/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./aom_config.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "av1/common/entropymode.h" #include "av1/common/thread_common.h" #include "av1/common/reconinter.h" #if CONFIG_MULTITHREAD static INLINE void mutex_lock(pthread_mutex_t *const mutex) { const int kMaxTryLocks = 4000; int locked = 0; int i; for (i = 0; i < kMaxTryLocks; ++i) { if (!pthread_mutex_trylock(mutex)) { locked = 1; break; } } if (!locked) pthread_mutex_lock(mutex); } #endif // CONFIG_MULTITHREAD static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; if (r && !(c & (nsync - 1))) { pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; mutex_lock(mutex); while (c > lf_sync->cur_sb_col[r - 1] - nsync) { pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)lf_sync; (void)r; (void)c; #endif // CONFIG_MULTITHREAD } static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, const int sb_cols) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; int cur; // Only signal when there are enough filtered SB for next row to run. int sig = 1; if (c < sb_cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = sb_cols + nsync; } if (sig) { mutex_lock(&lf_sync->mutex_[r]); lf_sync->cur_sb_col[r] = cur; pthread_cond_signal(&lf_sync->cond_[r]); pthread_mutex_unlock(&lf_sync->mutex_[r]); } #else (void)lf_sync; (void)r; (void)c; (void)sb_cols; #endif // CONFIG_MULTITHREAD } #if !CONFIG_EXT_PARTITION_TYPES static INLINE enum lf_path get_loop_filter_path( int y_only, struct macroblockd_plane *planes) { if (y_only) return LF_PATH_444; else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) return LF_PATH_420; else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) return LF_PATH_444; else return LF_PATH_SLOW; } static INLINE void loop_filter_block_plane_ver( AV1_COMMON *cm, struct macroblockd_plane *planes, int plane, MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path, LOOP_FILTER_MASK *lfm) { if (plane == 0) { av1_filter_block_plane_ss00_ver(cm, &planes[0], mi_row, lfm); } else { switch (path) { case LF_PATH_420: av1_filter_block_plane_ss11_ver(cm, &planes[plane], mi_row, lfm); break; case LF_PATH_444: av1_filter_block_plane_ss00_ver(cm, &planes[plane], mi_row, lfm); break; case LF_PATH_SLOW: av1_filter_block_plane_non420_ver(cm, &planes[plane], mi, mi_row, mi_col, plane); break; } } } static INLINE void loop_filter_block_plane_hor( AV1_COMMON *cm, struct macroblockd_plane *planes, int plane, MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path, LOOP_FILTER_MASK *lfm) { if (plane == 0) { av1_filter_block_plane_ss00_hor(cm, &planes[0], mi_row, lfm); } else { switch (path) { case LF_PATH_420: av1_filter_block_plane_ss11_hor(cm, &planes[plane], mi_row, lfm); break; case LF_PATH_444: av1_filter_block_plane_ss00_hor(cm, &planes[plane], mi_row, lfm); break; case LF_PATH_SLOW: av1_filter_block_plane_non420_hor(cm, &planes[plane], mi, mi_row, mi_col, plane); break; } } } #endif // Row-based multi-threaded loopfilter hook #if CONFIG_PARALLEL_DEBLOCKING static int loop_filter_ver_row_worker(AV1LfSync *const lf_sync, LFWorkerData *const lf_data) { const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; int mi_row, mi_col; #if !CONFIG_EXT_PARTITION_TYPES enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); #endif for (mi_row = lf_data->start; mi_row < lf_data->stop; mi_row += lf_sync->num_workers * lf_data->cm->mib_size) { MODE_INFO **const mi = lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += lf_data->cm->mib_size) { LOOP_FILTER_MASK lfm; int plane; av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size, lf_data->frame_buffer, mi_row, mi_col); av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, lf_data->cm->mi_stride, &lfm); #if CONFIG_EXT_PARTITION_TYPES for (plane = 0; plane < num_planes; ++plane) av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane], mi + mi_col, mi_row, mi_col, plane); #else for (plane = 0; plane < num_planes; ++plane) loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane, mi + mi_col, mi_row, mi_col, path, &lfm); #endif } } return 1; } static int loop_filter_hor_row_worker(AV1LfSync *const lf_sync, LFWorkerData *const lf_data) { const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; const int sb_cols = mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2; int mi_row, mi_col; #if !CONFIG_EXT_PARTITION_TYPES enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); #endif for (mi_row = lf_data->start; mi_row < lf_data->stop; mi_row += lf_sync->num_workers * lf_data->cm->mib_size) { MODE_INFO **const mi = lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += lf_data->cm->mib_size) { const int r = mi_row >> lf_data->cm->mib_size_log2; const int c = mi_col >> lf_data->cm->mib_size_log2; LOOP_FILTER_MASK lfm; int plane; // TODO(wenhao.zhang@intel.com): For better parallelization, reorder // the outer loop to column-based and remove the synchronizations here. sync_read(lf_sync, r, c); av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size, lf_data->frame_buffer, mi_row, mi_col); av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, lf_data->cm->mi_stride, &lfm); #if CONFIG_EXT_PARTITION_TYPES for (plane = 0; plane < num_planes; ++plane) av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane], mi + mi_col, mi_row, mi_col, plane); #else for (plane = 0; plane < num_planes; ++plane) loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane, mi + mi_col, mi_row, mi_col, path, &lfm); #endif sync_write(lf_sync, r, c, sb_cols); } } return 1; } #else // CONFIG_PARALLEL_DEBLOCKING static int loop_filter_row_worker(AV1LfSync *const lf_sync, LFWorkerData *const lf_data) { const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; const int sb_cols = mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2; int mi_row, mi_col; #if !CONFIG_EXT_PARTITION_TYPES enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); #endif // !CONFIG_EXT_PARTITION_TYPES #if CONFIG_EXT_PARTITION printf( "STOPPING: This code has not been modified to work with the " "extended coding unit size experiment"); exit(EXIT_FAILURE); #endif // CONFIG_EXT_PARTITION for (mi_row = lf_data->start; mi_row < lf_data->stop; mi_row += lf_sync->num_workers * lf_data->cm->mib_size) { MODE_INFO **const mi = lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += lf_data->cm->mib_size) { const int r = mi_row >> lf_data->cm->mib_size_log2; const int c = mi_col >> lf_data->cm->mib_size_log2; #if !CONFIG_EXT_PARTITION_TYPES LOOP_FILTER_MASK lfm; #endif int plane; sync_read(lf_sync, r, c); av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size, lf_data->frame_buffer, mi_row, mi_col); #if CONFIG_EXT_PARTITION_TYPES for (plane = 0; plane < num_planes; ++plane) { av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane], mi + mi_col, mi_row, mi_col, plane); av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane], mi + mi_col, mi_row, mi_col, plane); } #else av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, lf_data->cm->mi_stride, &lfm); for (plane = 0; plane < num_planes; ++plane) { loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane, mi + mi_col, mi_row, mi_col, path, &lfm); loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane, mi + mi_col, mi_row, mi_col, path, &lfm); } #endif // CONFIG_EXT_PARTITION_TYPES sync_write(lf_sync, r, c, sb_cols); } } return 1; } #endif // CONFIG_PARALLEL_DEBLOCKING static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, struct macroblockd_plane *planes, int start, int stop, int y_only, AVxWorker *workers, int nworkers, AV1LfSync *lf_sync) { #if CONFIG_EXT_PARTITION printf( "STOPPING: This code has not been modified to work with the " "extended coding unit size experiment"); exit(EXIT_FAILURE); #endif // CONFIG_EXT_PARTITION const AVxWorkerInterface *const winterface = aom_get_worker_interface(); // Number of superblock rows and cols const int sb_rows = mi_rows_aligned_to_sb(cm) >> cm->mib_size_log2; // Decoder may allocate more threads than number of tiles based on user's // input. const int tile_cols = cm->tile_cols; const int num_workers = AOMMIN(nworkers, tile_cols); int i; if (!lf_sync->sync_range || sb_rows != lf_sync->rows || num_workers > lf_sync->num_workers) { av1_loop_filter_dealloc(lf_sync); av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); } // Set up loopfilter thread data. // The decoder is capping num_workers because it has been observed that using // more threads on the loopfilter than there are cores will hurt performance // on Android. This is because the system will only schedule the tile decode // workers on cores equal to the number of tile columns. Then if the decoder // tries to use more threads for the loopfilter, it will hurt performance // because of contention. If the multithreading code changes in the future // then the number of workers used by the loopfilter should be revisited. #if CONFIG_PARALLEL_DEBLOCKING // Initialize cur_sb_col to -1 for all SB rows. memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); // Filter all the vertical edges in the whole frame for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; LFWorkerData *const lf_data = &lf_sync->lfdata[i]; worker->hook = (AVxWorkerHook)loop_filter_ver_row_worker; worker->data1 = lf_sync; worker->data2 = lf_data; // Loopfilter data av1_loop_filter_data_reset(lf_data, frame, cm, planes); lf_data->start = start + i * cm->mib_size; lf_data->stop = stop; lf_data->y_only = y_only; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); // Filter all the horizontal edges in the whole frame for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; LFWorkerData *const lf_data = &lf_sync->lfdata[i]; worker->hook = (AVxWorkerHook)loop_filter_hor_row_worker; worker->data1 = lf_sync; worker->data2 = lf_data; // Loopfilter data av1_loop_filter_data_reset(lf_data, frame, cm, planes); lf_data->start = start + i * cm->mib_size; lf_data->stop = stop; lf_data->y_only = y_only; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } #else // CONFIG_PARALLEL_DEBLOCKING // Initialize cur_sb_col to -1 for all SB rows. memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); for (i = 0; i < num_workers; ++i) { AVxWorker *const worker = &workers[i]; LFWorkerData *const lf_data = &lf_sync->lfdata[i]; worker->hook = (AVxWorkerHook)loop_filter_row_worker; worker->data1 = lf_sync; worker->data2 = lf_data; // Loopfilter data av1_loop_filter_data_reset(lf_data, frame, cm, planes); lf_data->start = start + i * cm->mib_size; lf_data->stop = stop; lf_data->y_only = y_only; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&workers[i]); } #endif // CONFIG_PARALLEL_DEBLOCKING } void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, struct macroblockd_plane *planes, int frame_filter_level, #if CONFIG_LOOPFILTER_LEVEL int frame_filter_level_r, #endif int y_only, int partial_frame, AVxWorker *workers, int num_workers, AV1LfSync *lf_sync) { int start_mi_row, end_mi_row, mi_rows_to_filter; if (!frame_filter_level) return; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; #if CONFIG_LOOPFILTER_LEVEL av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level_r, y_only); #else av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level); #endif // CONFIG_LOOPFILTER_LEVEL loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only, workers, num_workers, lf_sync); } // Set up nsync by width. static INLINE int get_sync_range(int width) { // nsync numbers are picked by testing. For example, for 4k // video, using 4 gives best performance. if (width < 640) return 1; else if (width <= 1280) return 2; else if (width <= 4096) return 4; else return 8; } // Allocate memory for lf row synchronization void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, int width, int num_workers) { lf_sync->rows = rows; #if CONFIG_MULTITHREAD { int i; CHECK_MEM_ERROR(cm, lf_sync->mutex_, aom_malloc(sizeof(*lf_sync->mutex_) * rows)); if (lf_sync->mutex_) { for (i = 0; i < rows; ++i) { pthread_mutex_init(&lf_sync->mutex_[i], NULL); } } CHECK_MEM_ERROR(cm, lf_sync->cond_, aom_malloc(sizeof(*lf_sync->cond_) * rows)); if (lf_sync->cond_) { for (i = 0; i < rows; ++i) { pthread_cond_init(&lf_sync->cond_[i], NULL); } } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, lf_sync->lfdata, aom_malloc(num_workers * sizeof(*lf_sync->lfdata))); lf_sync->num_workers = num_workers; CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, aom_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); // Set up nsync. lf_sync->sync_range = get_sync_range(width); } // Deallocate lf synchronization related mutex and data void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { if (lf_sync != NULL) { #if CONFIG_MULTITHREAD int i; if (lf_sync->mutex_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_mutex_destroy(&lf_sync->mutex_[i]); } aom_free(lf_sync->mutex_); } if (lf_sync->cond_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_cond_destroy(&lf_sync->cond_[i]); } aom_free(lf_sync->cond_); } #endif // CONFIG_MULTITHREAD aom_free(lf_sync->lfdata); aom_free(lf_sync->cur_sb_col); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. av1_zero(*lf_sync); } } // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' // members, so we treat it as an array, and sum over the whole length. void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, FRAME_COUNTS *counts) { unsigned int *const acc = (unsigned int *)acc_counts; const unsigned int *const cnt = (unsigned int *)counts; const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); unsigned int i; for (i = 0; i < n_counts; i++) acc[i] += cnt[i]; }