/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. * */ #include #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "av1/common/onyxc_int.h" #include "av1/common/restoration.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" const sgr_params_type sgr_params[SGRPROJ_PARAMS] = { #if USE_HIGHPASS_IN_SGRPROJ // corner, edge, r2, eps2 { -1, 2, 1, 1 }, { -1, 2, 1, 2 }, { -1, 2, 1, 3 }, { -1, 2, 1, 4 }, { -1, 2, 1, 5 }, { -2, 3, 1, 2 }, { -2, 3, 1, 3 }, { -2, 3, 1, 4 }, { -2, 3, 1, 5 }, { -2, 3, 1, 6 }, { -3, 4, 1, 3 }, { -3, 4, 1, 4 }, { -3, 4, 1, 5 }, { -3, 4, 1, 6 }, { -3, 4, 1, 7 }, { -3, 4, 1, 8 } #else // r1, eps1, r2, eps2 { 2, 12, 1, 4 }, { 2, 15, 1, 6 }, { 2, 18, 1, 8 }, { 2, 20, 1, 9 }, { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 }, { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 }, #endif }; typedef void (*restore_func_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst8, int dst_stride); #if CONFIG_HIGHBITDEPTH typedef void (*restore_func_highbd_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride); #endif // CONFIG_HIGHBITDEPTH int av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rst_info, int width, int height) { const int ntiles = av1_get_rest_ntiles( width, height, rst_info->restoration_tilesize, NULL, NULL, NULL, NULL); aom_free(rst_info->restoration_type); CHECK_MEM_ERROR(cm, rst_info->restoration_type, (RestorationType *)aom_malloc( sizeof(*rst_info->restoration_type) * ntiles)); aom_free(rst_info->wiener_info); CHECK_MEM_ERROR( cm, rst_info->wiener_info, (WienerInfo *)aom_memalign(16, sizeof(*rst_info->wiener_info) * ntiles)); memset(rst_info->wiener_info, 0, sizeof(*rst_info->wiener_info) * ntiles); aom_free(rst_info->sgrproj_info); CHECK_MEM_ERROR( cm, rst_info->sgrproj_info, (SgrprojInfo *)aom_malloc(sizeof(*rst_info->sgrproj_info) * ntiles)); return ntiles; } void av1_free_restoration_struct(RestorationInfo *rst_info) { aom_free(rst_info->restoration_type); rst_info->restoration_type = NULL; aom_free(rst_info->wiener_info); rst_info->wiener_info = NULL; aom_free(rst_info->sgrproj_info); rst_info->sgrproj_info = NULL; } #define MAX_RADIUS 3 // Only 1, 2, 3 allowed #define MAX_EPS 80 // Max value of eps #define MAX_NELEM ((2 * MAX_RADIUS + 1) * (2 * MAX_RADIUS + 1)) #define SGRPROJ_MTABLE_BITS 20 #define SGRPROJ_RECIP_BITS 12 // TODO(debargha): This table can be substantially reduced since only a few // values are actually used. int sgrproj_mtable[MAX_EPS][MAX_NELEM]; static void GenSgrprojVtable() { int e, n; for (e = 1; e <= MAX_EPS; ++e) for (n = 1; n <= MAX_NELEM; ++n) { const int n2e = n * n * e; sgrproj_mtable[e - 1][n - 1] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); } } void av1_loop_restoration_precal() { GenSgrprojVtable(); } static void loop_restoration_init(RestorationInternal *rst, int kf) { rst->keyframe = kf; } void extend_frame(uint8_t *data, int width, int height, int stride) { uint8_t *data_p; int i; for (i = 0; i < height; ++i) { data_p = data + i * stride; memset(data_p - WIENER_HALFWIN, data_p[0], WIENER_HALFWIN); memset(data_p + width, data_p[width - 1], WIENER_HALFWIN); } data_p = data - WIENER_HALFWIN; for (i = -WIENER_HALFWIN; i < 0; ++i) { memcpy(data_p + i * stride, data_p, width + 2 * WIENER_HALFWIN); } for (i = height; i < height + WIENER_HALFWIN; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, width + 2 * WIENER_HALFWIN); } } static void loop_copy_tile(uint8_t *data, int tile_idx, int subtile_idx, int subtile_bits, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i; int h_start, h_end, v_start, v_end; av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); for (i = v_start; i < v_end; ++i) memcpy(dst + i * dst_stride + h_start, data + i * stride + h_start, h_end - h_start); } static void loop_wiener_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i, j; int h_start, h_end, v_start, v_end; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (i = v_start; i < v_end; i += MAX_SB_SIZE) for (j = h_start; j < h_end; j += MAX_SB_SIZE) { int w = AOMMIN(MAX_SB_SIZE, (h_end - j + 15) & ~15); int h = AOMMIN(MAX_SB_SIZE, (v_end - i + 15) & ~15); const uint8_t *data_p = data + i * stride + j; uint8_t *dst_p = dst + i * dst_stride + j; aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h); } } static void loop_wiener_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } /* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1) over the input. The window is of size (2r + 1)x(2r + 1), and we specialize to r = 1, 2, 3. A default function is used for r > 3. Each loop follows the same format: We keep a window's worth of input in individual variables and select data out of that as appropriate. */ static void boxsum1(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c; // Vertical sum over 3-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 1) * src_stride + j] // b = src[(i ) * src_stride + j] // c = src[(i + 1) * src_stride + j] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } // Horizontal sum over 3-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; dst[i * dst_stride] = a + b; for (j = 1; j < width - 2; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 1)] // b = src[i * src_stride + (j )] // c = src[i * src_stride + (j + 1)] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = dst[i * dst_stride + (j + 2)]; } dst[i * dst_stride + j] = a + b + c; dst[i * dst_stride + (j + 1)] = b + c; } } static void boxsum2(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e; // Vertical sum over 5-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 2) * src_stride + j] // b = src[(i - 1) * src_stride + j] // c = src[(i ) * src_stride + j] // d = src[(i + 1) * src_stride + j] // e = src[(i + 2) * src_stride + j] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } // Horizontal sum over 5-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; dst[i * dst_stride] = a + b + c; dst[i * dst_stride + 1] = a + b + c + d; for (j = 2; j < width - 3; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 2)] // b = src[i * src_stride + (j - 1)] // c = src[i * src_stride + (j )] // d = src[i * src_stride + (j + 1)] // e = src[i * src_stride + (j + 2)] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = dst[i * dst_stride + (j + 3)]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[i * dst_stride + (j + 1)] = b + c + d + e; dst[i * dst_stride + (j + 2)] = c + d + e; } } static void boxsum3(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e, f, g; // Vertical sum over 7-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[1 * src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; f = src[5 * src_stride + j]; g = src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[1 * src_stride + j] * src[1 * src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; f = src[5 * src_stride + j] * src[5 * src_stride + j]; g = src[6 * src_stride + j] * src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } // Horizontal sum over 7-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; f = dst[i * dst_stride + 5]; g = dst[i * dst_stride + 6]; dst[i * dst_stride] = a + b + c + d; dst[i * dst_stride + 1] = a + b + c + d + e; dst[i * dst_stride + 2] = a + b + c + d + e + f; for (j = 3; j < width - 4; ++j) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = dst[i * dst_stride + (j + 4)]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g; dst[i * dst_stride + (j + 2)] = c + d + e + f + g; dst[i * dst_stride + (j + 3)] = d + e + f + g; } } // Generic version for any r. To be removed after experiments are done. static void boxsumr(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { int32_t *tmp = aom_malloc(width * height * sizeof(*tmp)); int tmp_stride = width; int i, j; if (sqr) { for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j]; for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j] * src[i * src_stride + j]; } else { memcpy(tmp, src, sizeof(*tmp) * width); for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j]; } for (i = 0; i <= r; ++i) memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride], sizeof(*tmp) * width); for (i = r + 1; i < height - r; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = height - r; i < height; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride]; for (i = 0; i < height; ++i) for (j = 1; j < width; ++j) tmp[i * tmp_stride + j] = tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j]; for (j = 0; j <= r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r]; for (j = r + 1; j < width - r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1]; for (j = width - r; j < width; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1]; aom_free(tmp); } static void boxsum(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { if (r == 1) boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 2) boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 3) boxsum3(src, width, height, src_stride, sqr, dst, dst_stride); else boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride); } static void boxnum(int width, int height, int r, int8_t *num, int num_stride) { int i, j; for (i = 0; i <= r; ++i) { for (j = 0; j <= r; ++j) { num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j); num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + (width - 1 - j)] = num[i * num_stride + j]; } } for (j = 0; j <= r; ++j) { const int val = (2 * r + 1) * (r + 1 + j); for (i = r + 1; i < height - r; ++i) { num[i * num_stride + j] = val; num[i * num_stride + (width - 1 - j)] = val; } } for (i = 0; i <= r; ++i) { const int val = (2 * r + 1) * (r + 1 + i); for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = val; num[(height - 1 - i) * num_stride + j] = val; } } for (i = r + 1; i < height - r; ++i) { for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1); } } } void decode_xq(int *xqd, int *xq) { xq[0] = xqd[0]; xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; } const int32_t x_by_xplus1[256] = { 0, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247, 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 256, }; const int32_t one_by_x[MAX_NELEM] = { 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315, 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164, 158, 152, 146, 141, 137, 132, 128, 124, 120, 117, 114, 111, 108, 105, 102, 100, 98, 95, 93, 91, 89, 87, 85, 84 }; static void av1_selfguided_restoration_internal(int32_t *dgd, int width, int height, int stride, int bit_depth, int r, int eps, int32_t *tmpbuf) { int32_t *A = tmpbuf; int32_t *B = A + SGRPROJ_OUTBUF_SIZE; int8_t num[RESTORATION_TILEPELS_MAX]; int i, j; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of 16 bytes, for consistency // with the SIMD version of this function. int buf_stride = ((width + 3) & ~3) + 16; // Don't filter tiles with dimensions < 5 on any axis if ((width < 5) || (height < 5)) return; boxsum(dgd, width, height, stride, r, 0, B, buf_stride); boxsum(dgd, width, height, stride, r, 1, A, buf_stride); boxnum(width, height, r, num, width); assert(r <= 3); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * buf_stride + j; const int n = num[i * width + j]; // a < 2^16 * n < 2^22 regardless of bit depth uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); // b < 2^8 * n < 2^14 regardless of bit depth uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, // and p itself satisfies p < 2^14 * n^2 < 2^26. // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. // This is an artefact of rounding, and can only happen if all pixels // are (almost) identical, so in this case we saturate to p=0. uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; uint32_t s = sgrproj_mtable[eps - 1][n - 1]; // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 // (this holds even after accounting for the rounding in s) const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); A[k] = x_by_xplus1[AOMMIN(z, 255)]; // < 2^8 // SGRPROJ_SGR - A[k] < 2^8, B[k] < 2^(bit_depth) * n, // one_by_x[n - 1] = round(2^12 / n) // => the product here is < 2^(20 + bit_depth) <= 2^32, // and B[k] is set to a value < 2^(8 + bit depth) B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * (uint32_t)B[k] * (uint32_t)one_by_x[n - 1], SGRPROJ_RECIP_BITS); } } i = 0; j = 0; { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k + buf_stride] + A[k + buf_stride + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k + buf_stride] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = 0; j = width - 1; { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k + buf_stride] + A[k + buf_stride - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k + buf_stride] + B[k + buf_stride - 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; j = 0; { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k - buf_stride] + A[k - buf_stride + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k - buf_stride] + B[k - buf_stride + 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; j = width - 1; { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k - buf_stride] + A[k - buf_stride - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k - buf_stride] + B[k - buf_stride - 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + buf_stride] + A[k + buf_stride - 1] + A[k + buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + buf_stride] + B[k + buf_stride - 1] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - buf_stride] + A[k - buf_stride - 1] + A[k - buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - buf_stride] + B[k - buf_stride - 1] + B[k - buf_stride + 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + A[k + 1] + A[k - buf_stride + 1] + A[k + buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + B[k + 1] + B[k - buf_stride + 1] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + A[k - 1] + A[k - buf_stride - 1] + A[k + buf_stride - 1]; const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + B[k - 1] + B[k - buf_stride - 1] + B[k + buf_stride - 1]; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * stride + j; const int nb = 5; const int32_t a = (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) * 4 + (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * 3; const int32_t b = (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) * 4 + (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * 3; const int32_t v = a * dgd[l] + b; dgd[l] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } } } void av1_selfguided_restoration_c(uint8_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int r, int eps, int32_t *tmpbuf) { int i, j; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dst[i * dst_stride + j] = dgd[i * stride + j]; } } av1_selfguided_restoration_internal(dst, width, height, dst_stride, 8, r, eps, tmpbuf); } void av1_highpass_filter_c(uint8_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int corner, int edge) { int i, j; const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); i = 0; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); } i = 0; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); } i = height - 1; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); } i = height - 1; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + dgd[k + 1]); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + dgd[k + 1]); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + dgd[k - stride] + dgd[k + stride]); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride] + dgd[k + stride]); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k + stride + 1]); } } } void apply_selfguided_restoration_c(uint8_t *dat, int width, int height, int stride, int eps, int *xqd, uint8_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX; int i, j; assert(width * height <= RESTORATION_TILEPELS_MAX); #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_c(dat, width, height, stride, flt1, width, sgr_params[eps].corner, sgr_params[eps].edge); #else av1_selfguided_restoration_c(dat, width, height, stride, flt1, width, sgr_params[eps].r1, sgr_params[eps].e1, tmpbuf2); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_c(dat, width, height, stride, flt2, width, sgr_params[eps].r2, sgr_params[eps].e2, tmpbuf2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = clip_pixel(w); } } } static void loop_sgrproj_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; uint8_t *data_p, *dst_p; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); data_p = data + h_start + v_start * stride; dst_p = dst + h_start + v_start * dst_stride; apply_selfguided_restoration(data_p, h_end - h_start, v_end - v_start, stride, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } static void loop_sgrproj_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } static void loop_switchable_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } } #if CONFIG_HIGHBITDEPTH void extend_frame_highbd(uint16_t *data, int width, int height, int stride) { uint16_t *data_p; int i, j; for (i = 0; i < height; ++i) { data_p = data + i * stride; for (j = -WIENER_HALFWIN; j < 0; ++j) data_p[j] = data_p[0]; for (j = width; j < width + WIENER_HALFWIN; ++j) data_p[j] = data_p[width - 1]; } data_p = data - WIENER_HALFWIN; for (i = -WIENER_HALFWIN; i < 0; ++i) { memcpy(data_p + i * stride, data_p, (width + 2 * WIENER_HALFWIN) * sizeof(uint16_t)); } for (i = height; i < height + WIENER_HALFWIN; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, (width + 2 * WIENER_HALFWIN) * sizeof(uint16_t)); } } static void loop_copy_tile_highbd(uint16_t *data, int tile_idx, int subtile_idx, int subtile_bits, int width, int height, int stride, RestorationInternal *rst, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int i; int h_start, h_end, v_start, v_end; av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); for (i = v_start; i < v_end; ++i) memcpy(dst + i * dst_stride + h_start, data + i * stride + h_start, (h_end - h_start) * sizeof(*dst)); } static void loop_wiener_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; int i, j; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (i = v_start; i < v_end; i += MAX_SB_SIZE) for (j = h_start; j < h_end; j += MAX_SB_SIZE) { int w = AOMMIN(MAX_SB_SIZE, (h_end - j + 15) & ~15); int h = AOMMIN(MAX_SB_SIZE, (v_end - i + 15) & ~15); const uint16_t *data_p = data + i * stride + j; uint16_t *dst_p = dst + i * dst_stride + j; aom_highbd_convolve8_add_src( CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h, bit_depth); } } static void loop_wiener_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } void av1_selfguided_restoration_highbd_c(uint16_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int bit_depth, int r, int eps, int32_t *tmpbuf) { int i, j; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { dst[i * dst_stride + j] = dgd[i * stride + j]; } } av1_selfguided_restoration_internal(dst, width, height, dst_stride, bit_depth, r, eps, tmpbuf); } void av1_highpass_filter_highbd_c(uint16_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int corner, int edge) { int i, j; const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); i = 0; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); } i = 0; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); } i = height - 1; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); } i = height - 1; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + dgd[k + 1]); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + dgd[k + 1]); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + dgd[k - stride] + dgd[k + stride]); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride] + dgd[k + stride]); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k + stride + 1]); } } } void apply_selfguided_restoration_highbd_c(uint16_t *dat, int width, int height, int stride, int bit_depth, int eps, int *xqd, uint16_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int32_t *tmpbuf2 = flt2 + RESTORATION_TILEPELS_MAX; int i, j; assert(width * height <= RESTORATION_TILEPELS_MAX); #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_highbd_c(dat, width, height, stride, flt1, width, sgr_params[eps].corner, sgr_params[eps].edge); #else av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt1, width, bit_depth, sgr_params[eps].r1, sgr_params[eps].e1, tmpbuf2); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt2, width, bit_depth, sgr_params[eps].r2, sgr_params[eps].e2, tmpbuf2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = (uint16_t)clip_pixel_highbd(w, bit_depth); } } } static void loop_sgrproj_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; int h_start, h_end, v_start, v_end; uint16_t *data_p, *dst_p; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); return; } av1_get_rest_tile_limits(tile_idx, 0, 0, rst->nhtiles, rst->nvtiles, tile_width, tile_height, width, height, 0, 0, &h_start, &h_end, &v_start, &v_end); data_p = data + h_start + v_start * stride; dst_p = dst + h_start + v_start * dst_stride; apply_selfguided_restoration_highbd( data_p, h_end - h_start, v_end - v_start, stride, bit_depth, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } static void loop_sgrproj_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { int tile_idx; uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } static void loop_switchable_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, 0, 0, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } } #endif // CONFIG_HIGHBITDEPTH static void loop_restoration_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, int start_mi_row, int end_mi_row, int components_pattern, RestorationInfo *rsi, YV12_BUFFER_CONFIG *dst) { const int ywidth = frame->y_crop_width; const int ystride = frame->y_stride; const int uvwidth = frame->uv_crop_width; const int uvstride = frame->uv_stride; const int ystart = start_mi_row << MI_SIZE_LOG2; const int uvstart = ystart >> cm->subsampling_y; int yend = end_mi_row << MI_SIZE_LOG2; int uvend = yend >> cm->subsampling_y; restore_func_type restore_funcs[RESTORE_TYPES] = { NULL, loop_wiener_filter, loop_sgrproj_filter, loop_switchable_filter }; #if CONFIG_HIGHBITDEPTH restore_func_highbd_type restore_funcs_highbd[RESTORE_TYPES] = { NULL, loop_wiener_filter_highbd, loop_sgrproj_filter_highbd, loop_switchable_filter_highbd }; #endif // CONFIG_HIGHBITDEPTH restore_func_type restore_func; #if CONFIG_HIGHBITDEPTH restore_func_highbd_type restore_func_highbd; #endif // CONFIG_HIGHBITDEPTH YV12_BUFFER_CONFIG dst_; yend = AOMMIN(yend, cm->height); uvend = AOMMIN(uvend, cm->subsampling_y ? (cm->height + 1) >> 1 : cm->height); if (components_pattern == (1 << AOM_PLANE_Y)) { // Only y if (rsi[0].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_y(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_U)) { // Only U if (rsi[1].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_u(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_V)) { // Only V if (rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_v(frame, dst); return; } } else if (components_pattern == ((1 << AOM_PLANE_Y) | (1 << AOM_PLANE_U) | (1 << AOM_PLANE_V))) { // All components if (rsi[0].frame_restoration_type == RESTORE_NONE && rsi[1].frame_restoration_type == RESTORE_NONE && rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_frame(frame, dst); return; } } if (!dst) { dst = &dst_; memset(dst, 0, sizeof(YV12_BUFFER_CONFIG)); if (aom_realloc_frame_buffer( dst, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL) < 0) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate restoration dst buffer"); } if ((components_pattern >> AOM_PLANE_Y) & 1) { if (rsi[0].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( cm->width, cm->height, cm->rst_info[AOM_PLANE_Y].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[0]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, cm->bit_depth, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); } else { aom_yv12_copy_y(frame, dst); } } if ((components_pattern >> AOM_PLANE_U) & 1) { if (rsi[AOM_PLANE_U].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x), ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y), cm->rst_info[AOM_PLANE_U].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_U]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_u(frame, dst); } } if ((components_pattern >> AOM_PLANE_V) & 1) { if (rsi[AOM_PLANE_V].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x), ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y), cm->rst_info[AOM_PLANE_V].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_V]; restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_v(frame, dst); } } if (dst == &dst_) { if ((components_pattern >> AOM_PLANE_Y) & 1) aom_yv12_copy_y(dst, frame); if ((components_pattern >> AOM_PLANE_U) & 1) aom_yv12_copy_u(dst, frame); if ((components_pattern >> AOM_PLANE_V) & 1) aom_yv12_copy_v(dst, frame); aom_free_frame_buffer(dst); } } void av1_loop_restoration_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, RestorationInfo *rsi, int components_pattern, int partial_frame, YV12_BUFFER_CONFIG *dst) { int start_mi_row, end_mi_row, mi_rows_to_filter; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial_frame && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; loop_restoration_init(&cm->rst_internal, cm->frame_type == KEY_FRAME); loop_restoration_rows(frame, cm, start_mi_row, end_mi_row, components_pattern, rsi, dst); }