/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/tile_common.h" #include "av1/common/onyxc_int.h" #include "aom_dsp/aom_dsp_common.h" #if CONFIG_DEPENDENT_HORZTILES void av1_tile_set_tg_boundary(TileInfo *tile, const AV1_COMMON *const cm, int row, int col) { const int tg_start_row = cm->tile_group_start_row[row][col]; const int tg_start_col = cm->tile_group_start_col[row][col]; tile->tg_horz_boundary = ((row == tg_start_row && col >= tg_start_col) || (row == tg_start_row + 1 && col < tg_start_col)); #if CONFIG_MAX_TILE if (cm->tile_row_independent[row]) { tile->tg_horz_boundary = 1; // this tile row is independent } #endif } #endif void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) { av1_tile_set_row(tile, cm, row); av1_tile_set_col(tile, cm, col); #if CONFIG_DEPENDENT_HORZTILES av1_tile_set_tg_boundary(tile, cm, row, col); #endif } #if CONFIG_MAX_TILE // Find smallest k>=0 such that (blk_size << k) >= target static int tile_log2(int blk_size, int target) { int k; for (k = 0; (blk_size << k) < target; k++) { } return k; } void av1_get_tile_limits(AV1_COMMON *const cm) { int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2; int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2; cm->min_log2_tile_cols = tile_log2(MAX_TILE_WIDTH_SB, sb_cols); cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS)); cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS)); cm->min_log2_tiles = tile_log2(MAX_TILE_AREA_SB, sb_cols * sb_rows); cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols); // TODO(dominic.symes@arm.com): // Add in levelMinLog2Tiles as a lower limit when levels are defined } void av1_calculate_tile_cols(AV1_COMMON *const cm) { int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2; int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2; int i; if (cm->uniform_tile_spacing_flag) { int start_sb; int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols); size_sb >>= cm->log2_tile_cols; assert(size_sb > 0); for (i = 0, start_sb = 0; start_sb < sb_cols; i++) { cm->tile_col_start_sb[i] = start_sb; start_sb += size_sb; } cm->tile_cols = i; cm->tile_col_start_sb[i] = sb_cols; cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0); cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows; } else { int max_tile_area_sb = (sb_rows * sb_cols); int max_tile_width_sb = 0; cm->log2_tile_cols = tile_log2(1, cm->tile_cols); for (i = 0; i < cm->tile_cols; i++) { int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; max_tile_width_sb = AOMMAX(max_tile_width_sb, size_sb); } if (cm->min_log2_tiles) { max_tile_area_sb >>= (cm->min_log2_tiles + 1); } cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / max_tile_width_sb, 1); } } void av1_calculate_tile_rows(AV1_COMMON *const cm) { int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2; int start_sb, size_sb, i; if (cm->uniform_tile_spacing_flag) { size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows); size_sb >>= cm->log2_tile_rows; assert(size_sb > 0); for (i = 0, start_sb = 0; start_sb < sb_rows; i++) { cm->tile_row_start_sb[i] = start_sb; start_sb += size_sb; } cm->tile_rows = i; cm->tile_row_start_sb[i] = sb_rows; } else { cm->log2_tile_rows = tile_log2(1, cm->tile_rows); } #if CONFIG_DEPENDENT_HORZTILES // Record which tile rows must be indpendent for parallelism for (i = 0, start_sb = 0; i < cm->tile_rows; i++) { cm->tile_row_independent[i] = 0; if (cm->tile_row_start_sb[i + 1] - start_sb > cm->max_tile_height_sb) { cm->tile_row_independent[i] = 1; start_sb = cm->tile_row_start_sb[i]; } } #endif } void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { assert(row < cm->tile_rows); int mi_row_start = cm->tile_row_start_sb[row] << MAX_MIB_SIZE_LOG2; int mi_row_end = cm->tile_row_start_sb[row + 1] << MAX_MIB_SIZE_LOG2; tile->mi_row_start = mi_row_start; tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows); } void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { assert(col < cm->tile_cols); int mi_col_start = cm->tile_col_start_sb[col] << MAX_MIB_SIZE_LOG2; int mi_col_end = cm->tile_col_start_sb[col + 1] << MAX_MIB_SIZE_LOG2; tile->mi_col_start = mi_col_start; tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols); } #else void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { tile->mi_row_start = row * cm->tile_height; tile->mi_row_end = AOMMIN(tile->mi_row_start + cm->tile_height, cm->mi_rows); } void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { tile->mi_col_start = col * cm->tile_width; tile->mi_col_end = AOMMIN(tile->mi_col_start + cm->tile_width, cm->mi_cols); } #if CONFIG_EXT_PARTITION #define MIN_TILE_WIDTH_MAX_SB 2 #define MAX_TILE_WIDTH_MAX_SB 32 #else #define MIN_TILE_WIDTH_MAX_SB 4 #define MAX_TILE_WIDTH_MAX_SB 64 #endif // CONFIG_EXT_PARTITION static int get_min_log2_tile_cols(int max_sb_cols) { int min_log2 = 0; while ((MAX_TILE_WIDTH_MAX_SB << min_log2) < max_sb_cols) ++min_log2; return min_log2; } static int get_max_log2_tile_cols(int max_sb_cols) { int max_log2 = 1; while ((max_sb_cols >> max_log2) >= MIN_TILE_WIDTH_MAX_SB) ++max_log2; return max_log2 - 1; } void av1_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols, int *max_log2_tile_cols) { const int max_sb_cols = ALIGN_POWER_OF_TWO(mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; *min_log2_tile_cols = get_min_log2_tile_cols(max_sb_cols); *max_log2_tile_cols = get_max_log2_tile_cols(max_sb_cols); assert(*min_log2_tile_cols <= *max_log2_tile_cols); } #endif // CONFIG_MAX_TILE void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) { MODE_INFO *mi = cm->mi; int col; for (col = 0; col < cm->mi_cols; ++col) { mi->mbmi.boundary_info |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY; mi += 1; } mi = cm->mi; int row; for (row = 0; row < cm->mi_rows; ++row) { mi->mbmi.boundary_info |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY; mi += cm->mi_stride; } mi = cm->mi + (cm->mi_rows - 1) * cm->mi_stride; for (col = 0; col < cm->mi_cols; ++col) { mi->mbmi.boundary_info |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY; mi += 1; } mi = cm->mi + cm->mi_cols - 1; for (row = 0; row < cm->mi_rows; ++row) { mi->mbmi.boundary_info |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY; mi += cm->mi_stride; } } int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) { // Round the frame up to a whole number of max superblocks mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2); // Divide by the signalled number of tiles, rounding up to the multiple of // the max superblock size. To do this, shift right (and round up) to get the // tile size in max super-blocks and then shift left again to convert it to // mi units. const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2; const int max_sb_tile_size = ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift; const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2; // The actual number of tiles is the ceiling of the frame size in mi units // divided by mi_size. This is at most 1 << log2_tile_num but might be // strictly less if max_sb_tile_size got rounded up significantly. if (ntiles) { *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size; assert(*ntiles <= (1 << log2_tile_num)); } return mi_tile_size; } #if CONFIG_LOOPFILTERING_ACROSS_TILES void av1_setup_across_tile_boundary_info(const AV1_COMMON *const cm, const TileInfo *const tile_info) { if (cm->tile_cols * cm->tile_rows > 1) { const int mi_row = tile_info->mi_row_start; const int mi_col = tile_info->mi_col_start; MODE_INFO *const mi_start = cm->mi + mi_row * cm->mi_stride + mi_col; assert(mi_start < cm->mip + cm->mi_alloc_size); MODE_INFO *mi = 0; const int row_diff = tile_info->mi_row_end - tile_info->mi_row_start; const int col_diff = tile_info->mi_col_end - tile_info->mi_col_start; int row, col; #if CONFIG_DEPENDENT_HORZTILES if (!cm->dependent_horz_tiles || tile_info->tg_horz_boundary) #endif // CONFIG_DEPENDENT_HORZTILES { mi = mi_start; for (col = 0; col < col_diff; ++col) { mi->mbmi.boundary_info |= TILE_ABOVE_BOUNDARY; mi += 1; } } mi = mi_start; for (row = 0; row < row_diff; ++row) { mi->mbmi.boundary_info |= TILE_LEFT_BOUNDARY; mi += cm->mi_stride; } mi = mi_start + (row_diff - 1) * cm->mi_stride; // explicit bounds checking assert(mi + col_diff <= cm->mip + cm->mi_alloc_size); for (col = 0; col < col_diff; ++col) { mi->mbmi.boundary_info |= TILE_BOTTOM_BOUNDARY; mi += 1; } mi = mi_start + col_diff - 1; for (row = 0; row < row_diff; ++row) { mi->mbmi.boundary_info |= TILE_RIGHT_BOUNDARY; mi += cm->mi_stride; } } } int av1_disable_loopfilter_on_tile_boundary(const struct AV1Common *cm) { return (!cm->loop_filter_across_tiles_enabled && (cm->tile_cols * cm->tile_rows > 1)); } #endif // CONFIG_LOOPFILTERING_ACROSS_TILES