS } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) { const int data = aom_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(AV1_COMMON *cm, MACROBLOCKD *xd, struct aom_read_bit_buffer *rb) { int i, all_lossless = 1; #if CONFIG_TX64X64 TX_MODE tx_mode; #endif if (cm->seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { if (!xd->lossless[i]) { all_lossless = 0; break; } } } else { all_lossless = xd->lossless[0]; } if (all_lossless) return ONLY_4X4; #if CONFIG_TX64X64 tx_mode = aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); if (tx_mode == ALLOW_32X32) tx_mode += aom_rb_read_bit(rb); return tx_mode; #else return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); #endif // CONFIG_TX64X64 } #if !CONFIG_EC_ADAPT static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; for (i = 0; i < MAX_TX_DEPTH; ++i) for (j = 0; j < TX_SIZE_CONTEXTS; ++j) for (k = 0; k < i + 1; ++k) av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR); } #endif #if !CONFIG_EC_ADAPT static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR); } } #endif static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { #if CONFIG_REF_MV int i; for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR); for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR); for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR); for (i = 0; i < DRL_MODE_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR); #else #if !CONFIG_EC_ADAPT int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { for (j = 0; j < INTER_MODES - 1; ++j) av1_diff_update_prob(r, &fc->inter_mode_probs[i][j], ACCT_STR); } #else (void)fc; (void)r; #endif #endif } #if CONFIG_EXT_INTER static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (j = 0; j < INTER_MODE_CONTEXTS; ++j) { for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) { av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR); } } } } #endif // CONFIG_EXT_INTER #if !CONFIG_EC_ADAPT #if !CONFIG_EXT_TX static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (j = 0; j < TX_TYPES; ++j) { for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR); } } } if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (k = 0; k < TX_TYPES - 1; ++k) av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR); } } } #endif #endif static REFERENCE_MODE read_frame_reference_mode( const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (is_compound_reference_allowed(cm)) { #if CONFIG_REF_ADAPT return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; #else return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE); #endif // CONFIG_REF_ADAPT } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) { FRAME_CONTEXT *const fc = cm->fc; int i, j; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR); if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < REF_CONTEXTS; ++i) { for (j = 0; j < (SINGLE_REFS - 1); ++j) { av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR); } } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < REF_CONTEXTS; ++i) { #if CONFIG_EXT_REFS for (j = 0; j < (FWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); for (j = 0; j < (BWD_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR); #else for (j = 0; j < (COMP_REFS - 1); ++j) av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); #endif // CONFIG_EXT_REFS } } } static void update_mv_probs(aom_prob *p, int n, aom_reader *r) { int i; for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR); } static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) { int i; #if !CONFIG_EC_ADAPT int j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) { update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); } update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r); } #endif // !CONFIG_EC_ADAPT if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void inverse_transform_block(MACROBLOCKD *xd, int plane, const TX_TYPE tx_type, const TX_SIZE tx_size, uint8_t *dst, int stride, int16_t scan_line, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = pd->dqcoeff; av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, stride, eob); memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); } #if CONFIG_PVQ static int av1_pvq_decode_helper(MACROBLOCKD *xd, tran_low_t *ref_coeff, tran_low_t *dqcoeff, int16_t *quant, int pli, int bs, TX_TYPE tx_type, int xdec, PVQ_SKIP_TYPE ac_dc_coded) { unsigned int flags; // used for daala's stream analyzer. int off; const int is_keyframe = 0; const int has_dc_skip = 1; int coeff_shift = 3 - av1_get_tx_scale(bs); int hbd_downshift = 0; int rounding_mask; // DC quantizer for PVQ int pvq_dc_quant; int lossless = (quant[0] == 0); const int blk_size = tx_size_wide[bs]; int eob = 0; int i; od_dec_ctx *dec = &xd->daala_dec; int use_activity_masking = dec->use_activity_masking; DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; #if CONFIG_HIGHBITDEPTH hbd_downshift = xd->bd - 8; #endif // CONFIG_HIGHBITDEPTH od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff, blk_size); assert(OD_COEFF_SHIFT >= 4); if (lossless) pvq_dc_quant = 1; else { if (use_activity_masking) pvq_dc_quant = OD_MAXI( 1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) * dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >> 4); else pvq_dc_quant = OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift); } off = od_qm_offset(bs, xdec); // copy int16 inputs to int32 for (i = 0; i < blk_size * blk_size; i++) { ref_int32[i] = AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> hbd_downshift; } od_pvq_decode(dec, ref_int32, out_int32, OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> hbd_downshift), pli, bs, OD_PVQ_BETA[use_activity_masking][pli][bs], is_keyframe, &flags, ac_dc_coded, dec->state.qm + off, dec->state.qm_inv + off); if (!has_dc_skip || out_int32[0]) { out_int32[0] = has_dc_skip + generic_decode(dec->r, &dec->state.adapt->model_dc[pli], &dec->state.adapt->ex_dc[pli][bs][0], 2, "dc:mag"); if (out_int32[0]) out_int32[0] *= aom_read_bit(dec->r, "dc:sign") ? -1 : 1; } out_int32[0] = out_int32[0] * pvq_dc_quant + ref_int32[0]; // copy int32 result back to int16 assert(OD_COEFF_SHIFT > coeff_shift); rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1; for (i = 0; i < blk_size * blk_size; i++) { out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift); dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >> (OD_COEFF_SHIFT - coeff_shift); } od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size); eob = blk_size * blk_size; return eob; } static PVQ_SKIP_TYPE read_pvq_skip(AV1_COMMON *cm, MACROBLOCKD *const xd, int plane, TX_SIZE tx_size) { // decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded // NOTE : we don't use 5 symbols for luma here in aom codebase, // since block partition is taken care of by aom. // So, only AC/DC skip info is coded const int ac_dc_coded = aom_read_symbol( xd->daala_dec.r, xd->daala_dec.state.adapt->skip_cdf[2 * tx_size + (plane != 0)], 4, "skip"); if (ac_dc_coded < 0 || ac_dc_coded > 3) { aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, "Invalid PVQ Skip Type"); } return ac_dc_coded; } static int av1_pvq_decode_helper2(AV1_COMMON *cm, MACROBLOCKD *const xd, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size, TX_TYPE tx_type) { struct macroblockd_plane *const pd = &xd->plane[plane]; // transform block size in pixels int tx_blk_size = tx_size_wide[tx_size]; int i, j; tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff; const int diff_stride = tx_blk_size; int16_t *pred = pd->pred; tran_low_t *const dqcoeff = pd->dqcoeff; uint8_t *dst; int eob; const PVQ_SKIP_TYPE ac_dc_coded = read_pvq_skip(cm, xd, plane, tx_size); eob = 0; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (ac_dc_coded) { int xdec = pd->subsampling_x; int seg_id = mbmi->segment_id; int16_t *quant; FWD_TXFM_PARAM fwd_txfm_param; // ToDo(yaowu): correct this with optimal number from decoding process. const int max_scan_line = tx_size_2d[tx_size]; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) pred[diff_stride * j + i] = CONVERT_TO_SHORTPTR(dst)[pd->dst.stride * j + i]; } else { #endif for (j = 0; j < tx_blk_size; j++) for (i = 0; i < tx_blk_size; i++) pred[diff_stride * j + i] = dst[pd->dst.stride * j + i]; #if CONFIG_HIGHBITDEPTH } #endif fwd_txfm_param.tx_type = tx_type; fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.lossless = xd->lossless[seg_id]; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { fwd_txfm_param.bd = xd->bd; av1_highbd_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param); } else { #endif // CONFIG_HIGHBITDEPTH av1_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param); #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH quant = &pd->seg_dequant[seg_id][0]; // aom's quantizer eob = av1_pvq_decode_helper(xd, pvq_ref_coeff, dqcoeff, quant, plane, tx_size, tx_type, xdec, ac_dc_coded); inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, max_scan_line, eob); } return eob; } #endif static int get_block_idx(const MACROBLOCKD *xd, int plane, int row, int col) { const int bsize = xd->mi[0]->mbmi.sb_type; const struct macroblockd_plane *pd = &xd->plane[plane]; #if CONFIG_CB4X4 #if CONFIG_CHROMA_2X2 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #else const BLOCK_SIZE plane_bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); #endif // CONFIG_CHROMA_2X2 #else const BLOCK_SIZE plane_bsize = get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); #endif const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const TX_SIZE tx_size = get_tx_size(plane, xd); const uint8_t txh_unit = tx_size_high_unit[tx_size]; return row * max_blocks_wide + col * txh_unit; } static void predict_and_reconstruct_intra_block( AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { PLANE_TYPE plane_type = get_plane_type(plane); const int block_idx = get_block_idx(xd, plane, row, col); #if CONFIG_PVQ (void)r; #endif av1_predict_intra_block_facade(xd, plane, block_idx, col, row, tx_size); if (!mbmi->skip) { #if !CONFIG_PVQ struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_LV_MAP int16_t max_scan_line = 0; int eob; av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane, pd->dqcoeff, &max_scan_line, &eob); // tx_type will be read out in av1_read_coeffs_txb_facade TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); #else // CONFIG_LV_MAP TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); int16_t max_scan_line = 0; const int eob = av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size, tx_type, &max_scan_line, r, mbmi->segment_id); #endif // CONFIG_LV_MAP if (eob) { uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, max_scan_line, eob); } #else TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); av1_pvq_decode_helper2(cm, xd, mbmi, plane, row, col, tx_size, tx_type); #endif } #if CONFIG_CFL if (plane == AOM_PLANE_Y) { struct macroblockd_plane *const pd = &xd->plane[plane]; uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; cfl_store(xd->cfl, dst, pd->dst.stride, row, col, tx_size); } #endif } #if CONFIG_VAR_TX && !CONFIG_COEF_INTERLEAVE static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *r, MB_MODE_INFO *const mbmi, int plane, BLOCK_SIZE plane_bsize, int blk_row, int blk_col, TX_SIZE tx_size, int *eob_total) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const TX_SIZE plane_tx_size = plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] : mbmi->inter_tx_size[tx_row][tx_col]; // Scale to match transform block unit. const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { PLANE_TYPE plane_type = get_plane_type(plane); int block_idx = get_block_idx(xd, plane, blk_row, blk_col); #if CONFIG_LV_MAP (void)segment_id; int16_t max_scan_line = 0; int eob; av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane, pd->dqcoeff, &max_scan_line, &eob); // tx_type will be read out in av1_read_coeffs_txb_facade TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size); #else // CONFIG_LV_MAP TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size); const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1); int16_t max_scan_line = 0; const int eob = av1_decode_block_tokens( cm, xd, plane, sc, blk_col, blk_row, plane_tx_size, tx_type, &max_scan_line, r, mbmi->segment_id); #endif // CONFIG_LV_MAP inverse_transform_block(xd, plane, tx_type, plane_tx_size, &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]], pd->dst.stride, max_scan_line, eob); *eob_total += eob; } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsl = tx_size_wide_unit[sub_txs]; int i; assert(bsl > 0); for (i = 0; i < 4; ++i) { const int offsetr = blk_row + (i >> 1) * bsl; const int offsetc = blk_col + (i & 0x01) * bsl; if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr, offsetc, sub_txs, eob_total); } } } #endif // CONFIG_VAR_TX #if !CONFIG_VAR_TX || CONFIG_SUPERTX || CONFIG_COEF_INTERLEAVE || \ (!CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX) static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r, int segment_id, int plane, int row, int col, TX_SIZE tx_size) { PLANE_TYPE plane_type = get_plane_type(plane); int block_idx = get_block_idx(xd, plane, row, col); #if CONFIG_PVQ int eob; (void)r; (void)segment_id; #else struct macroblockd_plane *const pd = &xd->plane[plane]; #endif #if !CONFIG_PVQ #if CONFIG_LV_MAP (void)segment_id; int16_t max_scan_line = 0; int eob; av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane, pd->dqcoeff, &max_scan_line, &eob); // tx_type will be read out in av1_read_coeffs_txb_facade TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); #else // CONFIG_LV_MAP int16_t max_scan_line = 0; TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1); const int eob = av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size, tx_type, &max_scan_line, r, segment_id); #endif // CONFIG_LV_MAP uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; if (eob) inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, max_scan_line, eob); #else TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); eob = av1_pvq_decode_helper2(cm, xd, &xd->mi[0]->mbmi, plane, row, col, tx_size, tx_type); #endif return eob; } #endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis) { const int offset = mi_row * cm->mi_stride + mi_col; int x, y; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of // passing bsize from decode_partition(). xd->mi[0]->mbmi.sb_type = bsize; #if CONFIG_RD_DEBUG xd->mi[0]->mbmi.mi_row = mi_row; xd->mi[0]->mbmi.mi_col = mi_col; #endif for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_plane_n4(xd, bw, bh); set_skip_context(xd, mi_row, mi_col); #if CONFIG_VAR_TX xd->max_tx_size = max_txsize_lookup[bsize]; #endif // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); } #if CONFIG_SUPERTX static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize_pred, int mi_row_pred, int mi_col_pred, int mi_row_ori, int mi_col_ori) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict const int bw = mi_size_wide[bsize_pred]; const int bh = mi_size_high[bsize_pred]; const int offset = mi_row_ori * cm->mi_stride + mi_col_ori; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); xd->up_available = (mi_row_ori > tile->mi_row_start); xd->left_available = (mi_col_ori > tile->mi_col_start); set_plane_n4(xd, bw, bh); return &xd->mi[0]->mbmi; } #if CONFIG_SUPERTX static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis) { const int offset = mi_row * cm->mi_stride + mi_col; const TileInfo *const tile = &xd->tile; int x, y; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); return &xd->mi[0]->mbmi; } #endif static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int offset = mi_row * cm->mi_stride + mi_col; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_plane_n4(xd, bw, bh); set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); } static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int txfm, int skip) { const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; for (y = 0; y < y_mis; ++y) for (x = 0; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip; xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm; } #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, skip, xd); #endif } static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; xd->block_refs[idx] = ref_buffer; if (!av1_is_valid_scale(&ref_buffer->sf)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, &ref_buffer->sf); aom_merge_corrupted_flag(&xd->corrupted, ref_buffer->buf->corrupted); } static void dec_predict_b_extend( AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) { // Used in supertx // (mi_row_ori, mi_col_ori): location for mv // (mi_row_pred, mi_col_pred, bsize_pred): region to predict // (mi_row_top, mi_col_top, bsize_top): region of the top partition size // block: sub location of sub8x8 blocks // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 // bextend: 1: region to predict is an extension of ori; 0: not int r = (mi_row_pred - mi_row_top) * MI_SIZE; int c = (mi_col_pred - mi_col_top) * MI_SIZE; const int mi_width_top = mi_size_wide[bsize_top]; const int mi_height_top = mi_size_high[bsize_top]; MB_MODE_INFO *mbmi; AV1_COMMON *const cm = &pbi->common; if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || mi_row_pred >= mi_row_top + mi_height_top || mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || mi_col_pred >= cm->mi_cols) return; mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred, mi_row_ori, mi_col_ori); set_ref(cm, xd, 0, mi_row_pred, mi_col_pred); if (has_second_ref(&xd->mi[0]->mbmi)) set_ref(cm, xd, 1, mi_row_pred, mi_col_pred); if (!bextend) mbmi->tx_size = max_txsize_lookup[bsize_top]; xd->plane[0].dst.stride = dst_stride[0]; xd->plane[1].dst.stride = dst_stride[1]; xd->plane[2].dst.stride = dst_stride[2]; xd->plane[0].dst.buf = dst_buf[0] + (r >> xd->plane[0].subsampling_y) * dst_stride[0] + (c >> xd->plane[0].subsampling_x); xd->plane[1].dst.buf = dst_buf[1] + (r >> xd->plane[1].subsampling_y) * dst_stride[1] + (c >> xd->plane[1].subsampling_x); xd->plane[2].dst.buf = dst_buf[2] + (r >> xd->plane[2].subsampling_y) * dst_stride[2] + (c >> xd->plane[2].subsampling_x); if (!b_sub8x8) av1_build_inter_predictors_sb_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred); else av1_build_inter_predictors_sb_sub8x8_extend(xd, #if CONFIG_EXT_INTER mi_row_ori, mi_col_ori, #endif // CONFIG_EXT_INTER mi_row_pred, mi_col_pred, bsize_pred, block); } static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], int dir) { // dir: 0-lower, 1-upper, 2-left, 3-right // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; int xss = xd->plane[1].subsampling_x; int yss = xd->plane[1].subsampling_y; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0; BLOCK_SIZE extend_bsize; int mi_row_pred, mi_col_pred; int wide_unit, high_unit; int i, j; int ext_offset = 0; if (dir == 0 || dir == 1) { extend_bsize = (mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss) ? BLOCK_8X8 : BLOCK_16X8; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset)); mi_col_pred = mi_col; for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } else if (dir == 2 || dir == 3) { extend_bsize = (mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss) ? BLOCK_8X8 : BLOCK_8X16; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row; mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset)); for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } else { extend_bsize = BLOCK_8X8; #if CONFIG_CB4X4 if (bsize < BLOCK_8X8) { extend_bsize = BLOCK_4X4; ext_offset = mi_size_wide[BLOCK_8X8]; } #endif wide_unit = mi_size_wide[extend_bsize]; high_unit = mi_size_high[extend_bsize]; mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -(mi_height + ext_offset)); mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset)); for (j = 0; j < mi_height + ext_offset; j += high_unit) for (i = 0; i < mi_width + ext_offset; i += wide_unit) dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred + j, mi_col_pred + i, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); } } static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int block, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, int mi_col, int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3]) { for (int i = 0; i < 8; ++i) { dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, i); } } static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, int mi_row_top, int mi_col_top, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], int dst_stride[3]) { const AV1_COMMON *const cm = &pbi->common; const int hbs = mi_size_wide[bsize] / 2; const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); const BLOCK_SIZE subsize = get_subsize(bsize, partition); #if CONFIG_EXT_PARTITION_TYPES const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif int i; const int mi_offset = mi_row * cm->mi_stride + mi_col; uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); } else { #endif dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; dst_buf3[0] = tmp_buf3; dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; #if CONFIG_HIGHBITDEPTH } #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; xd->mi = cm->mi_grid_visible + mi_offset; xd->mi[0] = cm->mi + mi_offset; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; } switch (partition) { case PARTITION_NONE: assert(bsize < top_bsize); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); break; case PARTITION_HORZ: if (bsize == BLOCK_8X8 && !unify_bsize) { // For sub8x8, predict in 8x8 unit // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // weighted average to smooth the boundary xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, 0); } else { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); if (mi_row + hbs < cm->mi_rows) { // Second half dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 1); // weighted average to smooth the boundary for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } } break; case PARTITION_VERT: if (bsize == BLOCK_8X8 && !unify_bsize) { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); // Second half dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); // Smooth xd->plane[0].dst.buf = dst_buf[0]; xd->plane[0].dst.stride = dst_stride[0]; av1_build_masked_inter_predictor_complex( xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, 0); } else { // First half dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); // Second half if (mi_col + hbs < cm->mi_cols) { dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, 2); // Smooth for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } } } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8 && !unify_bsize) { dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, BLOCK_8X8, 1, 0); dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, BLOCK_8X8, 1, 1); dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3, top_bsize, BLOCK_8X8, 1, 1); if (bsize < top_bsize) { dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf3, dst_stride3); } } else { dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf, dst_stride); if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf1, dst_stride1); if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf2, dst_stride2); if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, subsize, top_bsize, dst_buf3, dst_stride3); } for (i = 0; i < MAX_MB_PLANE; i++) { #if !CONFIG_CB4X4 if (bsize == BLOCK_8X8 && i != 0) continue; // Skip <4x4 chroma smoothing #endif if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); if (mi_row + hbs < cm->mi_rows) { av1_build_masked_inter_predictor_complex( xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } } break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 1); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_A: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, 2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; case PARTITION_HORZ_B: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 0); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } break; case PARTITION_VERT_B: dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, subsize, 0, 0); if (bsize < top_bsize) dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride); else dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, mi_row_top, mi_col_top, dst_buf, dst_stride, 3); dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, dst_stride1); dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, dst_stride2); for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf1[i]; xd->plane[i].dst.stride = dst_stride1[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, i); } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = dst_buf[i]; xd->plane[i].dst.stride = dst_stride[i]; av1_build_masked_inter_predictor_complex( xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, i); } break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } } static void set_segment_id_supertx(const AV1_COMMON *const cm, int mi_row, int mi_col, BLOCK_SIZE bsize) { const struct segmentation *seg = &cm->seg; const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col); const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row); const int mi_offset = mi_row * cm->mi_stride + mi_col; MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; int r, c; int seg_id_supertx = MAX_SEGMENTS; if (!seg->enabled) { seg_id_supertx = 0; } else { // Find the minimum segment_id for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) seg_id_supertx = AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); } // Assign the the segment_id back to segment_id_supertx for (r = 0; r < mih; r++) for (c = 0; c < miw; c++) mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; } #endif // CONFIG_SUPERTX static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r, #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif // CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize) { AV1_COMMON *const cm = &pbi->common; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); #if CONFIG_ACCOUNTING aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); #endif #if CONFIG_SUPERTX if (supertx_enabled) { set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); } else { set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); } #if CONFIG_EXT_PARTITION_TYPES xd->mi[0]->mbmi.partition = partition; #endif av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis); #else set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); #if CONFIG_EXT_PARTITION_TYPES xd->mi[0]->mbmi.partition = partition; #endif av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); #endif // CONFIG_SUPERTX if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, "Invalid block size."); } #if CONFIG_SUPERTX xd->mi[0]->mbmi.segment_id_supertx = MAX_SEGMENTS; #endif // CONFIG_SUPERTX int reader_corrupted_flag = aom_reader_has_error(r); aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag); } static void decode_token_and_recon_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &pbi->common; const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; #if CONFIG_DELTA_Q if (cm->delta_q_present_flag) { int i; for (i = 0; i < MAX_SEGMENTS; i++) { #if CONFIG_EXT_DELTA_Q xd->plane[0].seg_dequant[i][0] = av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex), cm->y_dc_delta_q, cm->bit_depth); xd->plane[0].seg_dequant[i][1] = av1_ac_quant( av1_get_qindex(&cm->seg, i, xd->current_qindex), 0, cm->bit_depth); xd->plane[1].seg_dequant[i][0] = av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex), cm->uv_dc_delta_q, cm->bit_depth); xd->plane[1].seg_dequant[i][1] = av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex), cm->uv_ac_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][0] = av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex), cm->uv_dc_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][1] = av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex), cm->uv_ac_delta_q, cm->bit_depth); #else xd->plane[0].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth); xd->plane[0].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, 0, cm->bit_depth); xd->plane[1].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); xd->plane[1].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); #endif } } #endif #if CONFIG_CB4X4 if (mbmi->skip) reset_skip_context(xd, bsize); #else if (mbmi->skip) reset_skip_context(xd, AOMMAX(BLOCK_8X8, bsize)); #endif #if CONFIG_COEF_INTERLEAVE { const struct macroblockd_plane *const pd_y = &xd->plane[0]; const struct macroblockd_plane *const pd_c = &xd->plane[1]; const TX_SIZE tx_log2_y = mbmi->tx_size; const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); const int tx_sz_y = (1 << tx_log2_y); const int tx_sz_c = (1 << tx_log2_c); const int num_4x4_w_y = pd_y->n4_w; const int num_4x4_h_y = pd_y->n4_h; const int num_4x4_w_c = pd_c->n4_w; const int num_4x4_h_c = pd_c->n4_h; const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x); const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y); const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x); const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y); // The max_4x4_w/h may be smaller than tx_sz under some corner cases, // i.e. when the SB is splitted by tile boundaries. const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; const int tu_num_c = tu_num_w_c * tu_num_h_c; if (!is_inter_block(mbmi)) { int tu_idx_c = 0; int row_y, col_y, row_c, col_c; int plane; #if CONFIG_PALETTE for (plane = 0; plane <= 1; ++plane) { if (mbmi->palette_mode_info.palette_size[plane]) av1_decode_palette_tokens(xd, plane, r); } #endif for (row_y = 0; row_y < tu_num_h_y; row_y++) { for (col_y = 0; col_y < tu_num_w_y; col_y++) { // luma predict_and_reconstruct_intra_block( cm, xd, r, mbmi, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y); // chroma if (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c, tx_log2_c); predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c, tx_log2_c); tu_idx_c++; } } } // In 422 case, it's possilbe that Chroma has more TUs than Luma while (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c, tx_log2_c); predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c, tx_log2_c); tu_idx_c++; } } else { // Prediction av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, AOMMAX(bsize, BLOCK_8X8)); // Reconstruction if (!mbmi->skip) { int eobtotal = 0; int tu_idx_c = 0; int row_y, col_y, row_c, col_c; for (row_y = 0; row_y < tu_num_h_y; row_y++) { for (col_y = 0; col_y < tu_num_w_y; col_y++) { // luma eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y); // chroma if (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1, row_c, col_c, tx_log2_c); eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2, row_c, col_c, tx_log2_c); tu_idx_c++; } } } // In 422 case, it's possilbe that Chroma has more TUs than Luma while (tu_idx_c < tu_num_c) { row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1, row_c, col_c, tx_log2_c); eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2, row_c, col_c, tx_log2_c); tu_idx_c++; } // TODO(CONFIG_COEF_INTERLEAVE owners): bring eob == 0 corner case // into line with the defaut configuration if (bsize >= BLOCK_8X8 && eobtotal == 0) mbmi->skip = 1; } } } #else // CONFIG_COEF_INTERLEAVE if (!is_inter_block(mbmi)) { int plane; #if CONFIG_PALETTE for (plane = 0; plane <= 1; ++plane) { if (mbmi->palette_mode_info.palette_size[plane]) av1_decode_palette_tokens(xd, plane, r); } #endif // CONFIG_PALETTE for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = get_tx_size(plane, xd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; #if CONFIG_CB4X4 #if CONFIG_CHROMA_2X2 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #else const BLOCK_SIZE plane_bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); #endif // CONFIG_CHROMA_2X2 #else const BLOCK_SIZE plane_bsize = get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); #endif int row, col; const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; #endif for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col, tx_size); } } else { int ref; for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; if (frame < LAST_FRAME) { #if CONFIG_INTRABC assert(is_intrabc_block(mbmi)); assert(frame == INTRA_FRAME); assert(ref == 0); #else assert(0); #endif // CONFIG_INTRABC } else { RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf); } } #if CONFIG_CB4X4 av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); #else av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, AOMMAX(bsize, BLOCK_8X8)); #endif #if CONFIG_MOTION_VAR if (mbmi->motion_mode == OBMC_CAUSAL) { #if CONFIG_NCOBMC av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col); #else av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); #endif } #endif // CONFIG_MOTION_VAR // Reconstruction if (!mbmi->skip) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_CB4X4 #if CONFIG_CHROMA_2X2 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); #else const BLOCK_SIZE plane_bsize = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); #endif // CONFIG_CHROMA_2X2 #else const BLOCK_SIZE plane_bsize = get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); #endif const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); int row, col; #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; #endif #if CONFIG_VAR_TX const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize); const int bh_var_tx = tx_size_high_unit[max_tx_size]; const int bw_var_tx = tx_size_wide_unit[max_tx_size]; for (row = 0; row < max_blocks_high; row += bh_var_tx) for (col = 0; col < max_blocks_wide; col += bw_var_tx) decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row, col, max_tx_size, &eobtotal); #else const TX_SIZE tx_size = get_tx_size(plane, xd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, plane, row, col, tx_size); #endif } } } #endif // CONFIG_COEF_INTERLEAVE int reader_corrupted_flag = aom_reader_has_error(r); aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag); } #if CONFIG_NCOBMC && CONFIG_MOTION_VAR static void detoken_and_recon_sb(AV1Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &pbi->common; const int hbs = mi_size_wide[bsize] >> 1; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif PARTITION_TYPE partition; BLOCK_SIZE subsize; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = get_partition(cm, mi_row, mi_col, bsize); subsize = subsize_lookup[partition][bsize]; if (!hbs && !unify_bsize) { xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); } else { switch (partition) { case PARTITION_NONE: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize); break; case PARTITION_HORZ: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); if (has_rows) decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, subsize); break; case PARTITION_VERT: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); if (has_cols) decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, subsize); break; case PARTITION_SPLIT: detoken_and_recon_sb(pbi, xd, mi_row, mi_col, r, subsize); detoken_and_recon_sb(pbi, xd, mi_row, mi_col + hbs, r, subsize); detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col, r, subsize); detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize); break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, subsize); break; case PARTITION_HORZ_B: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r, bsize2); break; case PARTITION_VERT_A: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, subsize); break; case PARTITION_VERT_B: decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize); decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2); decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r, bsize2); break; #endif default: assert(0 && "Invalid partition type"); } } } #endif static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif // CONFIG_SUPERTX int mi_row, int mi_col, aom_reader *r, #if CONFIG_EXT_PARTITION_TYPES PARTITION_TYPE partition, #endif // CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize) { decode_mbmi_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif bsize); #if !(CONFIG_MOTION_VAR && CONFIG_NCOBMC) #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize); #endif } static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, aom_reader *r, int has_rows, int has_cols, BLOCK_SIZE bsize) { #if CONFIG_UNPOISON_PARTITION_CTX const int ctx = partition_plane_context(xd, mi_row, mi_col, has_rows, has_cols, bsize); const aom_prob *const probs = ctx < PARTITION_CONTEXTS ? cm->fc->partition_prob[ctx] : NULL; FRAME_COUNTS *const counts = ctx < PARTITION_CONTEXTS ? xd->counts : NULL; #else const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const aom_prob *const probs = cm->fc->partition_prob[ctx]; FRAME_COUNTS *const counts = xd->counts; #endif PARTITION_TYPE p; #if CONFIG_EC_ADAPT FRAME_CONTEXT *ec_ctx = xd->tile_ctx; (void)cm; #elif CONFIG_EC_MULTISYMBOL FRAME_CONTEXT *ec_ctx = cm->fc; #endif #if CONFIG_EC_MULTISYMBOL aom_cdf_prob *partition_cdf = (ctx >= 0) ? ec_ctx->partition_cdf[ctx] : NULL; #endif if (has_rows && has_cols) #if CONFIG_EXT_PARTITION_TYPES if (bsize <= BLOCK_8X8) #if CONFIG_EC_MULTISYMBOL p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES, ACCT_STR); #else p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); #endif else #if CONFIG_EC_MULTISYMBOL p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, EXT_PARTITION_TYPES, ACCT_STR); #else p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs, ACCT_STR); #endif #else #if CONFIG_EC_MULTISYMBOL p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES, ACCT_STR); #else p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); #endif #endif // CONFIG_EXT_PARTITION_TYPES else if (!has_rows && has_cols) p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (counts) ++counts->partition[ctx][p]; return p; } #if CONFIG_SUPERTX static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, aom_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = av1_get_skip_context(xd); const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->skip[ctx][skip]; return skip; } } #endif // CONFIG_SUPERTX // TODO(slavarnway): eliminate bsize and subsize in future commits static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col, aom_reader *r, BLOCK_SIZE bsize, int n4x4_l2) { AV1_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = mi_size_wide[bsize]; const int hbs = num_8x8_wh >> 1; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif PARTITION_TYPE partition; BLOCK_SIZE subsize; #if CONFIG_EXT_PARTITION_TYPES BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; #if CONFIG_SUPERTX const int read_token = !supertx_enabled; int skip = 0; TX_SIZE supertx_size = max_txsize_lookup[bsize]; const TileInfo *const tile = &xd->tile; int txfm = DCT_DCT; #endif // CONFIG_SUPERTX if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = (bsize < BLOCK_8X8) ? PARTITION_NONE : read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols, bsize); subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); #if CONFIG_PVQ assert(partition < PARTITION_TYPES); assert(subsize < BLOCK_SIZES); #endif #if CONFIG_SUPERTX if (!frame_is_intra_only(cm) && partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) { const int supertx_context = partition_supertx_context_lookup[partition]; supertx_enabled = aom_read( r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR); if (xd->counts) xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++; #if CONFIG_VAR_TX if (supertx_enabled) xd->supertx_size = supertx_size; #endif } #endif // CONFIG_SUPERTX if (!hbs && !unify_bsize) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); } else { switch (partition) { case PARTITION_NONE: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); break; case PARTITION_HORZ: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); if (has_rows) decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); break; case PARTITION_VERT: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); if (has_cols) decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col + hbs, r, #if CONFIG_EXT_PARTITION_TYPES partition, #endif // CONFIG_EXT_PARTITION_TYPES subsize); break; case PARTITION_SPLIT: decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row, mi_col + hbs, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif // CONFIG_SUPERTX mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, subsize); break; case PARTITION_HORZ_B: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, subsize); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col + hbs, r, partition, bsize2); break; case PARTITION_VERT_A: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, subsize); break; case PARTITION_VERT_B: decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col, r, partition, subsize); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row, mi_col + hbs, r, partition, bsize2); decode_block(pbi, xd, #if CONFIG_SUPERTX supertx_enabled, #endif mi_row + hbs, mi_col + hbs, r, partition, bsize2); break; #endif default: assert(0 && "Invalid partition type"); } } #if CONFIG_SUPERTX if (supertx_enabled && read_token) { uint8_t *dst_buf[3]; int dst_stride[3], i; int offset = mi_row * cm->mi_stride + mi_col; set_segment_id_supertx(cm, mi_row, mi_col, bsize); #if CONFIG_DELTA_Q if (cm->delta_q_present_flag) { for (i = 0; i < MAX_SEGMENTS; i++) { xd->plane[0].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth); xd->plane[0].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, 0, cm->bit_depth); xd->plane[1].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); xd->plane[1].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][0] = av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); xd->plane[2].seg_dequant[i][1] = av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); } } #endif xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = cm->mi + offset; set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col, mi_size_wide[bsize], #if CONFIG_DEPENDENT_HORZTILES cm->dependent_horz_tiles, #endif // CONFIG_DEPENDENT_HORZTILES cm->mi_rows, cm->mi_cols); set_skip_context(xd, mi_row, mi_col); skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r); if (skip) { reset_skip_context(xd, bsize); } else { #if CONFIG_EXT_TX if (get_ext_tx_types(supertx_size, bsize, 1, cm->reduced_tx_set_used) > 1) { const int eset = get_ext_tx_set(supertx_size, bsize, 1, cm->reduced_tx_set_used); if (eset > 0) { txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset], cm->fc->inter_ext_tx_prob[eset][supertx_size], ACCT_STR); if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm]; } } #else if (supertx_size < TX_32X32) { txfm = aom_read_tree(r, av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR); if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm]; } #endif // CONFIG_EXT_TX } av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); for (i = 0; i < MAX_MB_PLANE; i++) { dst_buf[i] = xd->plane[i].dst.buf; dst_stride[i] = xd->plane[i].dst.stride; } dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize, bsize, dst_buf, dst_stride); if (!skip) { int eobtotal = 0; MB_MODE_INFO *mbmi; set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col); mbmi = &xd->mi[0]->mbmi; mbmi->tx_type = txfm; assert(mbmi->segment_id_supertx != MAX_SEGMENTS); for (i = 0; i < MAX_MB_PLANE; ++i) { const struct macroblockd_plane *const pd = &xd->plane[i]; int row, col; const TX_SIZE tx_size = get_tx_size(i, xd); const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int stepr = tx_size_high_unit[tx_size]; const int stepc = tx_size_wide_unit[tx_size]; const int max_blocks_wide = max_block_wide(xd, plane_bsize, i); const int max_blocks_high = max_block_high(xd, plane_bsize, i); for (row = 0; row < max_blocks_high; row += stepr) for (col = 0; col < max_blocks_wide; col += stepc) eobtotal += reconstruct_inter_block( cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size); } if ((unify_bsize || !(subsize < BLOCK_8X8)) && eobtotal == 0) skip = 1; } set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip); } #endif // CONFIG_SUPERTX #if CONFIG_EXT_PARTITION_TYPES update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif // CONFIG_EXT_PARTITION_TYPES #if CONFIG_CDEF #if CONFIG_EXT_PARTITION if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128) { if (!sb_all_skip(cm, mi_row, mi_col)) { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength = aom_read_literal(r, cm->cdef_bits, ACCT_STR); } else { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength = 0; } } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64) { #else if (bsize == BLOCK_64X64) { #endif if (!sb_all_skip(cm, mi_row, mi_col)) { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength = aom_read_literal(r, cm->cdef_bits, ACCT_STR); } else { cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength = -1; } } #endif // CONFIG_CDEF } static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, const size_t read_size, struct aom_internal_error_info *error_info, aom_reader *r, #if CONFIG_ANS && ANS_MAX_SYMBOLS int window_size, #endif // CONFIG_ANS && ANS_MAX_SYMBOLS aom_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); #if CONFIG_ANS && ANS_MAX_SYMBOLS r->window_size = window_size; #endif if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } #if !CONFIG_PVQ && !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) && !CONFIG_LV_MAP static void read_coef_probs_common(av1_coeff_probs_model *coef_probs, aom_reader *r) { int i, j, k, l, m; #if CONFIG_EC_ADAPT const int node_limit = UNCONSTRAINED_NODES - 1; #else const int node_limit = UNCONSTRAINED_NODES; #endif if (aom_read_bit(r, ACCT_STR)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < node_limit; ++m) av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = 0; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); } #endif static void setup_segmentation(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { struct segmentation *const seg = &cm->seg; int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = aom_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->update_map = 1; } else { seg->update_map = aom_rb_read_bit(rb); } if (seg->update_map) { if (frame_is_intra_only(cm) || cm->error_resilient_mode) { seg->temporal_update = 0; } else { seg->temporal_update = aom_rb_read_bit(rb); } } // Segmentation data update seg->update_data = aom_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = aom_rb_read_bit(rb); av1_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = aom_rb_read_bit(rb); if (feature_enabled) { av1_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, av1_seg_feature_data_max(j)); if (av1_is_segfeature_signed(j)) data = aom_rb_read_bit(rb) ? -data : data; } av1_set_segdata(seg, i, j, data); } } } } #if CONFIG_LOOP_RESTORATION static void decode_restoration_mode(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int p; RestorationInfo *rsi = &cm->rst_info[0]; if (aom_rb_read_bit(rb)) { rsi->frame_restoration_type = aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; } else { rsi->frame_restoration_type = aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; } for (p = 1; p < MAX_MB_PLANE; ++p) { cm->rst_info[p].frame_restoration_type = aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_NONE; } cm->rst_info[0].restoration_tilesize = RESTORATION_TILESIZE_MAX; cm->rst_info[1].restoration_tilesize = RESTORATION_TILESIZE_MAX; cm->rst_info[2].restoration_tilesize = RESTORATION_TILESIZE_MAX; if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || cm->rst_info[1].frame_restoration_type != RESTORE_NONE || cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { rsi = &cm->rst_info[0]; rsi->restoration_tilesize >>= aom_rb_read_bit(rb); if (rsi->restoration_tilesize != RESTORATION_TILESIZE_MAX) { rsi->restoration_tilesize >>= aom_rb_read_bit(rb); } cm->rst_info[1].restoration_tilesize = cm->rst_info[0].restoration_tilesize; cm->rst_info[2].restoration_tilesize = cm->rst_info[0].restoration_tilesize; } } static void read_wiener_filter(WienerInfo *wiener_info, WienerInfo *ref_wiener_info, aom_reader *rb) { wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV) + WIENER_FILT_TAP0_MINV; wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV) + WIENER_FILT_TAP1_MINV; wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV) + WIENER_FILT_TAP2_MINV; // The central element has an implicit +WIENER_FILT_STEP wiener_info->vfilter[WIENER_HALFWIN] = -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + wiener_info->vfilter[2]); wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV) + WIENER_FILT_TAP0_MINV; wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV) + WIENER_FILT_TAP1_MINV; wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = aom_read_primitive_refsubexpfin( rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV) + WIENER_FILT_TAP2_MINV; // The central element has an implicit +WIENER_FILT_STEP wiener_info->hfilter[WIENER_HALFWIN] = -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + wiener_info->hfilter[2]); memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); } static void read_sgrproj_filter(SgrprojInfo *sgrproj_info, SgrprojInfo *ref_sgrproj_info, aom_reader *rb) { sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); sgrproj_info->xqd[0] = aom_read_primitive_refsubexpfin( rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0) + SGRPROJ_PRJ_MIN0; sgrproj_info->xqd[1] = aom_read_primitive_refsubexpfin( rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1) + SGRPROJ_PRJ_MIN1; memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); } static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) { int i, p; SgrprojInfo ref_sgrproj_info; WienerInfo ref_wiener_info; set_default_wiener(&ref_wiener_info); set_default_sgrproj(&ref_sgrproj_info); const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, cm->rst_info[0].restoration_tilesize, NULL, NULL, NULL, NULL); const int ntiles_uv = av1_get_rest_ntiles( ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x), ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y), cm->rst_info[1].restoration_tilesize, NULL, NULL, NULL, NULL); RestorationInfo *rsi = &cm->rst_info[0]; if (rsi->frame_restoration_type != RESTORE_NONE) { if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { for (i = 0; i < ntiles; ++i) { rsi->restoration_type[i] = aom_read_tree(rb, av1_switchable_restore_tree, cm->fc->switchable_restore_prob, ACCT_STR); if (rsi->restoration_type[i] == RESTORE_WIENER) { read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb); } else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) { read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb); } } } else if (rsi->frame_restoration_type == RESTORE_WIENER) { for (i = 0; i < ntiles; ++i) { if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) { rsi->restoration_type[i] = RESTORE_WIENER; read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb); } else { rsi->restoration_type[i] = RESTORE_NONE; } } } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { for (i = 0; i < ntiles; ++i) { if (aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)) { rsi->restoration_type[i] = RESTORE_SGRPROJ; read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb); } else { rsi->restoration_type[i] = RESTORE_NONE; } } } } for (p = 1; p < MAX_MB_PLANE; ++p) { set_default_wiener(&ref_wiener_info); rsi = &cm->rst_info[p]; if (rsi->frame_restoration_type == RESTORE_WIENER) { for (i = 0; i < ntiles_uv; ++i) { if (ntiles_uv > 1) rsi->restoration_type[i] = aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR) ? RESTORE_WIENER : RESTORE_NONE; else rsi->restoration_type[i] = RESTORE_WIENER; if (rsi->restoration_type[i] == RESTORE_WIENER) { read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb); } } } } } #endif // CONFIG_LOOP_RESTORATION static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { struct loopfilter *lf = &cm->lf; lf->filter_level = aom_rb_read_literal(rb, 6); lf->sharpness_level = aom_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = aom_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) if (aom_rb_read_bit(rb)) lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (aom_rb_read_bit(rb)) lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); } } } #if CONFIG_CDEF static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int i; cm->cdef_dering_damping = aom_rb_read_literal(rb, 1) + 5; cm->cdef_clpf_damping = aom_rb_read_literal(rb, 2) + 3; cm->cdef_bits = aom_rb_read_literal(rb, 2); cm->nb_cdef_strengths = 1 << cm->cdef_bits; for (i = 0; i < cm->nb_cdef_strengths; i++) { cm->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); cm->cdef_uv_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); } } #endif // CONFIG_CDEF static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; } static void setup_quantization(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); cm->y_dc_delta_q = read_delta_q(rb); cm->uv_dc_delta_q = read_delta_q(rb); cm->uv_ac_delta_q = read_delta_q(rb); cm->dequant_bit_depth = cm->bit_depth; #if CONFIG_AOM_QM cm->using_qmatrix = aom_rb_read_bit(rb); if (cm->using_qmatrix) { cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); } else { cm->min_qmlevel = 0; cm->max_qmlevel = 0; } #endif } static void setup_segmentation_dequant(AV1_COMMON *const cm) { // Build y/uv dequant values based on segmentation. int i = 0; #if CONFIG_AOM_QM int lossless; int j = 0; int qmlevel; int using_qm = cm->using_qmatrix; int minqm = cm->min_qmlevel; int maxqm = cm->max_qmlevel; #endif #if CONFIG_NEW_QUANT int b; int dq; #endif // CONFIG_NEW_QUANT if (cm->seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); cm->y_dequant[i][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[i][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[i][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // NB: depends on base index so there is only 1 set per frame // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif // CONFIG_AOM_QM #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq++) { for (b = 0; b < COEF_BANDS; ++b) { av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b, cm->y_dequant_nuq[i][dq][b], NULL, dq); av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b, cm->uv_dequant_nuq[i][dq][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT } } else { const int qindex = cm->base_qindex; // When segmentation is disabled, only the first value is used. The // remaining are don't cares. cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[0][0] = av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[0][1] = av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); #if CONFIG_AOM_QM lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; // No quant weighting when lossless or signalled not using QM qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); for (j = 0; j < TX_SIZES; ++j) { cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); } #endif #if CONFIG_NEW_QUANT for (dq = 0; dq < QUANT_PROFILES; dq++) { for (b = 0; b < COEF_BANDS; ++b) { av1_get_dequant_val_nuq(cm->y_dequant[0][b != 0], b, cm->y_dequant_nuq[0][dq][b], NULL, dq); av1_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], b, cm->uv_dequant_nuq[0][dq][b], NULL, dq); } } #endif // CONFIG_NEW_QUANT } } static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { return aom_rb_read_bit(rb) ? SWITCHABLE : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); } static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { cm->render_width = cm->width; cm->render_height = cm->height; if (aom_rb_read_bit(rb)) av1_read_frame_size(rb, &cm->render_width, &cm->render_height); } #if CONFIG_FRAME_SUPERRES // TODO(afergs): make "struct aom_read_bit_buffer *const rb"? static void setup_superres_size(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb, int *width, int *height) { // TODO(afergs): Test this behaviour // Frame superres is probably in compatible with this render resolution assert(cm->width == cm->render_width && cm->height == cm->render_height); cm->superres_width = cm->width; cm->superres_height = cm->height; if (aom_rb_read_bit(rb)) { cm->superres_scale_numerator = (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); cm->superres_scale_numerator += SUPERRES_SCALE_NUMERATOR_MIN; // Don't edit cm->width or cm->height directly, or the buffers won't get // resized correctly // TODO(afergs): Should the render resolution not be modified? It's the same // by default (ie. when it isn't sent)... // resize_context_buffers() will change cm->width to equal cm->render_width, // then they'll be the same again *width = cm->render_width = cm->width * cm->superres_scale_numerator / SUPERRES_SCALE_DENOMINATOR; *height = cm->render_height = cm->height * cm->superres_scale_numerator / SUPERRES_SCALE_DENOMINATOR; } else { // 1:1 scaling - ie. no scaling, scale not provided cm->superres_scale_numerator = SUPERRES_SCALE_DENOMINATOR; } } #endif // CONFIG_FRAME_SUPERRES static void resize_mv_buffer(AV1_COMMON *cm) { aom_free(cm->cur_frame->mvs); cm->cur_frame->mi_rows = cm->mi_rows; cm->cur_frame->mi_cols = cm->mi_cols; CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cm->cur_frame->mvs))); } static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Dimensions of %dx%d beyond allowed size of %dx%d.", width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in av1_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (av1_alloc_context_buffers(cm, width, height)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } else { av1_set_mb_mi(cm, width, height); } av1_init_context_buffers(cm); cm->width = width; cm->height = height; } if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || cm->mi_cols > cm->cur_frame->mi_cols) { resize_mv_buffer(cm); } } static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; BufferPool *const pool = cm->buffer_pool; av1_read_frame_size(rb, &width, &height); setup_render_size(cm, rb); #if CONFIG_FRAME_SUPERRES setup_superres_size(cm, rb, &width, &height); #endif // CONFIG_FRAME_SUPERRES resize_context_buffers(cm, width, height); lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, aom_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { if (aom_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; cm->render_width = buf->render_width; cm->render_height = buf->render_height; found = 1; break; } } if (!found) { av1_read_frame_size(rb, &width, &height); setup_render_size(cm, rb); } if (width <= 0 || height <= 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color format"); } resize_context_buffers(cm, width, height); lock_buffer_pool(pool); if (aom_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static void read_tile_info(AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) { AV1_COMMON *const cm = &pbi->common; #if CONFIG_EXT_TILE cm->tile_encoding_mode = aom_rb_read_literal(rb, 1); // Read the tile width/height #if CONFIG_EXT_PARTITION if (cm->sb_size == BLOCK_128X128) { cm->tile_width = aom_rb_read_literal(rb, 5) + 1; cm->tile_height = aom_rb_read_literal(rb, 5) + 1; } else #endif // CONFIG_EXT_PARTITION { cm->tile_width = aom_rb_read_literal(rb, 6) + 1; cm->tile_height = aom_rb_read_literal(rb, 6) + 1; } #if CONFIG_LOOPFILTERING_ACROSS_TILES cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb); #endif // CONFIG_LOOPFILTERING_ACROSS_TILES cm->tile_width <<= cm->mib_size_log2; cm->tile_height <<= cm->mib_size_log2; cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); // Get the number of tiles cm->tile_cols = 1; while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; cm->tile_rows = 1; while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; if (cm->tile_cols * cm->tile_rows > 1) { // Read the number of bytes used to store tile size pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; } #if CONFIG_DEPENDENT_HORZTILES if (cm->tile_rows <= 1) cm->dependent_horz_tiles = aom_rb_read_bit(rb); else cm->dependent_horz_tiles = 0; #endif #else int min_log2_tile_cols, max_log2_tile_cols, max_ones; av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = aom_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb); #if CONFIG_DEPENDENT_HORZTILES if (cm->log2_tile_rows != 0) cm->dependent_horz_tiles = aom_rb_read_bit(rb); else cm->dependent_horz_tiles = 0; #endif #if CONFIG_LOOPFILTERING_ACROSS_TILES cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb); #endif // CONFIG_LOOPFILTERING_ACROSS_TILES cm->tile_cols = 1 << cm->log2_tile_cols; cm->tile_rows = 1 << cm->log2_tile_rows; cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); cm->tile_width >>= cm->log2_tile_cols; cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); cm->tile_height >>= cm->log2_tile_rows; // round to integer multiples of superblock size cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2); cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2); // tile size magnitude #if !CONFIG_TILE_GROUPS if (cm->tile_rows > 1 || cm->tile_cols > 1) #endif pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; #endif // CONFIG_EXT_TILE #if CONFIG_TILE_GROUPS // Store an index to the location of the tile group information pbi->tg_size_bit_offset = rb->bit_offset; pbi->tg_size = 1 << (cm->log2_tile_rows + cm->log2_tile_cols); if (cm->log2_tile_rows + cm->log2_tile_cols > 0) { pbi->tg_start = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); pbi->tg_size = 1 + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); } #endif } static int mem_get_varsize(const uint8_t *src, int sz) { switch (sz) { case 1: return src[0]; case 2: return mem_get_le16(src); case 3: return mem_get_le24(src); case 4: return mem_get_le32(src); default: assert("Invalid size" && 0); return -1; } } #if CONFIG_EXT_TILE // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, struct aom_internal_error_info *error_info, const uint8_t **data, aom_decrypt_cb decrypt_cb, void *decrypt_state, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int tile_size_bytes, int col, int row, unsigned int tile_encoding_mode) { size_t size; size_t copy_size = 0; const uint8_t *copy_data = NULL; if (!read_is_valid(*data, tile_size_bytes, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); // Only read number of bytes in cm->tile_size_bytes. size = mem_get_varsize(be_data, tile_size_bytes); } else { size = mem_get_varsize(*data, tile_size_bytes); } // If cm->tile_encoding_mode = 1 (i.e. TILE_VR), then the top bit of the tile // header indicates copy mode. if (tile_encoding_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { // The remaining bits in the top byte signal the row offset int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; // Currently, only use tiles in same column as reference tiles. copy_data = tile_buffers[row - offset][col].data; copy_size = tile_buffers[row - offset][col].size; size = 0; } *data += tile_size_bytes; if (size > (size_t)(data_end - *data)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); if (size > 0) { tile_buffers[row][col].data = *data; tile_buffers[row][col].size = size; } else { tile_buffers[row][col].data = copy_data; tile_buffers[row][col].size = copy_size; } *data += size; tile_buffers[row][col].raw_data_end = *data; } static void get_tile_buffers( AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { AV1_COMMON *const cm = &pbi->common; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int have_tiles = tile_cols * tile_rows > 1; if (!have_tiles) { const size_t tile_size = data_end - data; tile_buffers[0][0].data = data; tile_buffers[0][0].size = tile_size; tile_buffers[0][0].raw_data_end = NULL; } else { // We locate only the tile buffers that are required, which are the ones // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always // need the last (bottom right) tile buffer, as we need to know where the // end of the compressed frame buffer is for proper superframe decoding. const uint8_t *tile_col_data_end[MAX_TILE_COLS]; const uint8_t *const data_start = data; const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; const int tile_col_size_bytes = pbi->tile_col_size_bytes; const int tile_size_bytes = pbi->tile_size_bytes; size_t tile_col_size; int r, c; // Read tile column sizes for all columns (we need the last tile buffer) for (c = 0; c < tile_cols; ++c) { const int is_last = c == tile_cols - 1; if (!is_last) { tile_col_size = mem_get_varsize(data, tile_col_size_bytes); data += tile_col_size_bytes; tile_col_data_end[c] = data + tile_col_size; } else { tile_col_size = data_end - data; tile_col_data_end[c] = data_end; } data += tile_col_size; } data = data_start; // Read the required tile sizes. for (c = tile_cols_start; c < tile_cols_end; ++c) { const int is_last = c == tile_cols - 1; if (c > 0) data = tile_col_data_end[c - 1]; if (!is_last) data += tile_col_size_bytes; // Get the whole of the last column, otherwise stop at the required tile. for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { tile_buffers[r][c].col = c; get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, c, r, cm->tile_encoding_mode); } } // If we have not read the last column, then read it to get the last tile. if (tile_cols_end != tile_cols) { c = tile_cols - 1; data = tile_col_data_end[c - 1]; for (r = 0; r < tile_rows; ++r) { tile_buffers[r][c].col = c; get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, tile_size_bytes, c, r, cm->tile_encoding_mode); } } } } #else // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, const int tile_size_bytes, int is_last, struct aom_internal_error_info *error_info, const uint8_t **data, aom_decrypt_cb decrypt_cb, void *decrypt_state, TileBufferDec *const buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, tile_size_bytes, data_end)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); size = mem_get_varsize(be_data, tile_size_bytes); } else { size = mem_get_varsize(*data, tile_size_bytes); } *data += tile_size_bytes; if (size > (size_t)(data_end - *data)) aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers( AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { AV1_COMMON *const cm = &pbi->common; #if CONFIG_TILE_GROUPS int r, c; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; int tc = 0; int first_tile_in_tg = 0; struct aom_read_bit_buffer rb_tg_hdr; uint8_t clear_data[MAX_AV1_HEADER_SIZE]; const int num_tiles = tile_rows * tile_cols; const int num_bits = OD_ILOG(num_tiles) - 1; const size_t hdr_size = pbi->uncomp_hdr_size + pbi->first_partition_size; const int tg_size_bit_offset = pbi->tg_size_bit_offset; #if CONFIG_DEPENDENT_HORZTILES int tile_group_start_col = 0; int tile_group_start_row = 0; #endif for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c, ++tc) { TileBufferDec *const buf = &tile_buffers[r][c]; const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); const size_t hdr_offset = (tc && tc == first_tile_in_tg) ? hdr_size : 0; buf->col = c; if (hdr_offset) { init_read_bit_buffer(pbi, &rb_tg_hdr, data, data_end, clear_data); rb_tg_hdr.bit_offset = tg_size_bit_offset; if (num_tiles) { pbi->tg_start = aom_rb_read_literal(&rb_tg_hdr, num_bits); pbi->tg_size = 1 + aom_rb_read_literal(&rb_tg_hdr, num_bits); #if CONFIG_DEPENDENT_HORZTILES tile_group_start_row = r; tile_group_start_col = c; #endif } } first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0; data += hdr_offset; get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); #if CONFIG_DEPENDENT_HORZTILES cm->tile_group_start_row[r][c] = tile_group_start_row; cm->tile_group_start_col[r][c] = tile_group_start_col; #endif } } #else int r, c; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBufferDec *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } #endif } #endif // CONFIG_EXT_TILE #if CONFIG_PVQ static void daala_dec_init(AV1_COMMON *const cm, daala_dec_ctx *daala_dec, aom_reader *r) { daala_dec->r = r; // TODO(yushin) : activity masking info needs be signaled by a bitstream daala_dec->use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING; #if !CONFIG_DAALA_DIST daala_dec->use_activity_masking = 0; #endif if (daala_dec->use_activity_masking) daala_dec->qm = OD_HVS_QM; else daala_dec->qm = OD_FLAT_QM; od_init_qm(daala_dec->state.qm, daala_dec->state.qm_inv, daala_dec->qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT); if (daala_dec->use_activity_masking) { int pli; int use_masking = daala_dec->use_activity_masking; int segment_id = 0; int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); for (pli = 0; pli < MAX_MB_PLANE; pli++) { int i; int q; q = qindex; if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) { od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q, &OD_DEFAULT_QMS[use_masking][0][pli], NULL); } else { i = 0; while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL && q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q << OD_COEFF_SHIFT) { i++; } od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q, &OD_DEFAULT_QMS[use_masking][i][pli], &OD_DEFAULT_QMS[use_masking][i + 1][pli]); } } } } #endif // #if CONFIG_PVQ static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int n_tiles = tile_cols * tile_rows; TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; #if CONFIG_EXT_TILE const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; const int inv_col_order = pbi->inv_tile_order && !single_col; const int inv_row_order = pbi->inv_tile_order && !single_row; #else const int tile_rows_start = 0; const int tile_rows_end = tile_rows; const int tile_cols_start = 0; const int tile_cols_end = tile_cols; const int inv_col_order = pbi->inv_tile_order; const int inv_row_order = pbi->inv_tile_order; #endif // CONFIG_EXT_TILE int tile_row, tile_col; #if CONFIG_SUBFRAME_PROB_UPDATE cm->do_subframe_update = n_tiles == 1; #endif // CONFIG_SUBFRAME_PROB_UPDATE if (cm->lf.filter_level && !cm->skip_loop_filter && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, aom_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, pbi->mb.plane); } assert(tile_rows <= MAX_TILE_ROWS); assert(tile_cols <= MAX_TILE_COLS); get_tile_buffers(pbi, data, data_end, tile_buffers); if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { aom_free(pbi->tile_data); CHECK_MEM_ERROR(cm, pbi->tile_data, aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data)))); pbi->allocated_tiles = n_tiles; } #if CONFIG_ACCOUNTING if (pbi->acct_enabled) { aom_accounting_reset(&pbi->accounting); } #endif // Load all tile information into tile_data. for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col; td->cm = cm; td->xd = pbi->mb; td->xd.corrupted = 0; td->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &cm->counts : NULL; av1_zero(td->dqcoeff); #if CONFIG_PVQ av1_zero(td->pvq_ref_coeff); #endif av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col); setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, &td->bit_reader, #if CONFIG_ANS && ANS_MAX_SYMBOLS 1 << cm->ans_window_size_log2, #endif // CONFIG_ANS && ANS_MAX_SYMBOLS pbi->decrypt_cb, pbi->decrypt_state); #if CONFIG_ACCOUNTING if (pbi->acct_enabled) { td->bit_reader.accounting = &pbi->accounting; } else { td->bit_reader.accounting = NULL; } #endif av1_init_macroblockd(cm, &td->xd, #if CONFIG_PVQ td->pvq_ref_coeff, #endif #if CONFIG_CFL &td->cfl, #endif td->dqcoeff); #if CONFIG_EC_ADAPT // Initialise the tile context from the frame context td->tctx = *cm->fc; td->xd.tile_ctx = &td->tctx; #endif #if CONFIG_PVQ daala_dec_init(cm, &td->xd.daala_dec, &td->bit_reader); td->xd.daala_dec.state.adapt = &td->tctx.pvq_context; #endif #if CONFIG_PALETTE td->xd.plane[0].color_index_map = td->color_index_map[0]; td->xd.plane[1].color_index_map = td->color_index_map[1]; #endif // CONFIG_PALETTE } } for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; int mi_row = 0; TileInfo tile_info; av1_tile_set_row(&tile_info, cm, row); for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; TileData *const td = pbi->tile_data + tile_cols * row + col; #if CONFIG_ACCOUNTING if (pbi->acct_enabled) { td->bit_reader.accounting->last_tell_frac = aom_reader_tell_frac(&td->bit_reader); } #endif av1_tile_set_col(&tile_info, cm, col); #if CONFIG_DEPENDENT_HORZTILES #if CONFIG_TILE_GROUPS av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col); if (!cm->dependent_horz_tiles || tile_row == 0 || tile_info.tg_horz_boundary) { #else if (!cm->dependent_horz_tiles || tile_row == 0) { #endif av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end); } #else av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end); #endif for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->mib_size) { int mi_col; av1_zero_left_context(&td->xd); for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->mib_size) { av1_update_boundary_info(cm, &tile_info, mi_row, mi_col); decode_partition(pbi, &td->xd, #if CONFIG_SUPERTX 0, #endif // CONFIG_SUPERTX mi_row, mi_col, &td->bit_reader, cm->sb_size, b_width_log2_lookup[cm->sb_size]); #if CONFIG_NCOBMC && CONFIG_MOTION_VAR detoken_and_recon_sb(pbi, &td->xd, mi_row, mi_col, &td->bit_reader, cm->sb_size); #endif } aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted); if (pbi->mb.corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); #if CONFIG_SUBFRAME_PROB_UPDATE if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { const int mi_rows_per_update = MI_SIZE * AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1); if ((mi_row + MI_SIZE) % mi_rows_per_update == 0 && mi_row + MI_SIZE < cm->mi_rows && cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { av1_partial_adapt_probs(cm, mi_row, mi_col); ++cm->coef_probs_update_idx; } } #endif // CONFIG_SUBFRAME_PROB_UPDATE } } assert(mi_row > 0); // when Parallel deblocking is enabled, deblocking should not // be interleaved with decoding. Instead, deblocking should be done // after the entire frame is decoded. #if !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING && !CONFIG_CB4X4 // Loopfilter one tile row. // Note: If out-of-order tile decoding is used(for example, inv_row_order // = 1), the loopfiltering has be done after all tile rows are decoded. if (!inv_row_order && cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size); const int lf_end = tile_info.mi_row_end - cm->mib_size; // Delay the loopfilter if the first tile row is only // a single superblock high. if (lf_end <= 0) continue; // Decoding has completed. Finish up the loop filter in this thread. if (tile_info.mi_row_end >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = lf_end; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } #endif // !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING // After loopfiltering, the last 7 row pixels in each superblock row may // still be changed by the longest loopfilter of the next superblock row. if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2); } #if CONFIG_VAR_TX || CONFIG_CB4X4 // Loopfilter the whole frame. av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, cm->lf.filter_level, 0, 0); #else #if CONFIG_PARALLEL_DEBLOCKING // Loopfilter all rows in the frame in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = 0; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } #else // Loopfilter remaining rows in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } #endif // CONFIG_PARALLEL_DEBLOCKING #endif // CONFIG_VAR_TX if (cm->frame_parallel_decode) av1_frameworker_broadcast(pbi->cur_buf, INT_MAX); #if CONFIG_EXT_TILE if (n_tiles == 1) { #if CONFIG_ANS return data_end; #else // Find the end of the single tile buffer return aom_reader_find_end(&pbi->tile_data->bit_reader); #endif // CONFIG_ANS } else { // Return the end of the last tile buffer return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; } #else #if CONFIG_ANS return data_end; #else { // Get last tile data. TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1; return aom_reader_find_end(&td->bit_reader); } #endif // CONFIG_ANS #endif // CONFIG_EXT_TILE } static int tile_worker_hook(TileWorkerData *const tile_data, const TileInfo *const tile) { AV1Decoder *const pbi = tile_data->pbi; const AV1_COMMON *const cm = &pbi->common; int mi_row, mi_col; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; aom_merge_corrupted_flag(&tile_data->xd.corrupted, 1); return 0; } tile_data->error_info.setjmp = 1; tile_data->xd.error_info = &tile_data->error_info; #if CONFIG_DEPENDENT_HORZTILES #if CONFIG_TILE_GROUPS if (!cm->dependent_horz_tiles || tile->tg_horz_boundary) { #else if (!cm->dependent_horz_tiles) { #endif av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); } #else av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); #endif for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += cm->mib_size) { av1_zero_left_context(&tile_data->xd); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += cm->mib_size) { decode_partition(pbi, &tile_data->xd, #if CONFIG_SUPERTX 0, #endif mi_row, mi_col, &tile_data->bit_reader, cm->sb_size, b_width_log2_lookup[cm->sb_size]); #if CONFIG_NCOBMC && CONFIG_MOTION_VAR detoken_and_recon_sb(pbi, &tile_data->xd, mi_row, mi_col, &tile_data->bit_reader, cm->sb_size); #endif } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBufferDec *const buf1 = (const TileBufferDec *)a; const TileBufferDec *const buf2 = (const TileBufferDec *)b; return (int)(buf2->size - buf1->size); } static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { AV1_COMMON *const cm = &pbi->common; const AVxWorkerInterface *const winterface = aom_get_worker_interface(); const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols); TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; #if CONFIG_EXT_TILE const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); const int single_row = pbi->dec_tile_row >= 0; const int tile_rows_start = single_row ? dec_tile_row : 0; const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); const int single_col = pbi->dec_tile_col >= 0; const int tile_cols_start = single_col ? dec_tile_col : 0; const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; #else const int tile_rows_start = 0; const int tile_rows_end = tile_rows; const int tile_cols_start = 0; const int tile_cols_end = tile_cols; #endif // CONFIG_EXT_TILE int tile_row, tile_col; int i; #if !(CONFIG_ANS || CONFIG_EXT_TILE) int final_worker = -1; #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) assert(tile_rows <= MAX_TILE_ROWS); assert(tile_cols <= MAX_TILE_COLS); assert(tile_cols * tile_rows > 1); // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; CHECK_MEM_ERROR(cm, pbi->tile_workers, aom_malloc(num_threads * sizeof(*pbi->tile_workers))); // Ensure tile data offsets will be properly aligned. This may fail on // platforms without DECLARE_ALIGNED(). assert((sizeof(*pbi->tile_worker_data) % 16) == 0); CHECK_MEM_ERROR( cm, pbi->tile_worker_data, aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); CHECK_MEM_ERROR(cm, pbi->tile_worker_info, aom_malloc(num_threads * sizeof(*pbi->tile_worker_info))); for (i = 0; i < num_threads; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); if (i < num_threads - 1 && !winterface->reset(worker)) { aom_internal_error(&cm->error, AOM_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &pbi->tile_workers[i]; winterface->sync(worker); worker->hook = (AVxWorkerHook)tile_worker_hook; worker->data1 = &pbi->tile_worker_data[i]; worker->data2 = &pbi->tile_worker_info[i]; } // Initialize thread frame counts. if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; av1_zero(twd->counts); } } // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_buffers); for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { // Sort the buffers in this tile row based on size in descending order. qsort(&tile_buffers[tile_row][tile_cols_start], tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers in this tile row such that per-tile group // the largest, and presumably the most difficult tile will be decoded in // the main thread. This should help minimize the number of instances // where the main thread is waiting for a worker to complete. { int group_start; for (group_start = tile_cols_start; group_start < tile_cols_end; group_start += num_workers) { const int group_end = AOMMIN(group_start + num_workers, tile_cols); const TileBufferDec largest = tile_buffers[tile_row][group_start]; memmove(&tile_buffers[tile_row][group_start], &tile_buffers[tile_row][group_start + 1], (group_end - group_start - 1) * sizeof(tile_buffers[0][0])); tile_buffers[tile_row][group_end - 1] = largest; } } for (tile_col = tile_cols_start; tile_col < tile_cols_end;) { // Launch workers for individual columns for (i = 0; i < num_workers && tile_col < tile_cols_end; ++i, ++tile_col) { TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; AVxWorker *const worker = &pbi->tile_workers[i]; TileWorkerData *const twd = (TileWorkerData *)worker->data1; TileInfo *const tile_info = (TileInfo *)worker->data2; twd->pbi = pbi; twd->xd = pbi->mb; twd->xd.corrupted = 0; twd->xd.counts = cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD ? &twd->counts : NULL; av1_zero(twd->dqcoeff); av1_tile_init(tile_info, cm, tile_row, buf->col); av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col); setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, &twd->bit_reader, #if CONFIG_ANS && ANS_MAX_SYMBOLS 1 << cm->ans_window_size_log2, #endif // CONFIG_ANS && ANS_MAX_SYMBOLS pbi->decrypt_cb, pbi->decrypt_state); av1_init_macroblockd(cm, &twd->xd, #if CONFIG_PVQ twd->pvq_ref_coeff, #endif #if CONFIG_CFL &twd->cfl, #endif twd->dqcoeff); #if CONFIG_PVQ daala_dec_init(cm, &twd->xd.daala_dec, &twd->bit_reader); twd->xd.daala_dec.state.adapt = &twd->tctx.pvq_context; #endif #if CONFIG_EC_ADAPT // Initialise the tile context from the frame context twd->tctx = *cm->fc; twd->xd.tile_ctx = &twd->tctx; #endif #if CONFIG_PALETTE twd->xd.plane[0].color_index_map = twd->color_index_map[0]; twd->xd.plane[1].color_index_map = twd->color_index_map[1]; #endif // CONFIG_PALETTE worker->had_error = 0; if (i == num_workers - 1 || tile_col == tile_cols_end - 1) { winterface->execute(worker); } else { winterface->launch(worker); } #if !(CONFIG_ANS || CONFIG_EXT_TILE) if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) { final_worker = i; } #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) } // Sync all workers for (; i > 0; --i) { AVxWorker *const worker = &pbi->tile_workers[i - 1]; // TODO(jzern): The tile may have specific error data associated with // its aom_internal_error_info which could be propagated to the main // info in cm. Additionally once the threads have been synced and an // error is detected, there's no point in continuing to decode tiles. pbi->mb.corrupted |= !winterface->sync(worker); } } } // Accumulate thread frame counts. if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; av1_accumulate_frame_counts(&cm->counts, &twd->counts); } } #if CONFIG_EXT_TILE // Return the end of the last tile buffer return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; #else #if CONFIG_ANS return data_end; #else assert(final_worker != -1); { TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[final_worker].data1; return aom_reader_find_end(&twd->bit_reader); } #endif // CONFIG_ANS #endif // CONFIG_EXT_TILE } static void error_handler(void *data) { AV1_COMMON *const cm = (AV1_COMMON *)data; aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10; } else { cm->bit_depth = AOM_BITS_8; } #if CONFIG_HIGHBITDEPTH if (cm->bit_depth > AOM_BITS_8) { cm->use_highbitdepth = 1; } else { #if CONFIG_LOWBITDEPTH cm->use_highbitdepth = 0; #else cm->use_highbitdepth = 1; #endif } #endif cm->color_space = aom_rb_read_literal(rb, 3); if (cm->color_space != AOM_CS_SRGB) { // [16,235] (including xvycc) vs [0,255] range cm->color_range = aom_rb_read_bit(rb); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = aom_rb_read_bit(rb); cm->subsampling_y = aom_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (aom_rb_read_bit(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } #if CONFIG_REFERENCE_BUFFER void read_sequence_header(SequenceHeader *seq_params) { /* Placeholder for actually reading from the bitstream */ seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG; seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7; seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2; } #endif static size_t read_uncompressed_header(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; int i, mask, ref_index = 0; size_t sz; #if CONFIG_REFERENCE_BUFFER /* TODO: Move outside frame loop or inside key-frame branch */ read_sequence_header(&pbi->seq_params); #endif cm->last_frame_type = cm->frame_type; cm->last_intra_only = cm->intra_only; #if CONFIG_EXT_REFS // NOTE: By default all coded frames to be used as a reference cm->is_reference_frame = 1; #endif // CONFIG_EXT_REFS if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = av1_read_profile(rb); const BITSTREAM_PROFILE MAX_SUPPORTED_PROFILE = CONFIG_HIGHBITDEPTH ? MAX_PROFILES : PROFILE_2; if (cm->profile >= MAX_SUPPORTED_PROFILE) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); cm->show_existing_frame = aom_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int existing_frame_idx = aom_rb_read_literal(rb, 3); const int frame_to_show = cm->ref_frame_map[existing_frame_idx]; #if CONFIG_REFERENCE_BUFFER if (pbi->seq_params.frame_id_numbers_present_flag) { int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; int display_frame_id = aom_rb_read_literal(rb, frame_id_length); /* Compare display_frame_id with ref_frame_id and check valid for * referencing */ if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || cm->valid_for_referencing[existing_frame_idx] == 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Reference buffer frame ID mismatch"); } #endif lock_buffer_pool(pool); if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { unlock_buffer_pool(pool); aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); } ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); unlock_buffer_pool(pool); cm->lf.filter_level = 0; cm->show_frame = 1; pbi->refresh_frame_flags = 0; if (cm->frame_parallel_decode) { for (i = 0; i < REF_FRAMES; ++i) cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; } return 0; } cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb); cm->show_frame = aom_rb_read_bit(rb); cm->error_resilient_mode = aom_rb_read_bit(rb); #if CONFIG_REFERENCE_BUFFER if (pbi->seq_params.frame_id_numbers_present_flag) { int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2; int prev_frame_id = 0; if (cm->frame_type != KEY_FRAME) { prev_frame_id = cm->current_frame_id; } cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); if (cm->frame_type != KEY_FRAME) { int diff_frame_id; if (cm->current_frame_id > prev_frame_id) { diff_frame_id = cm->current_frame_id - prev_frame_id; } else { diff_frame_id = (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; } /* Check current_frame_id for conformance */ if (prev_frame_id == cm->current_frame_id || diff_frame_id >= (1 << (frame_id_length - 1))) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid value of current_frame_id"); } } /* Check if some frames need to be marked as not valid for referencing */ for (i = 0; i < REF_FRAMES; i++) { if (cm->frame_type == KEY_FRAME) { cm->valid_for_referencing[i] = 0; } else if (cm->current_frame_id - (1 << diff_len) > 0) { if (cm->ref_frame_id[i] > cm->current_frame_id || cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) cm->valid_for_referencing[i] = 0; } else { if (cm->ref_frame_id[i] > cm->current_frame_id && cm->ref_frame_id[i] < (1 << frame_id_length) + cm->current_frame_id - (1 << diff_len)) cm->valid_for_referencing[i] = 0; } } } #endif if (cm->frame_type == KEY_FRAME) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = INVALID_IDX; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } #if CONFIG_ANS && ANS_MAX_SYMBOLS cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8; #endif // CONFIG_ANS && ANS_MAX_SYMBOLS #if CONFIG_PALETTE cm->allow_screen_content_tools = aom_rb_read_bit(rb); #endif // CONFIG_PALETTE } else { cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb); #if CONFIG_PALETTE if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb); #endif // CONFIG_PALETTE if (cm->error_resilient_mode) { cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL; } else { if (cm->intra_only) { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } else { cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_CURRENT : RESET_FRAME_CONTEXT_NONE; if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) cm->reset_frame_context = aom_rb_read_bit(rb) ? RESET_FRAME_CONTEXT_ALL : RESET_FRAME_CONTEXT_CURRENT; } } if (cm->intra_only) { if (!av1_read_sync_code(rb)) aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } #if CONFIG_ANS && ANS_MAX_SYMBOLS cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8; #endif } else if (pbi->need_resync != 1) { /* Skip if need resync */ pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); #if CONFIG_EXT_REFS if (!pbi->refresh_frame_flags) { // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame // will not be used as a reference cm->is_reference_frame = 0; } #endif // CONFIG_EXT_REFS for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); #if CONFIG_REFERENCE_BUFFER if (pbi->seq_params.frame_id_numbers_present_flag) { int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7; int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2; int delta_frame_id_minus1 = aom_rb_read_literal(rb, diff_len); int ref_frame_id = ((cm->current_frame_id - (delta_frame_id_minus1 + 1) + (1 << frame_id_length)) % (1 << frame_id_length)); /* Compare values derived from delta_frame_id_minus1 and * refresh_frame_flags. Also, check valid for referencing */ if (ref_frame_id != cm->ref_frame_id[ref] || cm->valid_for_referencing[ref] == 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Reference buffer frame ID mismatch"); } #endif } #if CONFIG_FRAME_SIZE if (cm->error_resilient_mode == 0) { setup_frame_size_with_refs(cm, rb); } else { setup_frame_size(cm, rb); } #else setup_frame_size_with_refs(cm, rb); #endif cm->allow_high_precision_mv = aom_rb_read_bit(rb); cm->interp_filter = read_frame_interp_filter(rb); #if CONFIG_TEMPMV_SIGNALING if (!cm->error_resilient_mode) { cm->use_prev_frame_mvs = aom_rb_read_bit(rb); } #endif for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_HIGHBITDEPTH av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else av1_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif } } } #if CONFIG_TEMPMV_SIGNALING cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only; #endif #if CONFIG_REFERENCE_BUFFER if (pbi->seq_params.frame_id_numbers_present_flag) { /* If bitmask is set, update reference frame id values and mark frames as valid for reference */ int refresh_frame_flags = cm->frame_type == KEY_FRAME ? 0xFF : pbi->refresh_frame_flags; for (i = 0; i < REF_FRAMES; i++) { if ((refresh_frame_flags >> i) & 1) { cm->ref_frame_id[i] = cm->current_frame_id; cm->valid_for_referencing[i] = 1; } } } #endif #if CONFIG_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif get_frame_new_buffer(cm)->color_space = cm->color_space; get_frame_new_buffer(cm)->color_range = cm->color_range; get_frame_new_buffer(cm)->render_width = cm->render_width; get_frame_new_buffer(cm)->render_height = cm->render_height; if (pbi->need_resync) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = aom_rb_read_bit(rb) ? REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD; } else { cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD; } // This flag will be overridden by the call to av1_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); // Generate next_ref_frame_map. lock_buffer_pool(pool); for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } unlock_buffer_pool(pool); pbi->hold_ref_buf = 1; if (frame_is_intra_only(cm) || cm->error_resilient_mode) av1_setup_past_independence(cm); #if CONFIG_EXT_PARTITION set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); #else set_sb_size(cm, BLOCK_64X64); #endif // CONFIG_EXT_PARTITION setup_loopfilter(cm, rb); #if CONFIG_CDEF setup_cdef(cm, rb); #endif #if CONFIG_LOOP_RESTORATION decode_restoration_mode(cm, rb); #endif // CONFIG_LOOP_RESTORATION setup_quantization(cm, rb); #if CONFIG_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif #if CONFIG_Q_ADAPT_PROBS av1_default_coef_probs(cm); if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) { for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) { cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } #endif // CONFIG_Q_ADAPT_PROBS setup_segmentation(cm, rb); #if CONFIG_DELTA_Q { struct segmentation *const seg = &cm->seg; int segment_quantizer_active = 0; for (i = 0; i < MAX_SEGMENTS; i++) { if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) { segment_quantizer_active = 1; } } cm->delta_q_res = 1; #if CONFIG_EXT_DELTA_Q cm->delta_lf_res = 1; #endif if (segment_quantizer_active == 0 && cm->base_qindex > 0) { cm->delta_q_present_flag = aom_rb_read_bit(rb); } else { cm->delta_q_present_flag = 0; } if (cm->delta_q_present_flag) { xd->prev_qindex = cm->base_qindex; cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2); #if CONFIG_EXT_DELTA_Q if (segment_quantizer_active) { assert(seg->abs_delta == SEGMENT_DELTADATA); } cm->delta_lf_present_flag = aom_rb_read_bit(rb); if (cm->delta_lf_present_flag) { xd->prev_delta_lf_from_base = 0; cm->delta_lf_res = 1 << aom_rb_read_literal(rb, 2); } else { cm->delta_lf_present_flag = 0; } #endif // CONFIG_EXT_DELTA_Q } } #endif for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = cm->seg.enabled ? av1_get_qindex(&cm->seg, i, cm->base_qindex) : cm->base_qindex; xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; xd->qindex[i] = qindex; } setup_segmentation_dequant(cm); cm->tx_mode = read_tx_mode(cm, xd, rb); cm->reference_mode = read_frame_reference_mode(cm, rb); #if CONFIG_EXT_TX cm->reduced_tx_set_used = aom_rb_read_bit(rb); #endif // CONFIG_EXT_TX read_tile_info(pbi, rb); sz = aom_rb_read_literal(rb, 16); if (sz == 0) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } #if CONFIG_EXT_TX #if !CONFIG_EC_ADAPT static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j, k; int s; for (s = 1; s < EXT_TX_SETS_INTER; ++s) { if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_inter_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < num_ext_tx_set[ext_tx_set_type_inter[s]] - 1; ++j) av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j], ACCT_STR); } } } for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_intra_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < INTRA_MODES; ++j) for (k = 0; k < num_ext_tx_set[ext_tx_set_type_intra[s]] - 1; ++k) av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k], ACCT_STR); } } } } #endif // !CONFIG_EC_ADAPT #else #endif // CONFIG_EXT_TX #if CONFIG_SUPERTX static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) { int i, j; if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = TX_8X8; j < TX_SIZES; ++j) { av1_diff_update_prob(r, &fc->supertx_prob[i][j], ACCT_STR); } } } } #endif // CONFIG_SUPERTX #if CONFIG_GLOBAL_MOTION static void read_global_motion_params(WarpedMotionParams *params, WarpedMotionParams *ref_params, aom_prob *probs, aom_reader *r, int allow_hp) { TransformationType type = aom_read_tree(r, av1_global_motion_types_tree, probs, ACCT_STR); int trans_bits; int trans_dec_factor; int trans_prec_diff; set_default_warp_params(params); params->wmtype = type; switch (type) { case HOMOGRAPHY: case HORTRAPEZOID: case VERTRAPEZOID: if (type != HORTRAPEZOID) params->wmmat[6] = aom_read_signed_primitive_refsubexpfin( r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF)) * GM_ROW3HOMO_DECODE_FACTOR; if (type != VERTRAPEZOID) params->wmmat[7] = aom_read_signed_primitive_refsubexpfin( r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF)) * GM_ROW3HOMO_DECODE_FACTOR; case AFFINE: case ROTZOOM: params->wmmat[2] = aom_read_signed_primitive_refsubexpfin( r, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)) * GM_ALPHA_DECODE_FACTOR + (1 << WARPEDMODEL_PREC_BITS); if (type != VERTRAPEZOID) params->wmmat[3] = aom_read_signed_primitive_refsubexpfin( r, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * GM_ALPHA_DECODE_FACTOR; if (type >= AFFINE) { if (type != HORTRAPEZOID) params->wmmat[4] = aom_read_signed_primitive_refsubexpfin( r, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * GM_ALPHA_DECODE_FACTOR; params->wmmat[5] = aom_read_signed_primitive_refsubexpfin( r, GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)) * GM_ALPHA_DECODE_FACTOR + (1 << WARPEDMODEL_PREC_BITS); } else { params->wmmat[4] = -params->wmmat[3]; params->wmmat[5] = params->wmmat[2]; } // fallthrough intended case TRANSLATION: trans_bits = (type == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp : GM_ABS_TRANS_BITS; trans_dec_factor = (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp) : GM_TRANS_DECODE_FACTOR; trans_prec_diff = (type == TRANSLATION) ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp : GM_TRANS_PREC_DIFF; params->wmmat[0] = aom_read_signed_primitive_refsubexpfin( r, (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_params->wmmat[0] >> trans_prec_diff)) * trans_dec_factor; params->wmmat[1] = aom_read_signed_primitive_refsubexpfin( r, (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_params->wmmat[1] >> trans_prec_diff)) * trans_dec_factor; case IDENTITY: break; default: assert(0); } if (params->wmtype <= AFFINE) if (!get_shear_params(params)) assert(0); } static void read_global_motion(AV1_COMMON *cm, aom_reader *r) { int frame; for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { read_global_motion_params( &cm->global_motion[frame], &cm->prev_frame->global_motion[frame], cm->fc->global_motion_types_prob, r, cm->allow_high_precision_mv); /* printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", frame, cm->current_video_frame, cm->show_frame, cm->global_motion[frame].wmmat[0], cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], cm->global_motion[frame].wmmat[3]); */ } memcpy(cm->cur_frame->global_motion, cm->global_motion, TOTAL_REFS_PER_FRAME * sizeof(WarpedMotionParams)); } #endif // CONFIG_GLOBAL_MOTION static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, size_t partition_size) { AV1_COMMON *const cm = &pbi->common; #if CONFIG_SUPERTX MACROBLOCKD *const xd = &pbi->mb; #endif FRAME_CONTEXT *const fc = cm->fc; aom_reader r; int k, i; #if !CONFIG_EC_ADAPT || \ (CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION || CONFIG_EXT_INTER) int j; #endif #if CONFIG_ANS && ANS_MAX_SYMBOLS r.window_size = 1 << cm->ans_window_size_log2; #endif if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); #if CONFIG_LOOP_RESTORATION if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || cm->rst_info[1].frame_restoration_type != RESTORE_NONE || cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { av1_alloc_restoration_buffers(cm); decode_restoration(cm, &r); } #endif #if !CONFIG_EC_ADAPT if (cm->tx_mode == TX_MODE_SELECT) read_tx_size_probs(fc, &r); #endif #if CONFIG_LV_MAP av1_read_txb_probs(fc, cm->tx_mode, &r); #else // CONFIG_LV_MAP #if !CONFIG_PVQ #if !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) read_coef_probs(fc, cm->tx_mode, &r); #endif // !(CONFIG_EC_ADAPT && CONFIG_NEW_TOKENSET) #endif // !CONFIG_PVQ #endif // CONFIG_LV_MAP #if CONFIG_VAR_TX for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) av1_diff_update_prob(&r, &fc->txfm_partition_prob[k], ACCT_STR); #endif // CONFIG_VAR_TX for (k = 0; k < SKIP_CONTEXTS; ++k) av1_diff_update_prob(&r, &fc->skip_probs[k], ACCT_STR); #if CONFIG_DELTA_Q && !CONFIG_EC_ADAPT #if CONFIG_EXT_DELTA_Q if (cm->delta_q_present_flag) { for (k = 0; k < DELTA_Q_PROBS; ++k) av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR); } if (cm->delta_lf_present_flag) { for (k = 0; k < DELTA_LF_PROBS; ++k) av1_diff_update_prob(&r, &fc->delta_lf_prob[k], ACCT_STR); } #else for (k = 0; k < DELTA_Q_PROBS; ++k) av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR); #endif #endif #if !CONFIG_EC_ADAPT if (cm->seg.enabled && cm->seg.update_map) { if (cm->seg.temporal_update) { for (k = 0; k < PREDICTION_PROBS; k++) av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k], ACCT_STR); } for (k = 0; k < MAX_SEGMENTS - 1; k++) av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k], ACCT_STR); } for (j = 0; j < INTRA_MODES; j++) { for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i], ACCT_STR); } #if CONFIG_EXT_PARTITION_TYPES for (j = 0; j < PARTITION_PLOFFSET; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); for (; j < PARTITION_CONTEXTS_PRIMARY; ++j) for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); #else for (j = 0; j < PARTITION_CONTEXTS_PRIMARY; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); #endif // CONFIG_EXT_PARTITION_TYPES #if CONFIG_UNPOISON_PARTITION_CTX for (; j < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++j) av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_VERT], ACCT_STR); for (; j < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++j) av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_HORZ], ACCT_STR); #endif // CONFIG_UNPOISON_PARTITION_CTX #if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP for (i = 0; i < INTRA_FILTERS + 1; ++i) for (j = 0; j < INTRA_FILTERS - 1; ++j) av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j], ACCT_STR); #endif // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP #endif // !CONFIG_EC_ADAPT if (frame_is_intra_only(cm)) { av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob); #if CONFIG_EC_MULTISYMBOL av1_copy(cm->fc->kf_y_cdf, av1_kf_y_mode_cdf); #endif #if !CONFIG_EC_ADAPT for (k = 0; k < INTRA_MODES; k++) for (j = 0; j < INTRA_MODES; j++) for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i], ACCT_STR); #endif } else { #if !CONFIG_REF_MV nmv_context *const nmvc = &fc->nmvc; #endif read_inter_mode_probs(fc, &r); #if CONFIG_EXT_INTER read_inter_compound_mode_probs(fc, &r); if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { if (is_interintra_allowed_bsize_group(i)) { av1_diff_update_prob(&r, &fc->interintra_prob[i], ACCT_STR); } } for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { for (j = 0; j < INTERINTRA_MODES - 1; j++) av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j], ACCT_STR); } for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) { av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i], ACCT_STR); } } } #if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { for (j = 0; j < COMPOUND_TYPES - 1; j++) { av1_diff_update_prob(&r, &fc->compound_type_prob[i][j], ACCT_STR); } } } #endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) { for (j = 0; j < MOTION_MODES - 1; ++j) av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j], ACCT_STR); } #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION #if !CONFIG_EC_ADAPT if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); #endif for (i = 0; i < INTRA_INTER_CONTEXTS; i++) av1_diff_update_prob(&r, &fc->intra_inter_prob[i], ACCT_STR); if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); #if !CONFIG_EC_ADAPT for (j = 0; j < BLOCK_SIZE_GROUPS; j++) { for (i = 0; i < INTRA_MODES - 1; ++i) av1_diff_update_prob(&r, &fc->y_mode_prob[j][i], ACCT_STR); } #endif #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r); #else read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); #endif #if !CONFIG_EC_ADAPT read_ext_tx_probs(fc, &r); #endif // EC_ADAPT #if CONFIG_SUPERTX if (!xd->lossless[0]) read_supertx_probs(fc, &r); #endif #if CONFIG_GLOBAL_MOTION read_global_motion(cm, &r); #endif // EC_ADAPT, DAALA_EC } #if CONFIG_EC_MULTISYMBOL && !CONFIG_EC_ADAPT #if CONFIG_NEW_TOKENSET av1_coef_head_cdfs(fc); #endif /* Make tail distribution from head */ av1_coef_pareto_cdfs(fc); #if CONFIG_REF_MV for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]); #else av1_set_mv_cdfs(&fc->nmvc); #endif av1_set_mode_cdfs(cm); #endif // CONFIG_EC_MULTISYMBOL && !CONFIG_EC_ADAPT return aom_reader_has_error(&r); } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const AV1_COMMON *const cm) { FRAME_COUNTS zero_counts; av1_zero(zero_counts); assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); #if CONFIG_EC_MULTISYMBOL assert(!memcmp(cm->counts.blockz_count, zero_counts.blockz_count, sizeof(cm->counts.blockz_count))); #endif assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); #if CONFIG_EXT_INTER assert(!memcmp(cm->counts.inter_compound_mode, zero_counts.inter_compound_mode, sizeof(cm->counts.inter_compound_mode))); assert(!memcmp(cm->counts.interintra, zero_counts.interintra, sizeof(cm->counts.interintra))); assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra, sizeof(cm->counts.wedge_interintra))); assert(!memcmp(cm->counts.compound_interinter, zero_counts.compound_interinter, sizeof(cm->counts.compound_interinter))); #endif // CONFIG_EXT_INTER #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode, sizeof(cm->counts.motion_mode))); #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); #if CONFIG_EXT_REFS assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref, sizeof(cm->counts.comp_bwdref))); #endif // CONFIG_EXT_REFS assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size, sizeof(cm->counts.tx_size))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); #if CONFIG_REF_MV assert( !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0]))); assert( !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0]))); #else assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); #endif assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx, sizeof(cm->counts.inter_ext_tx))); assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx, sizeof(cm->counts.intra_ext_tx))); } #endif // NDEBUG static struct aom_read_bit_buffer *init_read_bit_buffer( AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } //------------------------------------------------------------------------------ int av1_read_sync_code(struct aom_read_bit_buffer *const rb) { return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 && aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2; } void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width, int *height) { *width = aom_rb_read_literal(rb, 16) + 1; *height = aom_rb_read_literal(rb, 16) + 1; } BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { int profile = aom_rb_read_bit(rb); profile |= aom_rb_read_bit(rb) << 1; if (profile > 2) profile += aom_rb_read_bit(rb); return (BITSTREAM_PROFILE)profile; } #if CONFIG_EC_ADAPT static void make_update_tile_list_dec(AV1Decoder *pbi, int tile_rows, int tile_cols, FRAME_CONTEXT *ec_ctxs[]) { int i; for (i = 0; i < tile_rows * tile_cols; ++i) ec_ctxs[i] = &pbi->tile_data[i].tctx; } #endif void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { AV1_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct aom_read_bit_buffer rb; int context_updated = 0; uint8_t clear_data[MAX_AV1_HEADER_SIZE]; size_t first_partition_size; YV12_BUFFER_CONFIG *new_fb; #if CONFIG_ADAPT_SCAN av1_deliver_eob_threshold(cm, xd); #endif #if CONFIG_BITSTREAM_DEBUG bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); #endif first_partition_size = read_uncompressed_header( pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); #if CONFIG_EXT_TILE // If cm->tile_encoding_mode == TILE_NORMAL, the independent decoding of a // single tile or a section of a frame is not allowed. if (!cm->tile_encoding_mode && (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { pbi->dec_tile_row = -1; pbi->dec_tile_col = -1; } #endif // CONFIG_EXT_TILE #if CONFIG_TILE_GROUPS pbi->first_partition_size = first_partition_size; pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb); #endif new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; #if CONFIG_GLOBAL_MOTION int i; for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { set_default_warp_params(&cm->global_motion[i]); set_default_warp_params(&cm->cur_frame->global_motion[i]); } xd->global_motion = cm->global_motion; #endif // CONFIG_GLOBAL_MOTION if (!first_partition_size) { // showing a frame directly *p_data_end = data + aom_rb_bytes_read(&rb); return; } data += aom_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); #if CONFIG_REF_MV cm->setup_mi(cm); #endif #if CONFIG_TEMPMV_SIGNALING if (cm->use_prev_frame_mvs) { RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; assert(!cm->error_resilient_mode && cm->width == last_fb_ref_buf->buf->y_width && cm->height == last_fb_ref_buf->buf->y_height && !cm->prev_frame->intra_only); } #else cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->last_intra_only && cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); #endif #if CONFIG_EXT_REFS // NOTE(zoeliu): As cm->prev_frame can take neither a frame of // show_exisiting_frame=1, nor can it take a frame not used as // a reference, it is probable that by the time it is being // referred to, the frame buffer it originally points to may // already get expired and have been reassigned to the current // newly coded frame. Hence, we need to check whether this is // the case, and if yes, we have 2 choices: // (1) Simply disable the use of previous frame mvs; or // (2) Have cm->prev_frame point to one reference frame buffer, // e.g. LAST_FRAME. if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) { // Reassign the LAST_FRAME buffer to cm->prev_frame. RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; } #endif // CONFIG_EXT_REFS av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); *cm->fc = cm->frame_contexts[cm->frame_context_idx]; if (!cm->fc->initialized) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Uninitialized entropy context."); av1_zero(cm->counts); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); if (new_fb->corrupted) aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data header is corrupted."); if (cm->lf.filter_level && !cm->skip_loop_filter) { av1_loop_filter_frame_init(cm, cm->lf.filter_level); } // If encoded in frame parallel mode, frame context is ready after decoding // the frame header. if (cm->frame_parallel_decode && cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) { AVxWorker *const worker = pbi->frame_worker_owner; FrameWorkerData *const frame_worker_data = worker->data1; if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { context_updated = 1; cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } av1_frameworker_lock_stats(worker); pbi->cur_buf->row = -1; pbi->cur_buf->col = -1; frame_worker_data->frame_context_ready = 1; // Signal the main thread that context is ready. av1_frameworker_signal_stats(worker); av1_frameworker_unlock_stats(worker); } #if CONFIG_SUBFRAME_PROB_UPDATE av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); cm->coef_probs_update_idx = 0; #endif // CONFIG_SUBFRAME_PROB_UPDATE if (pbi->max_threads > 1 && !CONFIG_CB4X4 && #if CONFIG_EXT_TILE pbi->dec_tile_col < 0 && // Decoding all columns #endif // CONFIG_EXT_TILE cm->tile_cols > 1) { // Multi-threaded tile decoder *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!xd->corrupted) { if (!cm->skip_loop_filter) { // If multiple threads are used to decode tiles, then we use those // threads to do parallel loopfiltering. av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0, pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } #if CONFIG_CDEF if (!cm->skip_loop_filter) { av1_cdef_frame(&pbi->cur_buf->buf, cm, &pbi->mb); } #endif // CONFIG_CDEF #if CONFIG_LOOP_RESTORATION if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || cm->rst_info[1].frame_restoration_type != RESTORE_NONE || cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { av1_loop_restoration_frame(new_fb, cm, cm->rst_info, 7, 0, NULL); } #endif // CONFIG_LOOP_RESTORATION if (!xd->corrupted) { if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { #if CONFIG_EC_ADAPT FRAME_CONTEXT **tile_ctxs = aom_malloc(cm->tile_rows * cm->tile_cols * sizeof(&pbi->tile_data[0].tctx)); aom_cdf_prob **cdf_ptrs = aom_malloc(cm->tile_rows * cm->tile_cols * sizeof(&pbi->tile_data[0].tctx.partition_cdf[0][0])); make_update_tile_list_dec(pbi, cm->tile_rows, cm->tile_cols, tile_ctxs); #endif #if CONFIG_SUBFRAME_PROB_UPDATE cm->partial_prob_update = 0; #endif // CONFIG_SUBFRAME_PROB_UPDATE av1_adapt_coef_probs(cm); av1_adapt_intra_frame_probs(cm); #if CONFIG_EC_ADAPT av1_average_tile_coef_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); av1_average_tile_intra_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); #if CONFIG_PVQ av1_average_tile_pvq_cdfs(pbi->common.fc, tile_ctxs, cm->tile_rows * cm->tile_cols); #endif // CONFIG_PVQ #endif // CONFIG_EC_ADAPT #if CONFIG_ADAPT_SCAN av1_adapt_scan_order(cm); #endif // CONFIG_ADAPT_SCAN if (!frame_is_intra_only(cm)) { av1_adapt_inter_frame_probs(cm); av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); #if CONFIG_EC_ADAPT av1_average_tile_inter_cdfs(&pbi->common, pbi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); av1_average_tile_mv_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs, cm->tile_rows * cm->tile_cols); #endif } #if CONFIG_EC_ADAPT aom_free(tile_ctxs); aom_free(cdf_ptrs); #endif } else { debug_check_frame_counts(cm); } } else { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } #if CONFIG_INSPECTION if (pbi->inspect_cb != NULL) { (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); } #endif // Non frame parallel update frame context here. if (!cm->error_resilient_mode && !context_updated) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; }