/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_RECONINTER_H_ #define AV1_COMMON_RECONINTER_H_ #include "av1/common/filter.h" #include "av1/common/onyxc_int.h" #include "av1/common/convolve.h" #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #include "av1/common/warped_motion.h" #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #include "aom/aom_integer.h" #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION #define WARP_WM_NEIGHBORS_WITH_OBMC 0 #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION #define WARP_GM_NEIGHBORS_WITH_OBMC 0 #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION #ifdef __cplusplus extern "C" { #endif static INLINE int has_scale(int xs, int ys) { return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS; } static INLINE void inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int subpel_x, int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int xs, int ys) { assert(conv_params->do_average == 0 || conv_params->do_average == 1); assert(sf); if (has_scale(xs, ys)) { // TODO(afergs, debargha): Use a different scale convolve function // that uses higher precision for subpel_x, subpel_y, xs, ys if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { #if CONFIG_CONVOLVE_ROUND av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, 1, conv_params); conv_params->do_post_rounding = 1; #else assert(0); #endif // CONFIG_CONVOLVE_ROUND } else { assert(conv_params->round == CONVOLVE_OPT_ROUND); av1_convolve_scale(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, conv_params); } } else { subpel_x >>= SCALE_EXTRA_BITS; subpel_y >>= SCALE_EXTRA_BITS; xs >>= SCALE_EXTRA_BITS; ys >>= SCALE_EXTRA_BITS; assert(subpel_x < SUBPEL_SHIFTS); assert(subpel_y < SUBPEL_SHIFTS); assert(xs <= SUBPEL_SHIFTS); assert(ys <= SUBPEL_SHIFTS); if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { #if CONFIG_CONVOLVE_ROUND av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, 0, conv_params); conv_params->do_post_rounding = 1; #else assert(0); #endif // CONFIG_CONVOLVE_ROUND } else { assert(conv_params->round == CONVOLVE_OPT_ROUND); InterpFilterParams filter_params_x, filter_params_y; av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, &filter_params_y); if (w <= 2 || h <= 2) { av1_convolve_c(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, conv_params); } else if (filter_params_x.taps == SUBPEL_TAPS && filter_params_y.taps == SUBPEL_TAPS) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(filter_params_x, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(filter_params_y, subpel_y); sf->predict[subpel_x != 0][subpel_y != 0][conv_params->do_average]( src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); } else { av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, conv_params); } } } } #if CONFIG_HIGHBITDEPTH static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int subpel_x, int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int xs, int ys, int bd) { const int avg = conv_params->do_average; assert(avg == 0 || avg == 1); if (has_scale(xs, ys)) { if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { #if CONFIG_CONVOLVE_ROUND av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, 1, conv_params, bd); conv_params->do_post_rounding = 1; #else assert(0); #endif // CONFIG_CONVOLVE_ROUND } else { av1_highbd_convolve_scale(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, avg, bd); } } else { subpel_x >>= SCALE_EXTRA_BITS; subpel_y >>= SCALE_EXTRA_BITS; xs >>= SCALE_EXTRA_BITS; ys >>= SCALE_EXTRA_BITS; assert(subpel_x < SUBPEL_SHIFTS); assert(subpel_y < SUBPEL_SHIFTS); assert(xs <= SUBPEL_SHIFTS); assert(ys <= SUBPEL_SHIFTS); if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { #if CONFIG_CONVOLVE_ROUND av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, 0, conv_params, bd); conv_params->do_post_rounding = 1; #else assert(0); #endif // CONFIG_CONVOLVE_ROUND } else { InterpFilterParams filter_params_x, filter_params_y; av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, &filter_params_y); if (filter_params_x.taps == SUBPEL_TAPS && filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) { const int16_t *kernel_x = av1_get_interp_filter_subpel_kernel(filter_params_x, subpel_x); const int16_t *kernel_y = av1_get_interp_filter_subpel_kernel(filter_params_y, subpel_y); sf->highbd_predict[subpel_x != 0][subpel_y != 0][avg]( src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd); } else { av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filters, subpel_x, xs, subpel_y, ys, avg, bd); } } } } #endif // CONFIG_HIGHBITDEPTH // Set to (1 << 5) if the 32-ary codebooks are used for any bock size #define MAX_WEDGE_TYPES (1 << 4) #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) #define WEDGE_WEIGHT_BITS 6 #define WEDGE_NONE -1 // Angles are with respect to horizontal anti-clockwise typedef enum { WEDGE_HORIZONTAL = 0, WEDGE_VERTICAL = 1, WEDGE_OBLIQUE27 = 2, WEDGE_OBLIQUE63 = 3, WEDGE_OBLIQUE117 = 4, WEDGE_OBLIQUE153 = 5, WEDGE_DIRECTIONS } WedgeDirectionType; // 3-tuple: {direction, x_offset, y_offset} typedef struct { WedgeDirectionType direction; int x_offset; int y_offset; } wedge_code_type; typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; typedef struct { int bits; const wedge_code_type *codebook; uint8_t *signflip; int smoother; wedge_masks_type *masks; } wedge_params_type; extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL]; static INLINE int is_interinter_compound_used(COMPOUND_TYPE type, BLOCK_SIZE sb_type) { (void)sb_type; switch (type) { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 case COMPOUND_AVERAGE: return sb_type >= BLOCK_4X4; #else // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 case COMPOUND_AVERAGE: return 1; #endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 #if CONFIG_WEDGE case COMPOUND_WEDGE: return wedge_params_lookup[sb_type].bits > 0; #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: return AOMMIN(block_size_wide[sb_type], block_size_high[sb_type]) >= 8; #endif // CONFIG_COMPOUND_SEGMENT default: assert(0); return 0; } } static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) { COMPOUND_TYPE comp_type; #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 if (sb_type < BLOCK_4X4) return 0; #endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 for (comp_type = 0; comp_type < COMPOUND_TYPES; comp_type++) { if (is_masked_compound_type(comp_type) && is_interinter_compound_used(comp_type, sb_type)) return 1; } return 0; } static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) { const int wbits = wedge_params_lookup[sb_type].bits; return (wbits > 0) ? wbits + 1 : 0; } static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) { (void)sb_type; return wedge_params_lookup[sb_type].bits > 0; } static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].bits; } #if CONFIG_COMPOUND_SEGMENT void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w); #if CONFIG_HIGHBITDEPTH void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd); #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_COMPOUND_SEGMENT void av1_make_masked_inter_predictor( const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int xs, int ys, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX int plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION MACROBLOCKD *xd); static INLINE int round_mv_comp_q4(int value) { return (value < 0 ? value - 2 : value + 2) / 4; } static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { MV res = { round_mv_comp_q4( mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), round_mv_comp_q4( mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) }; return res; } static INLINE int round_mv_comp_q2(int value) { return (value < 0 ? value - 1 : value + 1) / 2; } static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + mi->bmi[block1].as_mv[idx].as_mv.row), round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + mi->bmi[block1].as_mv[idx].as_mv.col) }; return res; } // TODO(jkoleszar): yet another mv clamping function :-( static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), src_mv->col * (1 << (1 - ss_x)) }; assert(ss_x <= 1); assert(ss_y <= 1); clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); return clamped_mv; } static INLINE MV average_split_mvs(const struct macroblockd_plane *pd, const MODE_INFO *mi, int ref, int block) { const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); MV res = { 0, 0 }; switch (ss_idx) { case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; case 3: res = mi_mv_pred_q4(mi, ref); break; default: assert(ss_idx <= 3 && ss_idx >= 0); } return res; } void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize); #if CONFIG_SUPERTX void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row_ori, int mi_col_ori, int mi_row, int mi_col, int plane, BLOCK_SIZE bsize, int block); void av1_build_inter_predictor_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row_ori, int mi_col_ori, int mi_row, int mi_col, int plane, BLOCK_SIZE bsize); struct macroblockd_plane; void av1_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane); #endif // CONFIG_SUPERTX void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION enum mv_precision precision, int x, int y, const MACROBLOCKD *xd); #if CONFIG_HIGHBITDEPTH void av1_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg, InterpFilters interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION int plane, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd); #endif static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, const struct scale_factors *sf) { const int x = sf ? sf->scale_value_x(x_offset, sf) >> SCALE_EXTRA_BITS : x_offset; const int y = sf ? sf->scale_value_y(y_offset, sf) >> SCALE_EXTRA_BITS : y_offset; return y * stride + x; } static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize, uint8_t *src, int width, int height, int stride, int mi_row, int mi_col, const struct scale_factors *scale, int subsampling_x, int subsampling_y) { #if CONFIG_CHROMA_SUB8X8 // Offset the buffer pointer if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) mi_row -= 1; if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) mi_col -= 1; #else (void)bsize; #endif const int x = (MI_SIZE * mi_col) >> subsampling_x; const int y = (MI_SIZE * mi_row) >> subsampling_y; dst->buf = src + scaled_buffer_offset(x, y, stride, scale); dst->buf0 = src; dst->width = width; dst->height = height; dst->stride = stride; } void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col); void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf); // Detect if the block have sub-pixel level motion vectors // per component. #define CHECK_SUBPEL 0 static INLINE int has_subpel_mv_component(const MODE_INFO *const mi, const MACROBLOCKD *const xd, int dir) { #if CHECK_SUBPEL const MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; int plane; int ref = (dir >> 1); #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif if (bsize >= BLOCK_8X8 || unify_bsize) { if (dir & 0x01) { if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1; } else { if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1; } } else { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const PARTITION_TYPE bp = BLOCK_8X8 - bsize; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) { for (x = 0; x < num_4x4_w; ++x) { const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x); if (dir & 0x01) { if (mv.col & SUBPEL_MASK) return 1; } else { if (mv.row & SUBPEL_MASK) return 1; } } } } } return 0; #else (void)mi; (void)xd; (void)dir; return 1; #endif } static INLINE void set_default_interp_filters( MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) { mbmi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter)); } static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { (void)xd; #if CONFIG_WARPED_MOTION const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; if (mbmi->motion_mode == WARPED_CAUSAL) return 0; #endif // CONFIG_WARPED_MOTION #if CONFIG_GLOBAL_MOTION if (is_nontrans_global_motion(xd)) return 0; #endif // CONFIG_GLOBAL_MOTION return 1; } static INLINE int av1_is_interp_search_needed(const MACROBLOCKD *const xd) { MODE_INFO *const mi = xd->mi[0]; const int is_compound = has_second_ref(&mi->mbmi); int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { int row_col; for (row_col = 0; row_col < 2; ++row_col) { const int dir = (ref << 1) + row_col; if (has_subpel_mv_component(mi, xd, dir)) { return 1; } } } return 0; } #if CONFIG_MOTION_VAR const uint8_t *av1_get_obmc_mask(int length); void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]); void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]); void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]); void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); #if CONFIG_NCOBMC void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col); #endif #endif // CONFIG_MOTION_VAR #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1) #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE) void av1_init_wedge_masks(); static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type) { return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; } const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y); const uint8_t *av1_get_compound_type_mask_inverse( const INTERINTER_COMPOUND_DATA *const comp_data, #if CONFIG_COMPOUND_SEGMENT uint8_t *mask_buffer, int h, int w, int stride, #endif BLOCK_SIZE sb_type); const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); #if CONFIG_INTERINTRA void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *ypred, int ystride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, int ustride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize); void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize); void av1_build_intra_predictors_for_interintra( const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *intra_pred, int intra_stride); void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride); #endif // CONFIG_INTERINTRA // Encoder only void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]); void av1_build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]); #if CONFIG_NCOBMC_ADAPT_WEIGHT #define ASSIGN_ALIGNED_PTRS(p, a, s) \ p[0] = a; \ p[1] = a + s; \ p[2] = a + 2 * s; #define ASSIGN_ALIGNED_PTRS_HBD(p, a, s, l) \ p[0] = CONVERT_TO_BYTEPTR(a); \ p[1] = CONVERT_TO_BYTEPTR(a + s * l); \ p[2] = CONVERT_TO_BYTEPTR(a + 2 * s * l); void alloc_ncobmc_pred_buffer(MACROBLOCKD *const xd); void free_ncobmc_pred_buffer(MACROBLOCKD *const xd); void set_sb_mi_boundaries(const AV1_COMMON *const cm, MACROBLOCKD *const xd, const int mi_row, const int mi_col); void reset_xd_boundary(MACROBLOCKD *xd, int mi_row, int bh, int mi_col, int bw, int mi_rows, int mi_cols); void get_pred_from_intrpl_buf(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane); void build_ncobmc_intrpl_pred(const AV1_COMMON *const cm, MACROBLOCKD *xd, int plane, int pxl_row, int pxl_col, BLOCK_SIZE bsize, uint8_t *preds[][MAX_MB_PLANE], int ps[MAX_MB_PLANE], // pred buffer strides int mode); void av1_get_ext_blk_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[][MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]); void av1_get_ori_blk_pred(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]); #endif // CONFIG_NCOBMC_ADAPT_WEIGHT #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_RECONINTER_H_