/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_ONYXC_INT_H_ #define AV1_COMMON_ONYXC_INT_H_ #include "./aom_config.h" #include "./av1_rtcd.h" #include "aom/internal/aom_codec_internal.h" #include "aom_util/aom_thread.h" #if CONFIG_ANS #include "aom_dsp/ans.h" #endif #include "av1/common/alloccommon.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/entropymv.h" #include "av1/common/frame_buffers.h" #include "av1/common/mv.h" #include "av1/common/quant_common.h" #if CONFIG_LOOP_RESTORATION #include "av1/common/restoration.h" #endif // CONFIG_LOOP_RESTORATION #include "av1/common/tile_common.h" #include "av1/common/odintrin.h" #if CONFIG_PVQ #include "av1/common/pvq.h" #endif #if CONFIG_CFL #include "av1/common/cfl.h" #endif #if CONFIG_HASH_ME // TODO(youzhou@microsoft.com): Encoder only. Move it out of common #include "av1/encoder/hash_motion.h" #endif #ifdef __cplusplus extern "C" { #endif #define CDEF_MAX_STRENGTHS 16 #define REF_FRAMES_LOG2 3 #define REF_FRAMES (1 << REF_FRAMES_LOG2) // 4 scratch frames for the new frames to support a maximum of 4 cores decoding // in parallel, 3 for scaled references on the encoder. // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number // of framebuffers. // TODO(jkoleszar): These 3 extra references could probably come from the // normal reference pool. #define FRAME_BUFFERS (REF_FRAMES + 7) #if CONFIG_REFERENCE_BUFFER /* Constant values while waiting for the sequence header */ #define FRAME_ID_NUMBERS_PRESENT_FLAG 1 #define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1 #define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1 #endif // CONFIG_REFERENCE_BUFFER #if CONFIG_NO_FRAME_CONTEXT_SIGNALING #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) // Extra frame context which is always kept at default values #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) #else #if CONFIG_EXT_REFS #define FRAME_CONTEXTS_LOG2 3 #else #define FRAME_CONTEXTS_LOG2 2 #endif #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) #endif // CONFIG_NO_FRAME_CONTEXT_SIGNALING #define NUM_PING_PONG_BUFFERS 2 typedef enum { SINGLE_REFERENCE = 0, COMPOUND_REFERENCE = 1, REFERENCE_MODE_SELECT = 2, REFERENCE_MODES = 3, } REFERENCE_MODE; #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING typedef enum { RESET_FRAME_CONTEXT_NONE = 0, RESET_FRAME_CONTEXT_CURRENT = 1, RESET_FRAME_CONTEXT_ALL = 2, } RESET_FRAME_CONTEXT_MODE; #endif typedef enum { /** * Update frame context to values resulting from forward probability * updates signaled in the frame header */ REFRESH_FRAME_CONTEXT_FORWARD, /** * Update frame context to values resulting from backward probability * updates based on entropy/counts in the decoded frame */ REFRESH_FRAME_CONTEXT_BACKWARD, } REFRESH_FRAME_CONTEXT_MODE; #if CONFIG_MFMV #define MFMV_STACK_SIZE INTER_REFS_PER_FRAME typedef struct { int_mv mfmv[INTER_REFS_PER_FRAME][MFMV_STACK_SIZE]; } TPL_MV_REF; #endif typedef struct { int_mv mv[2]; int_mv pred_mv[2]; MV_REFERENCE_FRAME ref_frame[2]; } MV_REF; typedef struct { int ref_count; #if CONFIG_FRAME_MARKER int cur_frame_offset; int lst_frame_offset; int alt_frame_offset; int gld_frame_offset; #if CONFIG_EXT_REFS int lst2_frame_offset; int lst3_frame_offset; int bwd_frame_offset; int alt2_frame_offset; #endif #endif // CONFIG_FRAME_MARKER #if CONFIG_MFMV TPL_MV_REF *tpl_mvs; #endif MV_REF *mvs; int mi_rows; int mi_cols; // Width and height give the size of the buffer (before any upscaling, unlike // the sizes that can be derived from the buf structure) int width; int height; #if CONFIG_GLOBAL_MOTION WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; #endif // CONFIG_GLOBAL_MOTION aom_codec_frame_buffer_t raw_frame_buffer; YV12_BUFFER_CONFIG buf; #if CONFIG_HASH_ME hash_table hash_table; #endif #if CONFIG_TEMPMV_SIGNALING uint8_t intra_only; #endif // The Following variables will only be used in frame parallel decode. // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means // that no FrameWorker owns, or is decoding, this buffer. AVxWorker *frame_worker_owner; // row and col indicate which position frame has been decoded to in real // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX // when the frame is fully decoded. int row; int col; } RefCntBuffer; typedef struct BufferPool { // Protect BufferPool from being accessed by several FrameWorkers at // the same time during frame parallel decode. // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. #if CONFIG_MULTITHREAD pthread_mutex_t pool_mutex; #endif // Private data associated with the frame buffer callbacks. void *cb_priv; aom_get_frame_buffer_cb_fn_t get_fb_cb; aom_release_frame_buffer_cb_fn_t release_fb_cb; RefCntBuffer frame_bufs[FRAME_BUFFERS]; // Frame buffers allocated internally by the codec. InternalFrameBufferList int_frame_buffers; } BufferPool; #if CONFIG_LV_MAP typedef struct { int base_ctx_table[2 /*row*/][2 /*col*/][2 /*sig_map*/] [BASE_CONTEXT_POSITION_NUM + 1]; } LV_MAP_CTX_TABLE; typedef int BASE_CTX_TABLE[2 /*col*/][2 /*sig_map*/] [BASE_CONTEXT_POSITION_NUM + 1]; #endif #if CONFIG_REFERENCE_BUFFER /* Initial version of sequence header structure */ typedef struct SequenceHeader { int frame_id_numbers_present_flag; int frame_id_length_minus7; int delta_frame_id_length_minus2; } SequenceHeader; #endif // CONFIG_REFERENCE_BUFFER typedef struct AV1Common { struct aom_internal_error_info error; aom_color_space_t color_space; aom_transfer_function_t transfer_function; aom_chroma_sample_position_t chroma_sample_position; int color_range; int width; int height; int render_width; int render_height; int last_width; int last_height; // TODO(jkoleszar): this implies chroma ss right now, but could vary per // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to // support additional planes. int subsampling_x; int subsampling_y; #if CONFIG_HIGHBITDEPTH // Marks if we need to use 16bit frame buffers (1: yes, 0: no). int use_highbitdepth; #endif YV12_BUFFER_CONFIG *frame_to_show; RefCntBuffer *prev_frame; // TODO(hkuang): Combine this with cur_buf in macroblockd. RefCntBuffer *cur_frame; int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ // Prepare ref_frame_map for the next frame. // Only used in frame parallel decode. int next_ref_frame_map[REF_FRAMES]; // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and // roll new_fb_idx into it. // Each Inter frame can reference INTER_REFS_PER_FRAME buffers RefBuffer frame_refs[INTER_REFS_PER_FRAME]; int new_fb_idx; FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ FRAME_TYPE frame_type; int show_frame; int last_show_frame; int show_existing_frame; #if CONFIG_EXT_REFS // Flag for a frame used as a reference - not written to the bitstream int is_reference_frame; #endif // CONFIG_EXT_REFS // Flag signaling that the frame is encoded using only INTRA modes. uint8_t intra_only; uint8_t last_intra_only; int allow_high_precision_mv; #if CONFIG_AMVR int seq_mv_precision_level; // 0 the default in AOM, 1 only integer, 2 // adaptive int cur_frame_mv_precision_level; // 0 the default in AOM, 1 only integer #endif int allow_screen_content_tools; #if CONFIG_INTERINTRA int allow_interintra_compound; #endif // CONFIG_INTERINTRA #if CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT int allow_masked_compound; #endif // CONFIG_WEDGE || CONFIG_COMPOUND_SEGMENT #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING // Flag signaling which frame contexts should be reset to default values. RESET_FRAME_CONTEXT_MODE reset_frame_context; #endif // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in // MODE_INFO (8-pixel) units. int MBs; int mb_rows, mi_rows; int mb_cols, mi_cols; int mi_stride; /* profile settings */ TX_MODE tx_mode; int base_qindex; int y_dc_delta_q; int uv_dc_delta_q; int uv_ac_delta_q; int16_t y_dequant[MAX_SEGMENTS][2]; int16_t uv_dequant[MAX_SEGMENTS][2]; #if CONFIG_AOM_QM // Global quant matrix tables qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES_ALL]; qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES_ALL]; // Local quant matrix tables for each frame qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL]; qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL]; // Encoder qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL]; qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES_ALL]; int using_qmatrix; int min_qmlevel; int max_qmlevel; #endif #if CONFIG_NEW_QUANT dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; #endif /* We allocate a MODE_INFO struct for each macroblock, together with an extra row on top and column on the left to simplify prediction. */ int mi_alloc_size; MODE_INFO *mip; /* Base of allocated array */ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ // TODO(agrange): Move prev_mi into encoder structure. // prev_mip and prev_mi will only be allocated in encoder. MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ // Separate mi functions between encoder and decoder. int (*alloc_mi)(struct AV1Common *cm, int mi_size); void (*free_mi)(struct AV1Common *cm); void (*setup_mi)(struct AV1Common *cm); // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible // area will be NULL. MODE_INFO **mi_grid_base; MODE_INFO **mi_grid_visible; MODE_INFO **prev_mi_grid_base; MODE_INFO **prev_mi_grid_visible; // Whether to use previous frame's motion vectors for prediction. int use_prev_frame_mvs; // Persistent mb segment id map used in prediction. int seg_map_idx; int prev_seg_map_idx; uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; uint8_t *last_frame_seg_map; uint8_t *current_frame_seg_map; int seg_map_alloc_size; InterpFilter interp_filter; loop_filter_info_n lf_info; #if CONFIG_FRAME_SUPERRES // The denominator of the superres scale; the numerator is fixed. uint8_t superres_scale_denominator; int superres_upscaled_width; int superres_upscaled_height; #endif // CONFIG_FRAME_SUPERRES #if CONFIG_LOOP_RESTORATION RestorationInfo rst_info[MAX_MB_PLANE]; RestorationInternal rst_internal; #endif // CONFIG_LOOP_RESTORATION // Flag signaling how frame contexts should be updated at the end of // a frame decode REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */ struct loopfilter lf; struct segmentation seg; int all_lossless; int frame_parallel_decode; // frame-based threading. #if CONFIG_EXT_TX int reduced_tx_set_used; #endif // CONFIG_EXT_TX // Context probabilities for reference frame prediction #if CONFIG_EXT_REFS MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; #else MV_REFERENCE_FRAME comp_fixed_ref; MV_REFERENCE_FRAME comp_var_ref[COMP_REFS]; #endif // CONFIG_EXT_REFS REFERENCE_MODE reference_mode; FRAME_CONTEXT *fc; /* this frame entropy */ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS FRAME_CONTEXT *pre_fc; // Context referenced in this frame #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING unsigned int frame_context_idx; /* Context to use/update */ #endif FRAME_COUNTS counts; #if CONFIG_FRAME_MARKER unsigned int frame_offset; #endif unsigned int current_video_frame; BITSTREAM_PROFILE profile; // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. aom_bit_depth_t bit_depth; aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer int error_resilient_mode; int tile_cols, tile_rows; int last_tile_cols, last_tile_rows; #if CONFIG_MAX_TILE int min_log2_tile_cols; int max_log2_tile_cols; int max_log2_tile_rows; int min_log2_tile_rows; int min_log2_tiles; int max_tile_width_sb; int max_tile_height_sb; int uniform_tile_spacing_flag; int log2_tile_cols; // only valid for uniform tiles int log2_tile_rows; // only valid for uniform tiles int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows #if CONFIG_DEPENDENT_HORZTILES int tile_row_independent[MAX_TILE_ROWS]; // valid for 0 <= i < tile_rows #endif #else int log2_tile_cols, log2_tile_rows; // Used in non-large_scale_tile_coding. int tile_width, tile_height; // In MI units #endif // CONFIG_MAX_TILE #if CONFIG_EXT_TILE unsigned int large_scale_tile; unsigned int single_tile_decoding; #endif // CONFIG_EXT_TILE #if CONFIG_DEPENDENT_HORZTILES int dependent_horz_tiles; int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS]; int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS]; #endif #if CONFIG_LOOPFILTERING_ACROSS_TILES int loop_filter_across_tiles_enabled; #endif // CONFIG_LOOPFILTERING_ACROSS_TILES int byte_alignment; int skip_loop_filter; // Private data associated with the frame buffer callbacks. void *cb_priv; aom_get_frame_buffer_cb_fn_t get_fb_cb; aom_release_frame_buffer_cb_fn_t release_fb_cb; // Handles memory for the codec. InternalFrameBufferList int_frame_buffers; // External BufferPool passed from outside. BufferPool *buffer_pool; PARTITION_CONTEXT *above_seg_context; ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; #if CONFIG_VAR_TX TXFM_CONTEXT *above_txfm_context; TXFM_CONTEXT *top_txfm_context[MAX_MB_PLANE]; TXFM_CONTEXT left_txfm_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE]; #endif int above_context_alloc_cols; // scratch memory for intraonly/keyframe forward updates from default tables // - this is intentionally not placed in FRAME_CONTEXT since it's reset upon // each keyframe and not used afterwards aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1]; #if CONFIG_GLOBAL_MOTION WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; #endif BLOCK_SIZE sb_size; // Size of the superblock used for this frame int mib_size; // Size of the superblock in units of MI blocks int mib_size_log2; // Log 2 of above. #if CONFIG_CDEF int cdef_pri_damping; int cdef_sec_damping; int nb_cdef_strengths; int cdef_strengths[CDEF_MAX_STRENGTHS]; int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; int cdef_bits; #endif int delta_q_present_flag; // Resolution of delta quant int delta_q_res; #if CONFIG_EXT_DELTA_Q int delta_lf_present_flag; // Resolution of delta lf level int delta_lf_res; #if CONFIG_LOOPFILTER_LEVEL // This is a flag for number of deltas of loop filter level // 0: use 1 delta, for y_vertical, y_horizontal, u, and v // 1: use separate deltas for each filter level int delta_lf_multi; #endif // CONFIG_LOOPFILTER_LEVEL #endif int num_tg; #if CONFIG_REFERENCE_BUFFER SequenceHeader seq_params; int current_frame_id; int ref_frame_id[REF_FRAMES]; int valid_for_referencing[REF_FRAMES]; int refresh_mask; int invalid_delta_frame_id_minus1; #endif // CONFIG_REFERENCE_BUFFER #if CONFIG_ANS && ANS_MAX_SYMBOLS int ans_window_size_log2; #endif #if CONFIG_NCOBMC_ADAPT_WEIGHT NCOBMC_KERNELS ncobmc_kernels[ADAPT_OVERLAP_BLOCKS][ALL_NCOBMC_MODES]; uint8_t *ncobmcaw_buf[4]; #endif #if CONFIG_LV_MAP LV_MAP_CTX_TABLE coeff_ctx_table; #endif #if CONFIG_LPF_SB int final_lpf_encode; #endif #if CONFIG_ADAPT_SCAN int use_adapt_scan; #endif } AV1_COMMON; // TODO(hkuang): Don't need to lock the whole pool after implementing atomic // frame reference count. static void lock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_lock(&pool->pool_mutex); #else (void)pool; #endif } static void unlock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_unlock(&pool->pool_mutex); #else (void)pool; #endif } static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { if (index < 0 || index >= REF_FRAMES) return NULL; if (cm->ref_frame_map[index] < 0) return NULL; assert(cm->ref_frame_map[index] < FRAME_BUFFERS); return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; } static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( const AV1_COMMON *const cm) { return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; } static INLINE int get_free_fb(AV1_COMMON *cm) { RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; int i; lock_buffer_pool(cm->buffer_pool); for (i = 0; i < FRAME_BUFFERS; ++i) if (frame_bufs[i].ref_count == 0) break; if (i != FRAME_BUFFERS) { frame_bufs[i].ref_count = 1; } else { // Reset i to be INVALID_IDX to indicate no free buffer found. i = INVALID_IDX; } unlock_buffer_pool(cm->buffer_pool); return i; } static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { const int ref_index = *idx; if (ref_index >= 0 && bufs[ref_index].ref_count > 0) bufs[ref_index].ref_count--; *idx = new_idx; bufs[new_idx].ref_count++; } #if CONFIG_TEMPMV_SIGNALING // Returns 1 if this frame might use mvs from some previous frame. This // function doesn't consider whether prev_frame is actually suitable (see // frame_can_use_prev_frame_mvs for that) static INLINE int frame_might_use_prev_frame_mvs(const AV1_COMMON *cm) { return !cm->error_resilient_mode && !cm->intra_only; } // Returns 1 if this frame really can use MVs from some previous frame. static INLINE int frame_can_use_prev_frame_mvs(const AV1_COMMON *cm) { return (frame_might_use_prev_frame_mvs(cm) && cm->last_show_frame && cm->prev_frame && !cm->prev_frame->intra_only && cm->width == cm->prev_frame->width && cm->height == cm->prev_frame->height); } #endif static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { if (buf->mvs == NULL || buf->mi_rows < cm->mi_rows || buf->mi_cols < cm->mi_cols) { aom_free(buf->mvs); buf->mi_rows = cm->mi_rows; buf->mi_cols = cm->mi_cols; #if CONFIG_TMV CHECK_MEM_ERROR(cm, buf->mvs, (MV_REF *)aom_calloc( ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1), sizeof(*buf->mvs))); #else CHECK_MEM_ERROR( cm, buf->mvs, (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*buf->mvs))); #endif // CONFIG_TMV #if CONFIG_MFMV aom_free(buf->tpl_mvs); CHECK_MEM_ERROR( cm, buf->tpl_mvs, (TPL_MV_REF *)aom_calloc((cm->mi_rows + MAX_MIB_SIZE) * cm->mi_stride, sizeof(*buf->tpl_mvs))); #endif } } #if CONFIG_VAR_REFS #define LAST_IS_VALID(cm) ((cm)->frame_refs[LAST_FRAME - 1].is_valid) #define LAST2_IS_VALID(cm) ((cm)->frame_refs[LAST2_FRAME - 1].is_valid) #define LAST3_IS_VALID(cm) ((cm)->frame_refs[LAST3_FRAME - 1].is_valid) #define GOLDEN_IS_VALID(cm) ((cm)->frame_refs[GOLDEN_FRAME - 1].is_valid) #define BWDREF_IS_VALID(cm) ((cm)->frame_refs[BWDREF_FRAME - 1].is_valid) #define ALTREF2_IS_VALID(cm) ((cm)->frame_refs[ALTREF2_FRAME - 1].is_valid) #define ALTREF_IS_VALID(cm) ((cm)->frame_refs[ALTREF_FRAME - 1].is_valid) #define L_OR_L2(cm) (LAST_IS_VALID(cm) || LAST2_IS_VALID(cm)) #define L_AND_L2(cm) (LAST_IS_VALID(cm) && LAST2_IS_VALID(cm)) #define L_AND_L3(cm) (LAST_IS_VALID(cm) && LAST3_IS_VALID(cm)) #define L_AND_G(cm) (LAST_IS_VALID(cm) && GOLDEN_IS_VALID(cm)) #define L3_OR_G(cm) (LAST3_IS_VALID(cm) || GOLDEN_IS_VALID(cm)) #define L3_AND_G(cm) (LAST3_IS_VALID(cm) && GOLDEN_IS_VALID(cm)) #define BWD_OR_ALT2(cm) (BWDREF_IS_VALID(cm) || ALTREF2_IS_VALID(cm)) #define BWD_AND_ALT2(cm) (BWDREF_IS_VALID(cm) && ALTREF2_IS_VALID(cm)) #define BWD_OR_ALT(cm) (BWDREF_IS_VALID(cm) || ALTREF_IS_VALID(cm)) #define BWD_AND_ALT(cm) (BWDREF_IS_VALID(cm) && ALTREF_IS_VALID(cm)) #endif // CONFIG_VAR_REFS static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) { return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); } static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) { return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); } static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { return cm->frame_type == KEY_FRAME || cm->intra_only; } #if CONFIG_CFL #if CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG static INLINE void cfl_clear_sub8x8_val(CFL_CTX *cfl) { memset(cfl->sub8x8_val, 0, sizeof(cfl->sub8x8_val)); } #endif // CONFIG_CHROMA_SUB8X8 && CONFIG_DEBUG void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm); #endif // CONFIG_CFL static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, #if CONFIG_PVQ tran_low_t *pvq_ref_coeff, #endif #if CONFIG_CFL CFL_CTX *cfl, #endif tran_low_t *dqcoeff) { for (int i = 0; i < MAX_MB_PLANE; ++i) { xd->plane[i].dqcoeff = dqcoeff; #if CONFIG_PVQ xd->plane[i].pvq_ref_coeff = pvq_ref_coeff; #endif xd->above_context[i] = cm->above_context[i]; if (xd->plane[i].plane_type == PLANE_TYPE_Y) { memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); #if CONFIG_AOM_QM memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); #endif #if CONFIG_NEW_QUANT memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq, sizeof(cm->y_dequant_nuq)); #endif } else { memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); #if CONFIG_AOM_QM memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix, sizeof(cm->uv_iqmatrix)); #endif #if CONFIG_NEW_QUANT memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq, sizeof(cm->uv_dequant_nuq)); #endif } } xd->fc = cm->fc; xd->above_seg_context = cm->above_seg_context; #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context; #endif #if CONFIG_CFL cfl_init(cfl, cm); xd->cfl = cfl; #endif xd->mi_stride = cm->mi_stride; xd->error_info = &cm->error; } static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { int i; int row_offset = mi_row; int col_offset = mi_col; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; #if CONFIG_CHROMA_SUB8X8 // Offset the buffer pointer const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) row_offset = mi_row - 1; if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) col_offset = mi_col - 1; #endif int above_idx = col_offset << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); int left_idx = (row_offset & MAX_MIB_MASK) << (MI_SIZE_LOG2 - tx_size_high_log2[0]); pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; } } static INLINE int calc_mi_size(int len) { // len is in mi units. return len + MAX_MIB_SIZE; } static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; #if !CONFIG_CHROMA_2X2 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); #endif } } static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, int mi_row, int bh, int mi_col, int bw, #if CONFIG_DEPENDENT_HORZTILES int dependent_horz_tile_flag, #endif // CONFIG_DEPENDENT_HORZTILES int mi_rows, int mi_cols) { xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; #if CONFIG_DEPENDENT_HORZTILES if (dependent_horz_tile_flag) { xd->up_available = (mi_row > tile->mi_row_start) || !tile->tg_horz_boundary; } else { #endif // CONFIG_DEPENDENT_HORZTILES // Are edges available for intra prediction? xd->up_available = (mi_row > tile->mi_row_start); #if CONFIG_DEPENDENT_HORZTILES } #endif // CONFIG_DEPENDENT_HORZTILES xd->left_available = (mi_col > tile->mi_col_start); #if CONFIG_CHROMA_SUB8X8 xd->chroma_up_available = xd->up_available; xd->chroma_left_available = xd->left_available; if (xd->plane[1].subsampling_x && bw < mi_size_wide[BLOCK_8X8]) xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; if (xd->plane[1].subsampling_y && bh < mi_size_high[BLOCK_8X8]) xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; #endif if (xd->up_available) { xd->above_mi = xd->mi[-xd->mi_stride]; // above_mi may be NULL in encoder's first pass. xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; } else { xd->above_mi = NULL; xd->above_mbmi = NULL; } if (xd->left_available) { xd->left_mi = xd->mi[-1]; // left_mi may be NULL in encoder's first pass. xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; } else { xd->left_mi = NULL; xd->left_mbmi = NULL; } xd->n8_h = bh; xd->n8_w = bw; xd->is_sec_rect = 0; if (xd->n8_w < xd->n8_h) if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1; if (xd->n8_w > xd->n8_h) if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; } static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm, const MODE_INFO *mi, const MODE_INFO *above_mi, const MODE_INFO *left_mi, int block) { const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); return cm->kf_y_prob[above][left]; } static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, const MODE_INFO *mi, const MODE_INFO *above_mi, const MODE_INFO *left_mi, int block) { const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); #if CONFIG_KF_CTX int above_ctx = intra_mode_context[above]; int left_ctx = intra_mode_context[left]; return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; #else return tile_ctx->kf_y_cdf[above][left]; #endif } static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); #if CONFIG_EXT_PARTITION_TYPES const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bh); #else // num_4x4_blocks_wide_lookup[bsize] / 2 const int bs = mi_size_wide[bsize]; // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bs); memset(left_ctx, partition_context_lookup[subsize].left, bs); #endif // CONFIG_EXT_PARTITION_TYPES } #if CONFIG_CB4X4 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { #if CONFIG_CHROMA_2X2 return 1; #endif #if CONFIG_CHROMA_SUB8X8 const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); return ref_pos; #else int ref_pos = !(((mi_row & 0x01) && subsampling_y) || ((mi_col & 0x01) && subsampling_x)); if (bsize >= BLOCK_8X8) ref_pos = 1; return ref_pos; #endif } #if CONFIG_SUPERTX static INLINE int need_handle_chroma_sub8x8(BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { const int bw = mi_size_wide[bsize]; const int bh = mi_size_high[bsize]; if (bsize >= BLOCK_8X8 || ((!(bh & 0x01) || !subsampling_y) && (!(bw & 0x01) || !subsampling_x))) return 0; else return 1; } #endif static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, int subsampling_y) { BLOCK_SIZE bs = bsize; if (bs < BLOCK_8X8) { if (subsampling_x == 1 && subsampling_y == 1) bs = BLOCK_8X8; else if (subsampling_x == 1) bs = BLOCK_8X4; else if (subsampling_y == 1) bs = BLOCK_4X8; } return bs; } #endif static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, size_t element) { assert(cdf != NULL); #if !CONFIG_ANS return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; #else return cdf[element] - (element > 0 ? cdf[element - 1] : 0); #endif } static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, const aom_cdf_prob *const in) { out[0] = CDF_PROB_TOP; out[0] -= cdf_element_prob(in, PARTITION_HORZ); out[0] -= cdf_element_prob(in, PARTITION_SPLIT); #if CONFIG_EXT_PARTITION_TYPES out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); out[0] -= cdf_element_prob(in, PARTITION_VERT_A); #endif out[0] = AOM_ICDF(out[0]); out[1] = AOM_ICDF(CDF_PROB_TOP); } static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, const aom_cdf_prob *const in) { out[0] = CDF_PROB_TOP; out[0] -= cdf_element_prob(in, PARTITION_VERT); out[0] -= cdf_element_prob(in, PARTITION_SPLIT); #if CONFIG_EXT_PARTITION_TYPES out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); out[0] -= cdf_element_prob(in, PARTITION_VERT_A); out[0] -= cdf_element_prob(in, PARTITION_VERT_B); #endif out[0] = AOM_ICDF(out[0]); out[1] = AOM_ICDF(CDF_PROB_TOP); } #if CONFIG_EXT_PARTITION_TYPES static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize, PARTITION_TYPE partition) { if (bsize >= BLOCK_8X8) { #if !CONFIG_EXT_PARTITION_TYPES_AB const int hbs = mi_size_wide[bsize] / 2; BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); #endif switch (partition) { case PARTITION_SPLIT: if (bsize != BLOCK_8X8) break; case PARTITION_NONE: case PARTITION_HORZ: case PARTITION_VERT: case PARTITION_HORZ_4: case PARTITION_VERT_4: update_partition_context(xd, mi_row, mi_col, subsize, bsize); break; #if CONFIG_EXT_PARTITION_TYPES_AB case PARTITION_HORZ_A: update_partition_context(xd, mi_row, mi_col, get_subsize(bsize, PARTITION_HORZ_4), subsize); update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col, subsize, subsize); break; case PARTITION_HORZ_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col, get_subsize(bsize, PARTITION_HORZ_4), subsize); break; case PARTITION_VERT_A: update_partition_context(xd, mi_row, mi_col, get_subsize(bsize, PARTITION_VERT_4), subsize); update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2, subsize, subsize); break; case PARTITION_VERT_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2, get_subsize(bsize, PARTITION_VERT_4), subsize); break; #else case PARTITION_HORZ_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); break; case PARTITION_HORZ_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); break; case PARTITION_VERT_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); break; case PARTITION_VERT_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); break; #endif default: assert(0 && "Invalid partition type"); } } } #endif // CONFIG_EXT_PARTITION_TYPES static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, #if CONFIG_UNPOISON_PARTITION_CTX int has_rows, int has_cols, #endif BLOCK_SIZE bsize) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); // Minimum partition point is 8x8. Offset the bsl accordingly. const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8]; int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); assert(bsl >= 0); #if CONFIG_UNPOISON_PARTITION_CTX if (has_rows && has_cols) return (left * 2 + above) + bsl * PARTITION_PLOFFSET; else if (has_rows && !has_cols) return PARTITION_CONTEXTS_PRIMARY + bsl; else if (!has_rows && has_cols) return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl; else return INVALID_PARTITION_CTX; // Bogus context, forced SPLIT #else return (left * 2 + above) + bsl * PARTITION_PLOFFSET; #endif } static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane) { int max_blocks_wide = block_size_wide[bsize]; const struct macroblockd_plane *const pd = &xd->plane[plane]; if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); // Scale the width in the transform block unit. return max_blocks_wide >> tx_size_wide_log2[0]; } static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane) { int max_blocks_high = block_size_high[bsize]; const struct macroblockd_plane *const pd = &xd->plane[plane]; if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); // Scale the width in the transform block unit. return max_blocks_high >> tx_size_wide_log2[0]; } #if CONFIG_CFL static INLINE int max_intra_block_width(const MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, int plane, TX_SIZE tx_size) { const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) << tx_size_wide_log2[0]; return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); } static INLINE int max_intra_block_height(const MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, int plane, TX_SIZE tx_size) { const int max_blocks_high = max_block_high(xd, plane_bsize, plane) << tx_size_high_log2[0]; return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); } #endif // CONFIG_CFL static INLINE void av1_zero_above_context(AV1_COMMON *const cm, int mi_col_start, int mi_col_end) { const int width = mi_col_end - mi_col_start; const int aligned_width = ALIGN_POWER_OF_TWO(width, cm->mib_size_log2); const int offset_y = mi_col_start << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); const int width_y = aligned_width << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); const int offset_uv = offset_y >> cm->subsampling_x; const int width_uv = width_y >> cm->subsampling_x; av1_zero_array(cm->above_context[0] + offset_y, width_y); av1_zero_array(cm->above_context[1] + offset_uv, width_uv); av1_zero_array(cm->above_context[2] + offset_uv, width_uv); av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width); #if CONFIG_VAR_TX av1_zero_array(cm->above_txfm_context + (mi_col_start << TX_UNIT_WIDE_LOG2), aligned_width << TX_UNIT_WIDE_LOG2); #endif // CONFIG_VAR_TX } static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { av1_zero(xd->left_context); av1_zero(xd->left_seg_context); #if CONFIG_VAR_TX av1_zero(xd->left_txfm_context_buffer); #endif } // Disable array-bounds checks as the TX_SIZE enum contains values larger than // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround // infeasible. The assert is enough for static analysis and this or other tools // asan, valgrind would catch oob access at runtime. #if defined(__GNUC__) && __GNUC__ >= 4 #pragma GCC diagnostic ignored "-Warray-bounds" #endif static INLINE TX_SIZE get_min_tx_size(TX_SIZE tx_size) { assert(tx_size < TX_SIZES_ALL); return txsize_sqr_map[tx_size]; } #if defined(__GNUC__) && __GNUC__ >= 4 #pragma GCC diagnostic warning "-Warray-bounds" #endif #if CONFIG_VAR_TX static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { int i; for (i = 0; i < len; ++i) txfm_ctx[i] = txs; } static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip, const MACROBLOCKD *xd) { uint8_t bw = tx_size_wide[tx_size]; uint8_t bh = tx_size_high[tx_size]; if (skip) { bw = n8_w * MI_SIZE; bh = n8_h * MI_SIZE; } set_txfm_ctx(xd->above_txfm_context, bw, n8_w << TX_UNIT_WIDE_LOG2); set_txfm_ctx(xd->left_txfm_context, bh, n8_h << TX_UNIT_HIGH_LOG2); } static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, TXFM_CONTEXT *left_ctx, TX_SIZE tx_size, TX_SIZE txb_size) { BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; int bh = mi_size_high[bsize] << TX_UNIT_HIGH_LOG2; int bw = mi_size_wide[bsize] << TX_UNIT_WIDE_LOG2; uint8_t txw = tx_size_wide[tx_size]; uint8_t txh = tx_size_high[tx_size]; int i; for (i = 0; i < bh; ++i) left_ctx[i] = txh; for (i = 0; i < bw; ++i) above_ctx[i] = txw; } static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { switch (tx_dim) { #if CONFIG_EXT_PARTITION case 128: #endif // CONFIG_EXT_PARTITION case 64: #if CONFIG_TX64X64 return TX_64X64; #else return TX_32X32; #endif // CONFIG_TX64X64 break; case 32: return TX_32X32; break; case 16: return TX_16X16; break; case 8: return TX_8X8; break; default: return TX_4X4; } } static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, TXFM_CONTEXT *left_ctx, BLOCK_SIZE bsize, TX_SIZE tx_size) { const uint8_t txw = tx_size_wide[tx_size]; const uint8_t txh = tx_size_high[tx_size]; const int above = *above_ctx < txw; const int left = *left_ctx < txh; int category = TXFM_PARTITION_CONTEXTS - 1; // dummy return, not used by others. if (tx_size <= TX_4X4) return 0; TX_SIZE max_tx_size = get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); if (max_tx_size >= TX_8X8) { category = (tx_size != max_tx_size && max_tx_size > TX_8X8) + (TX_SIZES - 1 - max_tx_size) * 2; } if (category == TXFM_PARTITION_CONTEXTS - 1) return category; return category * 3 + above + left; } #endif // Compute the next partition in the direction of the sb_type stored in the mi // array, starting with bsize. static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID; const int offset = mi_row * cm->mi_stride + mi_col; MODE_INFO **mi = cm->mi_grid_visible + offset; const BLOCK_SIZE subsize = mi[0]->mbmi.sb_type; if (subsize == bsize) return PARTITION_NONE; const int bhigh = mi_size_high[bsize]; const int bwide = mi_size_wide[bsize]; const int sshigh = mi_size_high[subsize]; const int sswide = mi_size_wide[subsize]; #if CONFIG_EXT_PARTITION_TYPES if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows && mi_col + bhigh / 2 < cm->mi_cols) { // In this case, the block might be using an extended partition // type. const MB_MODE_INFO *const mbmi_right = &mi[bwide / 2]->mbmi; const MB_MODE_INFO *const mbmi_below = &mi[bhigh / 2 * cm->mi_stride]->mbmi; if (sswide == bwide) { #if CONFIG_EXT_PARTITION_TYPES_AB // Smaller height but same width. Is PARTITION_HORZ, PARTITION_HORZ_4, // PARTITION_HORZ_A or PARTITION_HORZ_B. if (sshigh * 2 == bhigh) return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ : PARTITION_HORZ_B; assert(sshigh * 4 == bhigh); return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ_4 : PARTITION_HORZ_A; #else // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or // PARTITION_HORZ_B. To distinguish the latter two, check if the lower // half was split. if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; assert(sshigh * 2 == bhigh); if (mbmi_below->sb_type == subsize) return PARTITION_HORZ; else return PARTITION_HORZ_B; #endif } else if (sshigh == bhigh) { #if CONFIG_EXT_PARTITION_TYPES_AB // Smaller width but same height. Is PARTITION_VERT, PARTITION_VERT_4, // PARTITION_VERT_A or PARTITION_VERT_B. if (sswide * 2 == bwide) return (mbmi_right->sb_type == subsize) ? PARTITION_VERT : PARTITION_VERT_B; assert(sswide * 4 == bwide); return (mbmi_right->sb_type == subsize) ? PARTITION_VERT_4 : PARTITION_VERT_A; #else // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or // PARTITION_VERT_B. To distinguish the latter two, check if the right // half was split. if (sswide * 4 == bwide) return PARTITION_VERT_4; assert(sswide * 2 == bhigh); if (mbmi_right->sb_type == subsize) return PARTITION_VERT; else return PARTITION_VERT_B; #endif } else { #if !CONFIG_EXT_PARTITION_TYPES_AB // Smaller width and smaller height. Might be PARTITION_SPLIT or could be // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both // dimensions, we immediately know this is a split (which will recurse to // get to subsize). Otherwise look down and to the right. With // PARTITION_VERT_A, the right block will have height bhigh; with // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise // it's PARTITION_SPLIT. if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A; if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A; #endif return PARTITION_SPLIT; } } #endif const int vert_split = sswide < bwide; const int horz_split = sshigh < bhigh; const int split_idx = (vert_split << 1) | horz_split; assert(split_idx != 0); static const PARTITION_TYPE base_partitions[4] = { PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT }; return base_partitions[split_idx]; } static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) { #if CONFIG_REFERENCE_BUFFER cm->seq_params.frame_id_numbers_present_flag = use; #else (void)cm; (void)use; #endif } static INLINE void set_sb_size(AV1_COMMON *const cm, BLOCK_SIZE sb_size) { cm->sb_size = sb_size; cm->mib_size = mi_size_wide[cm->sb_size]; #if CONFIG_CB4X4 cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size]; #else cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size]; #endif } static INLINE int all_lossless(const AV1_COMMON *cm, const MACROBLOCKD *xd) { int i; int all_lossless = 1; if (cm->seg.enabled) { for (i = 0; i < MAX_SEGMENTS; ++i) { if (!xd->lossless[i]) { all_lossless = 0; break; } } } else { all_lossless = xd->lossless[0]; } return all_lossless; } static INLINE int use_compressed_header(const AV1_COMMON *cm) { (void)cm; #if CONFIG_RESTRICT_COMPRESSED_HDR && CONFIG_NEW_MULTISYMBOL return 0; #elif CONFIG_RESTRICT_COMPRESSED_HDR return cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD; #else return 1; #endif // CONFIG_RESTRICT_COMPRESSED_HDR && CONFIG_NEW_MULTISYMBOL } #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_ONYXC_INT_H_