/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. * */ #include #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "./aom_scale_rtcd.h" #include "av1/common/onyxc_int.h" #include "av1/common/restoration.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" const sgr_params_type sgr_params[SGRPROJ_PARAMS] = { #if USE_HIGHPASS_IN_SGRPROJ // corner, edge, r2, eps2 { -1, 2, 1, 1 }, { -1, 2, 1, 2 }, { -1, 2, 1, 3 }, { -1, 2, 1, 4 }, { -1, 2, 1, 5 }, { -2, 3, 1, 2 }, { -2, 3, 1, 3 }, { -2, 3, 1, 4 }, { -2, 3, 1, 5 }, { -2, 3, 1, 6 }, { -3, 4, 1, 3 }, { -3, 4, 1, 4 }, { -3, 4, 1, 5 }, { -3, 4, 1, 6 }, { -3, 4, 1, 7 }, { -3, 4, 1, 8 } #else // r1, eps1, r2, eps2 #if MAX_RADIUS == 2 { 2, 12, 1, 4 }, { 2, 15, 1, 6 }, { 2, 18, 1, 8 }, { 2, 20, 1, 9 }, { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 2 }, { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 }, #else { 2, 12, 1, 4 }, { 2, 15, 1, 6 }, { 2, 18, 1, 8 }, { 2, 20, 1, 9 }, { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 }, { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 }, #endif // MAX_RADIUS == 2 #endif }; typedef void (*restore_func_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst8, int dst_stride); #if CONFIG_HIGHBITDEPTH typedef void (*restore_func_highbd_type)(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride); #endif // CONFIG_HIGHBITDEPTH int av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rst_info, int width, int height) { const int ntiles = av1_get_rest_ntiles( width, height, rst_info->restoration_tilesize, NULL, NULL, NULL, NULL); aom_free(rst_info->restoration_type); CHECK_MEM_ERROR(cm, rst_info->restoration_type, (RestorationType *)aom_malloc( sizeof(*rst_info->restoration_type) * ntiles)); aom_free(rst_info->wiener_info); CHECK_MEM_ERROR( cm, rst_info->wiener_info, (WienerInfo *)aom_memalign(16, sizeof(*rst_info->wiener_info) * ntiles)); memset(rst_info->wiener_info, 0, sizeof(*rst_info->wiener_info) * ntiles); aom_free(rst_info->sgrproj_info); CHECK_MEM_ERROR( cm, rst_info->sgrproj_info, (SgrprojInfo *)aom_malloc(sizeof(*rst_info->sgrproj_info) * ntiles)); return ntiles; } void av1_free_restoration_struct(RestorationInfo *rst_info) { aom_free(rst_info->restoration_type); rst_info->restoration_type = NULL; aom_free(rst_info->wiener_info); rst_info->wiener_info = NULL; aom_free(rst_info->sgrproj_info); rst_info->sgrproj_info = NULL; } // TODO(debargha): This table can be substantially reduced since only a few // values are actually used. int sgrproj_mtable[MAX_EPS][MAX_NELEM]; static void GenSgrprojVtable() { int e, n; for (e = 1; e <= MAX_EPS; ++e) for (n = 1; n <= MAX_NELEM; ++n) { const int n2e = n * n * e; sgrproj_mtable[e - 1][n - 1] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); } } void av1_loop_restoration_precal() { GenSgrprojVtable(); } static void loop_restoration_init(RestorationInternal *rst, int kf) { rst->keyframe = kf; } void extend_frame(uint8_t *data, int width, int height, int stride, int border_horz, int border_vert) { uint8_t *data_p; int i; for (i = 0; i < height; ++i) { data_p = data + i * stride; memset(data_p - border_horz, data_p[0], border_horz); memset(data_p + width, data_p[width - 1], border_horz); } data_p = data - border_horz; for (i = -border_vert; i < 0; ++i) { memcpy(data_p + i * stride, data_p, width + 2 * border_horz); } for (i = height; i < height + border_vert; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, width + 2 * border_horz); } } #if CONFIG_STRIPED_LOOP_RESTORATION // This function setup a processing stripe by replacing the vertical // stripe boundary (2 lines above and 2 lines below) by data coming // from the above/below buffers. Before doing so the original // frame data is saved into a temporary buffer, such that it // can be restored by the restore_processing_stripe_boundary // function after the filtering of the processing stripe. // Returns the height of the processing stripe static int setup_processing_stripe_boundary(int y0, int v_end, int h_start, int h_end, uint8_t *data, int stride, RestorationInternal *rst, int use_highbd) { int y, y_stripe_topmost, stripe_index, i; int tile_offset = RESTORATION_TILE_OFFSET >> rst->subsampling_y; int stripe_height = rst->rsi->procunit_height; int comp = rst->component; uint8_t *boundary_above_buf = rst->stripe_boundary_above[comp]; uint8_t *boundary_below_buf = rst->stripe_boundary_below[comp]; int boundary_stride = rst->stripe_boundary_stride[comp]; int x0 = h_start - RESTORATION_EXTRA_HORZ; int x1 = h_end + RESTORATION_EXTRA_HORZ; stripe_index = (y0 + tile_offset) / stripe_height; y_stripe_topmost = stripe_index * stripe_height - tile_offset; boundary_above_buf += ((stripe_index - 1) * 2 * boundary_stride + RESTORATION_EXTRA_HORZ) << use_highbd; boundary_below_buf += (stripe_index * 2 * boundary_stride + RESTORATION_EXTRA_HORZ) << use_highbd; // setup the 2 lines above the stripe for (i = 0; i < 2; i++) { y = y_stripe_topmost - 2 + i; if (y >= 0 && y < y0 && y >= y0 - 2) { uint8_t *p = data + ((y * stride + x0) << use_highbd); uint8_t *new_data = boundary_above_buf + ((i * boundary_stride + x0) << use_highbd); // printf("above %3d %3d: %08x %08x : %08x %08x\n", y, x0, // ((uint32_t*)p)[0], ((uint32_t*)p)[1], ((uint32_t*)new_data)[0], // ((uint32_t*)new_data)[1]); // Save old pixels memcpy(rst->tmp_save_above[i], p, (x1 - x0) << use_highbd); // Replace width pixels from boundary_above_buf memcpy(p, new_data, (x1 - x0) << use_highbd); } } // setup the 2 lines below the stripe for (i = 0; i < 2; i++) { y = y_stripe_topmost + stripe_height + i; if (y < v_end + 2) { uint8_t *p = data + ((y * stride + x0) << use_highbd); uint8_t *new_data = boundary_below_buf + ((i * boundary_stride + x0) << use_highbd); // printf("below %3d %3d: %08x %08x : %08x %08x\n", y, x0, // ((uint32_t*)p)[0], ((uint32_t*)p)[1], ((uint32_t*)new_data)[0], // ((uint32_t*)new_data)[1]); // Save old pixels memcpy(rst->tmp_save_below[i], p, (x1 - x0) << use_highbd); // Replace width pixels from boundary_below_buf memcpy(p, new_data, (x1 - x0) << use_highbd); } } // Return actual stripe height return AOMMIN(v_end, y_stripe_topmost + stripe_height) - y0; } // This function restores the boundary lines modified by // setup_processing_stripe_boundary. static void restore_processing_stripe_boundary(int y0, int v_end, int h_start, int h_end, uint8_t *data, int stride, RestorationInternal *rst, int use_highbd) { int y, y_stripe_topmost, i, stripe_index; int tile_offset = 8 >> rst->subsampling_y; int stripe_height = rst->rsi->procunit_height; int x0 = h_start - RESTORATION_EXTRA_HORZ; int x1 = h_end + RESTORATION_EXTRA_HORZ; stripe_index = (y0 + tile_offset) / stripe_height; y_stripe_topmost = stripe_index * stripe_height - tile_offset; // restore the 2 lines above the stripe for (i = 0; i < 2; i++) { y = y_stripe_topmost - 2 + i; if (y >= 0 && y < y0 && y >= y0 - 2) { uint8_t *p = data + ((y * stride + x0) << use_highbd); memcpy(p, rst->tmp_save_above[i], (x1 - x0) << use_highbd); } } // restore the 2 lines below the stripe for (i = 0; i < 2; i++) { y = y_stripe_topmost + stripe_height + i; if (y < v_end + 2) { uint8_t *p = data + ((y * stride + x0) << use_highbd); memcpy(p, rst->tmp_save_below[i], (x1 - x0) << use_highbd); } } } #endif static void loop_copy_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif for (int i = limits.v_start; i < limits.v_end; ++i) memcpy(dst + i * dst_stride + limits.h_start, data + i * stride + limits.h_start, limits.h_end - limits.h_start); } static void stepdown_wiener_kernel(const InterpKernel orig, InterpKernel vert, int boundary_dist, int istop) { memcpy(vert, orig, sizeof(InterpKernel)); switch (boundary_dist) { case 0: vert[WIENER_HALFWIN] += vert[2] + vert[1] + vert[0]; vert[2] = vert[1] = vert[0] = 0; break; case 1: vert[2] += vert[1] + vert[0]; vert[1] = vert[0] = 0; break; case 2: vert[1] += vert[0]; vert[0] = 0; break; default: break; } if (!istop) { int tmp; tmp = vert[0]; vert[0] = vert[WIENER_WIN - 1]; vert[WIENER_WIN - 1] = tmp; tmp = vert[1]; vert[1] = vert[WIENER_WIN - 2]; vert[WIENER_WIN - 2] = tmp; tmp = vert[2]; vert[2] = vert[WIENER_WIN - 3]; vert[WIENER_WIN - 3] = tmp; } } static void loop_wiener_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int procunit_width = rst->rsi->procunit_width; #if CONFIG_STRIPED_LOOP_RESTORATION int procunit_height; #else const int procunit_height = rst->rsi->procunit_height; #endif const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); return; } InterpKernel vertical_topbot; RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { #if CONFIG_STRIPED_LOOP_RESTORATION int h = setup_processing_stripe_boundary( i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); h = ALIGN_POWER_OF_TWO(h, 1); procunit_height = h; #else int h = AOMMIN(procunit_height, (limits.v_end - i + 15) & ~15); #endif for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { int w = AOMMIN(procunit_width, (limits.h_end - j + 15) & ~15); const uint8_t *data_p = data + i * stride + j; uint8_t *dst_p = dst + i * dst_stride + j; // Note h is at least 16 for (int b = 0; b < WIENER_HALFWIN - WIENER_BORDER_VERT; ++b) { stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, vertical_topbot, WIENER_BORDER_VERT + b, 1); #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1); #else aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride; dst_p += dst_stride; } #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); #else aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); dst_p += dst_stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); for (int b = WIENER_HALFWIN - WIENER_BORDER_VERT - 1; b >= 0; --b) { stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, vertical_topbot, WIENER_BORDER_VERT + b, 0); #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1); #else aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride; dst_p += dst_stride; } } #if CONFIG_STRIPED_LOOP_RESTORATION restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); #endif } } static void loop_wiener_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride, WIENER_BORDER_HORZ, WIENER_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } /* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1) over the input. The window is of size (2r + 1)x(2r + 1), and we specialize to r = 1, 2, 3. A default function is used for r > 3. Each loop follows the same format: We keep a window's worth of input in individual variables and select data out of that as appropriate. */ static void boxsum1(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c; // Vertical sum over 3-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 1) * src_stride + j] // b = src[(i ) * src_stride + j] // c = src[(i + 1) * src_stride + j] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; dst[j] = a + b; for (i = 1; i < height - 2; ++i) { dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c; dst[(i + 1) * dst_stride + j] = b + c; } } // Horizontal sum over 3-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; dst[i * dst_stride] = a + b; for (j = 1; j < width - 2; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 1)] // b = src[i * src_stride + (j )] // c = src[i * src_stride + (j + 1)] dst[i * dst_stride + j] = a + b + c; a = b; b = c; c = dst[i * dst_stride + (j + 2)]; } dst[i * dst_stride + j] = a + b + c; dst[i * dst_stride + (j + 1)] = b + c; } } static void boxsum2(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e; // Vertical sum over 5-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { // Loop invariant: At the start of each iteration, // a = src[(i - 2) * src_stride + j] // b = src[(i - 1) * src_stride + j] // c = src[(i ) * src_stride + j] // d = src[(i + 1) * src_stride + j] // e = src[(i + 2) * src_stride + j] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[src_stride + j] * src[src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; dst[j] = a + b + c; dst[dst_stride + j] = a + b + c + d; for (i = 2; i < height - 3; ++i) { dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[(i + 1) * dst_stride + j] = b + c + d + e; dst[(i + 2) * dst_stride + j] = c + d + e; } } // Horizontal sum over 5-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; dst[i * dst_stride] = a + b + c; dst[i * dst_stride + 1] = a + b + c + d; for (j = 2; j < width - 3; ++j) { // Loop invariant: At the start of each iteration, // a = src[i * src_stride + (j - 2)] // b = src[i * src_stride + (j - 1)] // c = src[i * src_stride + (j )] // d = src[i * src_stride + (j + 1)] // e = src[i * src_stride + (j + 2)] dst[i * dst_stride + j] = a + b + c + d + e; a = b; b = c; c = d; d = e; e = dst[i * dst_stride + (j + 3)]; } dst[i * dst_stride + j] = a + b + c + d + e; dst[i * dst_stride + (j + 1)] = b + c + d + e; dst[i * dst_stride + (j + 2)] = c + d + e; } } static void boxsum3(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e, f, g; // Vertical sum over 7-pixel regions, from src into dst. if (!sqr) { for (j = 0; j < width; ++j) { a = src[j]; b = src[1 * src_stride + j]; c = src[2 * src_stride + j]; d = src[3 * src_stride + j]; e = src[4 * src_stride + j]; f = src[5 * src_stride + j]; g = src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } else { for (j = 0; j < width; ++j) { a = src[j] * src[j]; b = src[1 * src_stride + j] * src[1 * src_stride + j]; c = src[2 * src_stride + j] * src[2 * src_stride + j]; d = src[3 * src_stride + j] * src[3 * src_stride + j]; e = src[4 * src_stride + j] * src[4 * src_stride + j]; f = src[5 * src_stride + j] * src[5 * src_stride + j]; g = src[6 * src_stride + j] * src[6 * src_stride + j]; dst[j] = a + b + c + d; dst[dst_stride + j] = a + b + c + d + e; dst[2 * dst_stride + j] = a + b + c + d + e + f; for (i = 3; i < height - 4; ++i) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; dst[(i + 2) * dst_stride + j] = c + d + e + f + g; dst[(i + 3) * dst_stride + j] = d + e + f + g; } } // Horizontal sum over 7-pixel regions of dst for (i = 0; i < height; ++i) { a = dst[i * dst_stride]; b = dst[i * dst_stride + 1]; c = dst[i * dst_stride + 2]; d = dst[i * dst_stride + 3]; e = dst[i * dst_stride + 4]; f = dst[i * dst_stride + 5]; g = dst[i * dst_stride + 6]; dst[i * dst_stride] = a + b + c + d; dst[i * dst_stride + 1] = a + b + c + d + e; dst[i * dst_stride + 2] = a + b + c + d + e + f; for (j = 3; j < width - 4; ++j) { dst[i * dst_stride + j] = a + b + c + d + e + f + g; a = b; b = c; c = d; d = e; e = f; f = g; g = dst[i * dst_stride + (j + 4)]; } dst[i * dst_stride + j] = a + b + c + d + e + f + g; dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g; dst[i * dst_stride + (j + 2)] = c + d + e + f + g; dst[i * dst_stride + (j + 3)] = d + e + f + g; } } // Generic version for any r. To be removed after experiments are done. static void boxsumr(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { int32_t *tmp = aom_malloc(width * height * sizeof(*tmp)); int tmp_stride = width; int i, j; if (sqr) { for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j]; for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j] * src[i * src_stride + j]; } else { memcpy(tmp, src, sizeof(*tmp) * width); for (j = 0; j < width; ++j) for (i = 1; i < height; ++i) tmp[i * tmp_stride + j] = tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j]; } for (i = 0; i <= r; ++i) memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride], sizeof(*tmp) * width); for (i = r + 1; i < height - r; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = height - r; i < height; ++i) for (j = 0; j < width; ++j) dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride]; for (i = 0; i < height; ++i) for (j = 1; j < width; ++j) tmp[i * tmp_stride + j] = tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j]; for (j = 0; j <= r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r]; for (j = r + 1; j < width - r; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1]; for (j = width - r; j < width; ++j) for (i = 0; i < height; ++i) dst[i * dst_stride + j] = tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1]; aom_free(tmp); } static void boxsum(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { if (r == 1) boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 2) boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 3) boxsum3(src, width, height, src_stride, sqr, dst, dst_stride); else boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride); } static void boxnum(int width, int height, int r, int8_t *num, int num_stride) { int i, j; for (i = 0; i <= r; ++i) { for (j = 0; j <= r; ++j) { num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j); num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j]; num[(height - 1 - i) * num_stride + (width - 1 - j)] = num[i * num_stride + j]; } } for (j = 0; j <= r; ++j) { const int val = (2 * r + 1) * (r + 1 + j); for (i = r + 1; i < height - r; ++i) { num[i * num_stride + j] = val; num[i * num_stride + (width - 1 - j)] = val; } } for (i = 0; i <= r; ++i) { const int val = (2 * r + 1) * (r + 1 + i); for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = val; num[(height - 1 - i) * num_stride + j] = val; } } for (i = r + 1; i < height - r; ++i) { for (j = r + 1; j < width - r; ++j) { num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1); } } } void decode_xq(int *xqd, int *xq) { xq[0] = xqd[0]; xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; } const int32_t x_by_xplus1[256] = { 0, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247, 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 256, }; const int32_t one_by_x[MAX_NELEM] = { 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315, 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164, #if MAX_RADIUS > 2 158, 152, 146, 141, 137, 132, 128, 124, 120, 117, 114, 111, 108, 105, 102, 100, 98, 95, 93, 91, 89, 87, 85, 84 #endif // MAX_RADIUS > 2 }; static void av1_selfguided_restoration_internal(int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, int dst_stride, int bit_depth, int r, int eps) { const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; const int num_stride = width_ext; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of 16 bytes, for consistency // with the SIMD version of this function. int buf_stride = ((width_ext + 3) & ~3) + 16; int32_t A_[RESTORATION_PROC_UNIT_PELS]; int32_t B_[RESTORATION_PROC_UNIT_PELS]; int32_t *A = A_; int32_t *B = B_; int8_t num_[RESTORATION_PROC_UNIT_PELS]; int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ; int i, j; // Don't filter tiles with dimensions < 5 on any axis if ((width < 5) || (height < 5)) return; boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); boxnum(width_ext, height_ext, r, num_, num_stride); assert(r <= 3); A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * buf_stride + j; const int n = num[i * num_stride + j]; // a < 2^16 * n < 2^22 regardless of bit depth uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); // b < 2^8 * n < 2^14 regardless of bit depth uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, // and p itself satisfies p < 2^14 * n^2 < 2^26. // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. // This is an artefact of rounding, and can only happen if all pixels // are (almost) identical, so in this case we saturate to p=0. uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; uint32_t s = sgrproj_mtable[eps - 1][n - 1]; // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 // (this holds even after accounting for the rounding in s) const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); A[k] = x_by_xplus1[AOMMIN(z, 255)]; // < 2^8 // SGRPROJ_SGR - A[k] < 2^8, B[k] < 2^(bit_depth) * n, // one_by_x[n - 1] = round(2^12 / n) // => the product here is < 2^(20 + bit_depth) <= 2^32, // and B[k] is set to a value < 2^(8 + bit depth) B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * (uint32_t)B[k] * (uint32_t)one_by_x[n - 1], SGRPROJ_RECIP_BITS); } } i = 0; j = 0; { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k + buf_stride] + A[k + buf_stride + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k + buf_stride] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = 0; j = width - 1; { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k + buf_stride] + A[k + buf_stride - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k + buf_stride] + B[k + buf_stride - 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; j = 0; { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k + 1] + 2 * A[k - buf_stride] + A[k - buf_stride + 1]; const int32_t b = 3 * B[k] + 2 * B[k + 1] + 2 * B[k - buf_stride] + B[k - buf_stride + 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; j = width - 1; { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = 3 * A[k] + 2 * A[k - 1] + 2 * A[k - buf_stride] + A[k - buf_stride - 1]; const int32_t b = 3 * B[k] + 2 * B[k - 1] + 2 * B[k - buf_stride] + B[k - buf_stride - 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + buf_stride] + A[k + buf_stride - 1] + A[k + buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + buf_stride] + B[k + buf_stride - 1] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - buf_stride] + A[k - buf_stride - 1] + A[k - buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - buf_stride] + B[k - buf_stride - 1] + B[k - buf_stride + 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + A[k + 1] + A[k - buf_stride + 1] + A[k + buf_stride + 1]; const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + B[k + 1] + B[k - buf_stride + 1] + B[k + buf_stride + 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 3; const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + A[k - 1] + A[k - buf_stride - 1] + A[k + buf_stride - 1]; const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + B[k - 1] + B[k - buf_stride - 1] + B[k + buf_stride - 1]; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; const int nb = 5; const int32_t a = (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) * 4 + (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * 3; const int32_t b = (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) * 4 + (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * 3; const int32_t v = a * dgd[l] + b; dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); } } } void av1_selfguided_restoration_c(uint8_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int r, int eps) { int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; int32_t *dgd32 = dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; int i, j; for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { dgd32[i * dgd32_stride + j] = dgd[i * stride + j]; } } av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst, dst_stride, 8, r, eps); } void av1_highpass_filter_c(uint8_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int corner, int edge) { int i, j; const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); i = 0; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); } i = 0; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); } i = height - 1; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); } i = height - 1; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + dgd[k + 1]); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + dgd[k + 1]); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + dgd[k - stride] + dgd[k + stride]); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride] + dgd[k + stride]); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k + stride + 1]); } } } void apply_selfguided_restoration_c(uint8_t *dat, int width, int height, int stride, int eps, int *xqd, uint8_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int i, j; assert(width * height <= RESTORATION_TILEPELS_MAX); #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_c(dat, width, height, stride, flt1, width, sgr_params[eps].corner, sgr_params[eps].edge); #else av1_selfguided_restoration_c(dat, width, height, stride, flt1, width, sgr_params[eps].r1, sgr_params[eps].e1); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_c(dat, width, height, stride, flt2, width, sgr_params[eps].r2, sgr_params[eps].e2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = clip_pixel(w); } } } static void loop_sgrproj_filter_tile(uint8_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { const int procunit_width = rst->rsi->procunit_width; #if CONFIG_STRIPED_LOOP_RESTORATION int procunit_height; #else const int procunit_height = rst->rsi->procunit_height; #endif const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); return; } RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { #if CONFIG_STRIPED_LOOP_RESTORATION int h = setup_processing_stripe_boundary( i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); procunit_height = h; #else int h = AOMMIN(procunit_height, limits.v_end - i); #endif for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { int w = AOMMIN(procunit_width, limits.h_end - j); uint8_t *data_p = data + i * stride + j; uint8_t *dst_p = dst + i * dst_stride + j; apply_selfguided_restoration( data_p, w, h, stride, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } #if CONFIG_STRIPED_LOOP_RESTORATION restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); #endif } } static void loop_sgrproj_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride, SGRPROJ_BORDER_HORZ, SGRPROJ_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } static void loop_switchable_filter(uint8_t *data, int width, int height, int stride, RestorationInternal *rst, uint8_t *dst, int dst_stride) { int tile_idx; extend_frame(data, width, height, stride, RESTORATION_BORDER_HORZ, RESTORATION_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); } } } #if CONFIG_HIGHBITDEPTH void extend_frame_highbd(uint16_t *data, int width, int height, int stride, int border_horz, int border_vert) { uint16_t *data_p; int i, j; for (i = 0; i < height; ++i) { data_p = data + i * stride; for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0]; for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1]; } data_p = data - border_horz; for (i = -border_vert; i < 0; ++i) { memcpy(data_p + i * stride, data_p, (width + 2 * border_horz) * sizeof(uint16_t)); } for (i = height; i < height + border_vert; ++i) { memcpy(data_p + i * stride, data_p + (height - 1) * stride, (width + 2 * border_horz) * sizeof(uint16_t)); } } static void loop_copy_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, uint16_t *dst, int dst_stride) { const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif for (int i = limits.v_start; i < limits.v_end; ++i) memcpy(dst + i * dst_stride + limits.h_start, data + i * stride + limits.h_start, (limits.h_end - limits.h_start) * sizeof(*dst)); } static void loop_wiener_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int procunit_width = rst->rsi->procunit_width; #if CONFIG_STRIPED_LOOP_RESTORATION int procunit_height; #else const int procunit_height = rst->rsi->procunit_height; #endif const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, dst_stride); return; } RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif InterpKernel vertical_topbot; // Convolve the whole tile (done in blocks here to match the requirements // of the vectorized convolve functions, but the result is equivalent) for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { #if CONFIG_STRIPED_LOOP_RESTORATION int h = setup_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, (uint8_t *)data, stride, rst, 1); h = ALIGN_POWER_OF_TWO(h, 1); procunit_height = h; #else int h = AOMMIN(procunit_height, (limits.v_end - i + 15) & ~15); #endif for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { int w = AOMMIN(procunit_width, (limits.h_end - j + 15) & ~15); const uint16_t *data_p = data + i * stride + j; uint16_t *dst_p = dst + i * dst_stride + j; // Note h is at least 16 for (int b = 0; b < WIENER_HALFWIN - WIENER_BORDER_VERT; ++b) { stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, vertical_topbot, WIENER_BORDER_VERT + b, 1); #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_highbd_convolve8_add_src_hip( CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1, bit_depth); #else aom_highbd_convolve8_add_src(CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1, bit_depth); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride; dst_p += dst_stride; } #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_highbd_convolve8_add_src_hip( CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2, bit_depth); #else aom_highbd_convolve8_add_src( CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, rst->rsi->wiener_info[tile_idx].vfilter, 16, w, h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2, bit_depth); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); dst_p += dst_stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); for (int b = WIENER_HALFWIN - WIENER_BORDER_VERT - 1; b >= 0; --b) { stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, vertical_topbot, WIENER_BORDER_VERT + b, 0); #if USE_WIENER_HIGH_INTERMEDIATE_PRECISION aom_highbd_convolve8_add_src_hip( CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1, bit_depth); #else aom_highbd_convolve8_add_src(CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, vertical_topbot, 16, w, 1, bit_depth); #endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION data_p += stride; dst_p += dst_stride; } } #if CONFIG_STRIPED_LOOP_RESTORATION restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, (uint8_t *)data, stride, rst, 1); #endif } } static void loop_wiener_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride, WIENER_BORDER_HORZ, WIENER_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } void av1_selfguided_restoration_highbd_c(uint16_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int bit_depth, int r, int eps) { int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; int32_t *dgd32 = dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; int i, j; for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { dgd32[i * dgd32_stride + j] = dgd[i * stride + j]; } } av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst, dst_stride, bit_depth, r, eps); } void av1_highpass_filter_highbd_c(uint16_t *dgd, int width, int height, int stride, int32_t *dst, int dst_stride, int corner, int edge) { int i, j; const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); i = 0; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); } i = 0; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); } i = height - 1; j = 0; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); } i = height - 1; j = width - 1; { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); } i = 0; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + dgd[k + 1]); } i = height - 1; for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + dgd[k + 1]); } j = 0; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + dgd[k - stride] + dgd[k + stride]); } j = width - 1; for (i = 1; i < height - 1; ++i) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride] + dgd[k + stride]); } for (i = 1; i < height - 1; ++i) { for (j = 1; j < width - 1; ++j) { const int k = i * stride + j; const int l = i * dst_stride + j; dst[l] = center * dgd[k] + edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k + stride + 1]); } } } void apply_selfguided_restoration_highbd_c(uint16_t *dat, int width, int height, int stride, int bit_depth, int eps, int *xqd, uint16_t *dst, int dst_stride, int32_t *tmpbuf) { int xq[2]; int32_t *flt1 = tmpbuf; int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; int i, j; assert(width * height <= RESTORATION_TILEPELS_MAX); #if USE_HIGHPASS_IN_SGRPROJ av1_highpass_filter_highbd_c(dat, width, height, stride, flt1, width, sgr_params[eps].corner, sgr_params[eps].edge); #else av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt1, width, bit_depth, sgr_params[eps].r1, sgr_params[eps].e1); #endif // USE_HIGHPASS_IN_SGRPROJ av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt2, width, bit_depth, sgr_params[eps].r2, sgr_params[eps].e2); decode_xq(xqd, xq); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int k = i * width + j; const int l = i * stride + j; const int m = i * dst_stride + j; const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); const int32_t f1 = (int32_t)flt1[k] - u; const int32_t f2 = (int32_t)flt2[k] - u; const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); dst[m] = (uint16_t)clip_pixel_highbd(w, bit_depth); } } } static void loop_sgrproj_filter_tile_highbd(uint16_t *data, int tile_idx, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint16_t *dst, int dst_stride) { const int procunit_width = rst->rsi->procunit_width; #if CONFIG_STRIPED_LOOP_RESTORATION int procunit_height; #else const int procunit_height = rst->rsi->procunit_height; #endif const int tile_width = rst->tile_width; const int tile_height = rst->tile_height; if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, dst_stride); return; } RestorationTileLimits limits = av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, #if CONFIG_STRIPED_LOOP_RESTORATION tile_height, width, height, rst->subsampling_y); #else tile_height, width, height); #endif for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { #if CONFIG_STRIPED_LOOP_RESTORATION int h = setup_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, (uint8_t *)data, stride, rst, 1); procunit_height = h; #else int h = AOMMIN(procunit_height, limits.v_end - i); #endif for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { int w = AOMMIN(procunit_width, limits.h_end - j); uint16_t *data_p = data + i * stride + j; uint16_t *dst_p = dst + i * dst_stride + j; apply_selfguided_restoration_highbd( data_p, w, h, stride, bit_depth, rst->rsi->sgrproj_info[tile_idx].ep, rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); } #if CONFIG_STRIPED_LOOP_RESTORATION restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, limits.h_end, (uint8_t *)data, stride, rst, 1); #endif } } static void loop_sgrproj_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { int tile_idx; uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); extend_frame_highbd(data, width, height, stride, SGRPROJ_BORDER_HORZ, SGRPROJ_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } static void loop_switchable_filter_highbd(uint8_t *data8, int width, int height, int stride, RestorationInternal *rst, int bit_depth, uint8_t *dst8, int dst_stride) { uint16_t *data = CONVERT_TO_SHORTPTR(data8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); int tile_idx; extend_frame_highbd(data, width, height, stride, RESTORATION_BORDER_HORZ, RESTORATION_BORDER_VERT); for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, bit_depth, dst, dst_stride); } } } #endif // CONFIG_HIGHBITDEPTH static void loop_restoration_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, int start_mi_row, int end_mi_row, int components_pattern, RestorationInfo *rsi, YV12_BUFFER_CONFIG *dst) { const int ywidth = frame->y_crop_width; const int yheight = frame->y_crop_height; const int uvwidth = frame->uv_crop_width; const int uvheight = frame->uv_crop_height; const int ystride = frame->y_stride; const int uvstride = frame->uv_stride; const int ystart = start_mi_row << MI_SIZE_LOG2; const int uvstart = ystart >> cm->subsampling_y; int yend = end_mi_row << MI_SIZE_LOG2; int uvend = yend >> cm->subsampling_y; restore_func_type restore_funcs[RESTORE_TYPES] = { NULL, loop_wiener_filter, loop_sgrproj_filter, loop_switchable_filter }; #if CONFIG_HIGHBITDEPTH restore_func_highbd_type restore_funcs_highbd[RESTORE_TYPES] = { NULL, loop_wiener_filter_highbd, loop_sgrproj_filter_highbd, loop_switchable_filter_highbd }; #endif // CONFIG_HIGHBITDEPTH restore_func_type restore_func; #if CONFIG_HIGHBITDEPTH restore_func_highbd_type restore_func_highbd; #endif // CONFIG_HIGHBITDEPTH YV12_BUFFER_CONFIG dst_; yend = AOMMIN(yend, yheight); uvend = AOMMIN(uvend, uvheight); if (components_pattern == (1 << AOM_PLANE_Y)) { // Only y if (rsi[0].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_y(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_U)) { // Only U if (rsi[1].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_u(frame, dst); return; } } else if (components_pattern == (1 << AOM_PLANE_V)) { // Only V if (rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_v(frame, dst); return; } } else if (components_pattern == ((1 << AOM_PLANE_Y) | (1 << AOM_PLANE_U) | (1 << AOM_PLANE_V))) { // All components if (rsi[0].frame_restoration_type == RESTORE_NONE && rsi[1].frame_restoration_type == RESTORE_NONE && rsi[2].frame_restoration_type == RESTORE_NONE) { if (dst) aom_yv12_copy_frame(frame, dst); return; } } if (!dst) { dst = &dst_; memset(dst, 0, sizeof(YV12_BUFFER_CONFIG)); if (aom_realloc_frame_buffer( dst, ywidth, yheight, cm->subsampling_x, cm->subsampling_y, #if CONFIG_HIGHBITDEPTH cm->use_highbitdepth, #endif AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL) < 0) aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate restoration dst buffer"); } if ((components_pattern >> AOM_PLANE_Y) & 1) { if (rsi[0].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( ywidth, yheight, cm->rst_info[AOM_PLANE_Y].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[0]; #if CONFIG_STRIPED_LOOP_RESTORATION cm->rst_internal.component = AOM_PLANE_Y; cm->rst_internal.subsampling_y = 0; #endif restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, cm->bit_depth, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, &cm->rst_internal, dst->y_buffer + ystart * dst->y_stride, dst->y_stride); } else { aom_yv12_copy_y(frame, dst); } } if ((components_pattern >> AOM_PLANE_U) & 1) { if (rsi[AOM_PLANE_U].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( uvwidth, uvheight, cm->rst_info[AOM_PLANE_U].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_U]; #if CONFIG_STRIPED_LOOP_RESTORATION cm->rst_internal.component = AOM_PLANE_U; cm->rst_internal.subsampling_y = cm->subsampling_y; #endif restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_u(frame, dst); } } if ((components_pattern >> AOM_PLANE_V) & 1) { if (rsi[AOM_PLANE_V].frame_restoration_type != RESTORE_NONE) { cm->rst_internal.ntiles = av1_get_rest_ntiles( uvwidth, uvheight, cm->rst_info[AOM_PLANE_V].restoration_tilesize, &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); cm->rst_internal.rsi = &rsi[AOM_PLANE_V]; #if CONFIG_STRIPED_LOOP_RESTORATION cm->rst_internal.component = AOM_PLANE_V; cm->rst_internal.subsampling_y = cm->subsampling_y; #endif restore_func = restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; #if CONFIG_HIGHBITDEPTH restore_func_highbd = restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; if (cm->use_highbitdepth) restore_func_highbd( frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, cm->bit_depth, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); else #endif // CONFIG_HIGHBITDEPTH restore_func(frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, uvstride, &cm->rst_internal, dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); } else { aom_yv12_copy_v(frame, dst); } } if (dst == &dst_) { if ((components_pattern >> AOM_PLANE_Y) & 1) aom_yv12_copy_y(dst, frame); if ((components_pattern >> AOM_PLANE_U) & 1) aom_yv12_copy_u(dst, frame); if ((components_pattern >> AOM_PLANE_V) & 1) aom_yv12_copy_v(dst, frame); aom_free_frame_buffer(dst); } } void av1_loop_restoration_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, RestorationInfo *rsi, int components_pattern, int partial_frame, YV12_BUFFER_CONFIG *dst) { int start_mi_row, end_mi_row, mi_rows_to_filter; start_mi_row = 0; #if CONFIG_FRAME_SUPERRES mi_rows_to_filter = ALIGN_POWER_OF_TWO(cm->superres_upscaled_height, 3) >> MI_SIZE_LOG2; #else mi_rows_to_filter = cm->mi_rows; #endif // CONFIG_FRAME_SUPERRES if (partial_frame && mi_rows_to_filter > 8) { start_mi_row = mi_rows_to_filter >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = AOMMAX(mi_rows_to_filter / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; loop_restoration_init(&cm->rst_internal, cm->frame_type == KEY_FRAME); loop_restoration_rows(frame, cm, start_mi_row, end_mi_row, components_pattern, rsi, dst); } int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rcol0, int *rcol1, int *rrow0, int *rrow1, int *nhtiles) { assert(rcol0 && rcol1 && rrow0 && rrow1 && nhtiles); if (bsize != cm->sb_size) return 0; #if CONFIG_FRAME_SUPERRES const int frame_w = cm->superres_upscaled_width; const int frame_h = cm->superres_upscaled_height; const int mi_to_px = MI_SIZE * SCALE_NUMERATOR; const int denom = cm->superres_scale_denominator; #else const int frame_w = cm->width; const int frame_h = cm->height; const int mi_to_px = MI_SIZE; const int denom = 1; #endif // CONFIG_FRAME_SUPERRES const int ss_x = plane > 0 && cm->subsampling_x != 0; const int ss_y = plane > 0 && cm->subsampling_y != 0; const int ss_frame_w = (frame_w + ss_x) >> ss_x; const int ss_frame_h = (frame_h + ss_y) >> ss_y; int rtile_w, rtile_h, nvtiles; av1_get_rest_ntiles(ss_frame_w, ss_frame_h, cm->rst_info[plane].restoration_tilesize, &rtile_w, &rtile_h, nhtiles, &nvtiles); const int rnd_w = rtile_w * denom - 1; const int rnd_h = rtile_h * denom - 1; // rcol0/rrow0 should be the first column/row of rtiles that doesn't start // left/below of mi_col/mi_row. For this calculation, we need to round up the // division (if the sb starts at rtile column 10.1, the first matching rtile // has column index 11) *rcol0 = (mi_col * mi_to_px + rnd_w) / (rtile_w * denom); *rrow0 = (mi_row * mi_to_px + rnd_h) / (rtile_h * denom); // rcol1/rrow1 is the equivalent calculation, but for the superblock // below-right. There are some slightly strange boundary effects. First, we // need to clamp to nhtiles/nvtiles for the case where it appears there are, // say, 2.4 restoration tiles horizontally. There we need a maximum mi_row1 // of 2 because tile 1 gets extended. // // Second, if mi_col1 >= cm->mi_cols then we must manually set *rcol1 to // nhtiles. This is needed whenever the frame's width rounded up to the next // toplevel superblock is smaller than nhtiles * rtile_w. The same logic is // needed for rows. const int mi_row1 = mi_row + mi_size_high[bsize]; const int mi_col1 = mi_col + mi_size_wide[bsize]; if (mi_col1 >= cm->mi_cols) *rcol1 = *nhtiles; else *rcol1 = AOMMIN(*nhtiles, (mi_col1 * mi_to_px + rnd_w) / (rtile_w * denom)); if (mi_row1 >= cm->mi_rows) *rrow1 = nvtiles; else *rrow1 = AOMMIN(nvtiles, (mi_row1 * mi_to_px + rnd_h) / (rtile_h * denom)); return *rcol0 < *rcol1 && *rrow0 < *rrow1; } #if CONFIG_STRIPED_LOOP_RESTORATION // Extend to left and right static void extend_line(uint8_t *buf, int width, int extend, int use_highbitdepth) { int i; if (use_highbitdepth) { uint16_t val, *buf16 = (uint16_t *)buf; val = buf16[0]; for (i = 0; i < extend; i++) buf16[-1 - i] = val; val = buf16[width - 1]; for (i = 0; i < extend; i++) buf16[width + i] = val; } else { uint8_t val; val = buf[0]; for (i = 0; i < extend; i++) buf[-1 - i] = val; val = buf[width - 1]; for (i = 0; i < extend; i++) buf[width + i] = val; } } // For each 64 pixel high stripe, save 4 scan lines to be used as boundary in // the loop restoration process. The lines are saved in // rst_internal.stripe_boundary_lines void av1_loop_restoration_save_boundary_lines(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm) { int p, boundary_stride; int src_width, src_height, src_stride, stripe_height, stripe_offset, stripe_y, yy; uint8_t *src_buf, *boundary_below_buf, *boundary_above_buf; int use_highbitdepth = 0; for (p = 0; p < MAX_MB_PLANE; ++p) { if (p == 0) { src_buf = frame->y_buffer; src_width = frame->y_crop_width; src_height = frame->y_crop_height; src_stride = frame->y_stride; stripe_height = 64; stripe_offset = 56 - 2; // offset of first line to copy } else { src_buf = p == 1 ? frame->u_buffer : frame->v_buffer; src_width = frame->uv_crop_width; src_height = frame->uv_crop_height; src_stride = frame->uv_stride; stripe_height = 64 >> cm->subsampling_y; stripe_offset = (56 >> cm->subsampling_y) - 2; } boundary_above_buf = cm->rst_internal.stripe_boundary_above[p]; boundary_below_buf = cm->rst_internal.stripe_boundary_below[p]; boundary_stride = cm->rst_internal.stripe_boundary_stride[p]; #if CONFIG_HIGHBITDEPTH use_highbitdepth = cm->use_highbitdepth; if (use_highbitdepth) { src_buf = (uint8_t *)CONVERT_TO_SHORTPTR(src_buf); } #endif src_buf += (stripe_offset * src_stride) << use_highbitdepth; boundary_above_buf += RESTORATION_EXTRA_HORZ << use_highbitdepth; boundary_below_buf += RESTORATION_EXTRA_HORZ << use_highbitdepth; // Loop over stripes for (stripe_y = stripe_offset; stripe_y < src_height; stripe_y += stripe_height) { // Save 2 lines above the LR stripe (offset -9, -10) for (yy = 0; yy < 2; yy++) { if (stripe_y + yy < src_height) { memcpy(boundary_above_buf, src_buf, src_width << use_highbitdepth); extend_line(boundary_above_buf, src_width, RESTORATION_EXTRA_HORZ, use_highbitdepth); src_buf += src_stride << use_highbitdepth; boundary_above_buf += boundary_stride << use_highbitdepth; } } // Save 2 lines below the LR stripe (offset 56,57) for (yy = 2; yy < 4; yy++) { if (stripe_y + yy < src_height) { memcpy(boundary_below_buf, src_buf, src_width << use_highbitdepth); extend_line(boundary_below_buf, src_width, RESTORATION_EXTRA_HORZ, use_highbitdepth); src_buf += src_stride << use_highbitdepth; boundary_below_buf += boundary_stride << use_highbitdepth; } } // jump to next stripe src_buf += ((stripe_height - 4) * src_stride) << use_highbitdepth; } } } #endif // CONFIG_STRIPED_LOOP_RESTORATION