/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./aom_dsp_rtcd.h" #include "./av1_rtcd.h" #include "aom_dsp/inv_txfm.h" #include "aom_ports/mem.h" #include "av1/common/av1_inv_txfm1d_cfg.h" #include "av1/common/blockd.h" #include "av1/common/enums.h" #include "av1/common/idct.h" #if CONFIG_DAALA_DCT4 || CONFIG_DAALA_DCT8 || CONFIG_DAALA_DCT16 || \ CONFIG_DAALA_DCT32 || CONFIG_DAALA_DCT64 #include "av1/common/daala_tx.h" #endif int av1_get_tx_scale(const TX_SIZE tx_size) { const int pels = tx_size_2d[tx_size]; return (pels > 256) + (pels > 1024) + (pels > 4096); } // NOTE: The implementation of all inverses need to be aware of the fact // that input and output could be the same buffer. #if CONFIG_EXT_TX static void iidtx4_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 4; ++i) { output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } } static void iidtx8_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 8; ++i) { output[i] = input[i] * 2; } } static void iidtx16_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 16; ++i) { output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2); } } static void iidtx32_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 32; ++i) { output[i] = input[i] * 4; } } #if CONFIG_TX64X64 && !CONFIG_DAALA_DCT64 static void iidtx64_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 64; ++i) { output[i] = (tran_low_t)dct_const_round_shift(input[i] * 4 * Sqrt2); } } #endif // CONFIG_TX64X64 #endif // CONFIG_EXT_TX // For use in lieu of ADST static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) { int i; tran_low_t inputhalf[16]; // Multiply input by sqrt(2) for (i = 0; i < 16; ++i) { inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } for (i = 0; i < 16; ++i) { output[i] = input[16 + i] * 4; } aom_idct16_c(inputhalf, output + 16); // Note overall scaling factor is 4 times orthogonal } #if CONFIG_TX64X64 && !CONFIG_DAALA_DCT64 static void idct64_col_c(const tran_low_t *input, tran_low_t *output) { int32_t in[64], out[64]; int i; for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; av1_idct64_new(in, out, inv_cos_bit_col_dct_64, inv_stage_range_col_dct_64); for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; } static void idct64_row_c(const tran_low_t *input, tran_low_t *output) { int32_t in[64], out[64]; int i; for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; av1_idct64_new(in, out, inv_cos_bit_row_dct_64, inv_stage_range_row_dct_64); for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; } // For use in lieu of ADST static void ihalfright64_c(const tran_low_t *input, tran_low_t *output) { int i; tran_low_t inputhalf[32]; // Multiply input by sqrt(2) for (i = 0; i < 32; ++i) { inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } for (i = 0; i < 32; ++i) { output[i] = (tran_low_t)dct_const_round_shift(input[32 + i] * 4 * Sqrt2); } aom_idct32_c(inputhalf, output + 32); // Note overall scaling factor is 4 * sqrt(2) times orthogonal } #endif // CONFIG_TX64X64 // Inverse identity transform and add. #if CONFIG_EXT_TX static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride, int bsx, int bsy, TX_TYPE tx_type) { int r, c; const int pels = bsx * bsy; const int shift = 3 - ((pels > 256) + (pels > 1024)); if (tx_type == IDTX) { for (r = 0; r < bsy; ++r) { for (c = 0; c < bsx; ++c) dest[c] = clip_pixel_add(dest[c], input[c] >> shift); dest += stride; input += bsx; } } } #endif // CONFIG_EXT_TX #define FLIPUD_PTR(dest, stride, size) \ do { \ (dest) = (dest) + ((size)-1) * (stride); \ (stride) = -(stride); \ } while (0) #if CONFIG_EXT_TX static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src, int *sstride, TX_TYPE tx_type, int sizey, int sizex) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; default: assert(0); break; } } #endif // CONFIG_EXT_TX #if CONFIG_HIGHBITDEPTH #if CONFIG_EXT_TX && CONFIG_TX64X64 static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bsx, int bsy, TX_TYPE tx_type, int bd) { int r, c; const int pels = bsx * bsy; const int shift = 3 - ((pels > 256) + (pels > 1024)); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); if (tx_type == IDTX) { for (r = 0; r < bsy; ++r) { for (c = 0; c < bsx; ++c) dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd); dest += stride; input += bsx; } } } #endif // CONFIG_EXT_TX && CONFIG_TX64X64 #endif // CONFIG_HIGHBITDEPTH #if CONFIG_LGT || CONFIG_LGT_FROM_PRED void ilgt4(const tran_low_t *input, tran_low_t *output, const tran_high_t *lgtmtx) { if (!lgtmtx) assert(0); #if CONFIG_LGT_FROM_PRED // For DCT/ADST, use butterfly implementations if (lgtmtx[0] == DCT4) { aom_idct4_c(input, output); return; } else if (lgtmtx[0] == ADST4) { aom_iadst4_c(input, output); return; } #endif // CONFIG_LGT_FROM_PRED // evaluate s[j] = sum of all lgtmtx[j]*input[i] over i=1,...,4 tran_high_t s[4] = { 0 }; for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) s[j] += lgtmtx[i * 4 + j] * input[i]; for (int i = 0; i < 4; ++i) output[i] = WRAPLOW(dct_const_round_shift(s[i])); } void ilgt8(const tran_low_t *input, tran_low_t *output, const tran_high_t *lgtmtx) { if (!lgtmtx) assert(0); #if CONFIG_LGT_FROM_PRED // For DCT/ADST, use butterfly implementations if (lgtmtx[0] == DCT8) { aom_idct8_c(input, output); return; } else if (lgtmtx[0] == ADST8) { aom_iadst8_c(input, output); return; } #endif // CONFIG_LGT_FROM_PRED // evaluate s[j] = sum of all lgtmtx[j]*input[i] over i=1,...,8 tran_high_t s[8] = { 0 }; for (int i = 0; i < 8; ++i) for (int j = 0; j < 8; ++j) s[j] += lgtmtx[i * 8 + j] * input[i]; for (int i = 0; i < 8; ++i) output[i] = WRAPLOW(dct_const_round_shift(s[i])); } #endif // CONFIG_LGT || CONFIG_LGT_FROM_PRED #if CONFIG_LGT // get_lgt4 and get_lgt8 return 1 and pick a lgt matrix if LGT is chosen to // apply. Otherwise they return 0 int get_lgt4(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx) { if (is_col && (vtx_tab[txfm_param->tx_type] == ADST_1D || vtx_tab[txfm_param->tx_type] == FLIPADST_1D)) { lgtmtx[0] = txfm_param->is_inter ? &lgt4_170[0][0] : &lgt4_140[0][0]; return 1; } else if (!is_col && (htx_tab[txfm_param->tx_type] == ADST_1D || htx_tab[txfm_param->tx_type] == FLIPADST_1D)) { lgtmtx[0] = txfm_param->is_inter ? &lgt4_170[0][0] : &lgt4_140[0][0]; return 1; } lgtmtx[0] = NULL; return 0; } int get_lgt8(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx) { if (is_col && (vtx_tab[txfm_param->tx_type] == ADST_1D || vtx_tab[txfm_param->tx_type] == FLIPADST_1D)) { lgtmtx[0] = txfm_param->is_inter ? &lgt8_170[0][0] : &lgt8_150[0][0]; return 1; } else if (!is_col && (htx_tab[txfm_param->tx_type] == ADST_1D || htx_tab[txfm_param->tx_type] == FLIPADST_1D)) { lgtmtx[0] = txfm_param->is_inter ? &lgt8_170[0][0] : &lgt8_150[0][0]; return 1; } lgtmtx[0] = NULL; return 0; } #endif // CONFIG_LGT #if CONFIG_LGT_FROM_PRED void ilgt16up(const tran_low_t *input, tran_low_t *output, const tran_high_t *lgtmtx) { if (lgtmtx[0] == DCT16) { aom_idct16_c(input, output); return; } else if (lgtmtx[0] == ADST16) { aom_iadst16_c(input, output); return; } else if (lgtmtx[0] == DCT32) { aom_idct32_c(input, output); return; } else if (lgtmtx[0] == ADST32) { ihalfright32_c(input, output); return; } else { assert(0); } } void get_discontinuity_1d(uint8_t *arr, int n, int *idx_max_diff) { *idx_max_diff = -1; int temp = 0, max_diff = 0, min_diff = INT_MAX; for (int i = 1; i < n; ++i) { temp = abs(arr[i] - arr[i - 1]); if (temp > max_diff) { max_diff = temp; *idx_max_diff = i; } if (temp < min_diff) min_diff = temp; } } void get_discontinuity_2d(uint8_t *dst, int stride, int n, int is_col, int *idx_max_diff, int ntx) { *idx_max_diff = -1; int diff = 0, temp = 0, max_diff = 0, min_diff = INT_MAX; for (int i = 1; i < n; ++i) { temp = 0; for (int j = 0; j < ntx; ++j) { if (is_col) // vertical diff diff = dst[i * stride + j] - dst[(i - 1) * stride + j]; else // horizontal diff diff = dst[j * stride + i] - dst[j * stride + i - 1]; temp += diff * diff; } // temp/w is the i-th avg square diff if (temp > max_diff) { max_diff = temp; *idx_max_diff = i; } if (temp < min_diff) min_diff = temp; } } int idx_selfloop_wrt_mode(PREDICTION_MODE mode, int is_col) { // 0: no self-loop // 1: small self-loop // 2: medium self-loop // 3: large self-loop switch (mode) { case DC_PRED: case SMOOTH_PRED: // predition is good for both directions: large SLs for row and col return 3; case TM_PRED: return 0; #if CONFIG_SMOOTH_HV case SMOOTH_H_PRED: #endif case H_PRED: // prediction is good for H direction: large SL for row only return is_col ? 0 : 3; #if CONFIG_SMOOTH_HV case SMOOTH_V_PRED: #endif case V_PRED: // prediction is good for V direction: large SL for col only return is_col ? 3 : 0; #if LGT_SL_INTRA // directional mode: choose SL based on the direction case D45_PRED: return is_col ? 2 : 0; case D63_PRED: return is_col ? 3 : 0; case D117_PRED: return is_col ? 3 : 1; case D135_PRED: return 2; case D153_PRED: return is_col ? 1 : 3; case D207_PRED: return is_col ? 0 : 3; #else case D45_PRED: case D63_PRED: case D117_PRED: return is_col ? 3 : 0; case D135_PRED: case D153_PRED: case D207_PRED: return is_col ? 0 : 3; #endif // inter: no SL default: return 0; } } void get_lgt4_from_pred(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx, int ntx) { PREDICTION_MODE mode = txfm_param->mode; int stride = txfm_param->stride; uint8_t *dst = txfm_param->dst; int bp = -1; uint8_t arr[4]; // Each lgt4mtx_arr[k][i] corresponds to a line graph with a self-loop on // the first node, and possibly a weak edge within the line graph. i is // the index of the weak edge (between the i-th and (i+1)-th pixels, i=0 // means no weak edge). k corresponds to the first self-loop's weight const tran_high_t *lgt4mtx_arr[4][4] = { { &lgt4_000[0][0], &lgt4_000w1[0][0], &lgt4_000w2[0][0], &lgt4_000w3[0][0] }, { &lgt4_060[0][0], &lgt4_060_000w1[0][0], &lgt4_060_000w2[0][0], &lgt4_060_000w3[0][0] }, { &lgt4_100[0][0], &lgt4_100_000w1[0][0], &lgt4_100_000w2[0][0], &lgt4_100_000w3[0][0] }, { &lgt4_150[0][0], &lgt4_150_000w1[0][0], &lgt4_150_000w2[0][0], &lgt4_150_000w3[0][0] }, }; // initialize to DCT or some LGTs, and then change later if necessary int idx_sl = idx_selfloop_wrt_mode(mode, is_col); lgtmtx[0] = lgt4mtx_arr[idx_sl][0]; // find the break point and replace the line graph by the one with a // break point if (mode == DC_PRED || mode == SMOOTH_PRED) { // Do not use break point, since 1) is_left_available and is_top_available // in DC_PRED are not known by txfm_param for now, so accessing // both boundaries anyway may cause a mismatch 2) DC prediciton // typically yields very smooth residues so having the break point // does not usually improve the RD result. return; } else if (mode == TM_PRED) { // TM_PRED: use both 1D top boundary and 1D left boundary if (is_col) for (int i = 0; i < 4; ++i) arr[i] = dst[i * stride]; else for (int i = 0; i < 4; ++i) arr[i] = dst[i]; get_discontinuity_1d(&arr[0], 4, &bp); } else if (mode == V_PRED) { // V_PRED: use 1D top boundary only if (is_col) return; for (int i = 0; i < 4; ++i) arr[i] = dst[i]; get_discontinuity_1d(&arr[0], 4, &bp); } else if (mode == H_PRED) { // H_PRED: use 1D left boundary only if (!is_col) return; for (int i = 0; i < 4; ++i) arr[i] = dst[i * stride]; get_discontinuity_1d(&arr[0], 4, &bp); #if CONFIG_SMOOTH_HV } else if (mode == SMOOTH_V_PRED) { if (is_col) return; for (int i = 0; i < 4; ++i) arr[i] = dst[-stride + i]; get_discontinuity_1d(&arr[0], 4, &bp); } else if (mode == SMOOTH_H_PRED) { if (!is_col) return; for (int i = 0; i < 4; ++i) arr[i] = dst[i * stride - 1]; get_discontinuity_1d(&arr[0], 4, &bp); #endif } else if (mode == D45_PRED || mode == D63_PRED || mode == D117_PRED) { // directional modes closer to vertical (maybe include D135 later) if (!is_col) get_discontinuity_2d(dst, stride, 4, 0, &bp, ntx); } else if (mode == D135_PRED || mode == D153_PRED || mode == D207_PRED) { // directional modes closer to horizontal if (is_col) get_discontinuity_2d(dst, stride, 4, 1, &bp, ntx); } else if (mode > TM_PRED) { // inter get_discontinuity_2d(dst, stride, 4, is_col, &bp, ntx); } #if LGT_SL_INTRA if (bp != -1) lgtmtx[0] = lgt4mtx_arr[idx_sl][bp]; #else if (bp != -1) lgtmtx[0] = lgt4mtx_arr[0][bp]; #endif } void get_lgt8_from_pred(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx, int ntx) { PREDICTION_MODE mode = txfm_param->mode; int stride = txfm_param->stride; uint8_t *dst = txfm_param->dst; int bp = -1; uint8_t arr[8]; const tran_high_t *lgt8mtx_arr[4][8] = { { &lgt8_000[0][0], &lgt8_000w1[0][0], &lgt8_000w2[0][0], &lgt8_000w3[0][0], &lgt8_000w4[0][0], &lgt8_000w5[0][0], &lgt8_000w6[0][0], &lgt8_000w7[0][0] }, { &lgt8_060[0][0], &lgt8_060_000w1[0][0], &lgt8_060_000w2[0][0], &lgt8_060_000w3[0][0], &lgt8_060_000w4[0][0], &lgt8_060_000w5[0][0], &lgt8_060_000w6[0][0], &lgt8_060_000w7[0][0] }, { &lgt8_100[0][0], &lgt8_100_000w1[0][0], &lgt8_100_000w2[0][0], &lgt8_100_000w3[0][0], &lgt8_100_000w4[0][0], &lgt8_100_000w5[0][0], &lgt8_100_000w6[0][0], &lgt8_100_000w7[0][0] }, { &lgt8_150[0][0], &lgt8_150_000w1[0][0], &lgt8_150_000w2[0][0], &lgt8_150_000w3[0][0], &lgt8_150_000w4[0][0], &lgt8_150_000w5[0][0], &lgt8_150_000w6[0][0], &lgt8_150_000w7[0][0] }, }; int idx_sl = idx_selfloop_wrt_mode(mode, is_col); lgtmtx[0] = lgt8mtx_arr[idx_sl][0]; if (mode == DC_PRED || mode == SMOOTH_PRED) { return; } else if (mode == TM_PRED) { if (is_col) for (int i = 0; i < 8; ++i) arr[i] = dst[i * stride]; else for (int i = 0; i < 8; ++i) arr[i] = dst[i]; get_discontinuity_1d(&arr[0], 8, &bp); } else if (mode == V_PRED) { if (is_col) return; for (int i = 0; i < 8; ++i) arr[i] = dst[i]; get_discontinuity_1d(&arr[0], 8, &bp); } else if (mode == H_PRED) { if (!is_col) return; for (int i = 0; i < 8; ++i) arr[i] = dst[i * stride]; get_discontinuity_1d(&arr[0], 8, &bp); #if CONFIG_SMOOTH_HV } else if (mode == SMOOTH_V_PRED) { if (is_col) return; for (int i = 0; i < 8; ++i) arr[i] = dst[-stride + i]; get_discontinuity_1d(&arr[0], 8, &bp); } else if (mode == SMOOTH_H_PRED) { if (!is_col) return; for (int i = 0; i < 8; ++i) arr[i] = dst[i * stride - 1]; get_discontinuity_1d(&arr[0], 8, &bp); #endif } else if (mode == D45_PRED || mode == D63_PRED || mode == D117_PRED) { if (!is_col) get_discontinuity_2d(dst, stride, 8, 0, &bp, ntx); } else if (mode == D135_PRED || mode == D153_PRED || mode == D207_PRED) { if (is_col) get_discontinuity_2d(dst, stride, 8, 1, &bp, ntx); } else if (mode > TM_PRED) { get_discontinuity_2d(dst, stride, 8, is_col, &bp, ntx); } #if LGT_SL_INTRA if (bp != -1) lgtmtx[0] = lgt8mtx_arr[idx_sl][bp]; #else if (bp != -1) lgtmtx[0] = lgt8mtx_arr[0][bp]; #endif } // Since LGTs with length >8 are not implemented now, the following function // will just call DCT or ADST void get_lgt16up_from_pred(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx, int ntx) { int tx_length = is_col ? tx_size_high[txfm_param->tx_size] : tx_size_wide[txfm_param->tx_size]; assert(tx_length == 16 || tx_length == 32); PREDICTION_MODE mode = txfm_param->mode; (void)ntx; const tran_high_t *dctmtx = tx_length == 16 ? &lgt16_000[0][0] : &lgt32_000[0][0]; const tran_high_t *adstmtx = tx_length == 16 ? &lgt16_200[0][0] : &lgt32_200[0][0]; switch (mode) { case DC_PRED: case TM_PRED: case SMOOTH_PRED: // prediction from both top and left -> ADST lgtmtx[0] = adstmtx; break; case V_PRED: case D45_PRED: case D63_PRED: case D117_PRED: #if CONFIG_SMOOTH_HV case SMOOTH_V_PRED: #endif // prediction from the top more than from the left -> ADST lgtmtx[0] = is_col ? adstmtx : dctmtx; break; case H_PRED: case D135_PRED: case D153_PRED: case D207_PRED: #if CONFIG_SMOOTH_HV case SMOOTH_H_PRED: #endif // prediction from the left more than from the top -> DCT lgtmtx[0] = is_col ? dctmtx : adstmtx; break; default: lgtmtx[0] = dctmtx; break; } } typedef void (*IlgtFunc)(const tran_low_t *input, tran_low_t *output, const tran_high_t *lgtmtx); static IlgtFunc ilgt_func[4] = { ilgt4, ilgt8, ilgt16up, ilgt16up }; typedef void (*GetLgtFunc)(const TxfmParam *txfm_param, int is_col, const tran_high_t **lgtmtx, int ntx); static GetLgtFunc get_lgt_func[4] = { get_lgt4_from_pred, get_lgt8_from_pred, get_lgt16up_from_pred, get_lgt16up_from_pred }; // this inline function corresponds to the up scaling before the transpose // operation in the av1_iht* functions static INLINE tran_low_t inv_upscale_wrt_txsize(const tran_high_t val, const TX_SIZE tx_size) { switch (tx_size) { case TX_4X4: case TX_8X8: case TX_4X16: case TX_16X4: case TX_8X32: case TX_32X8: return (tran_low_t)val; case TX_4X8: case TX_8X4: case TX_8X16: case TX_16X8: return (tran_low_t)dct_const_round_shift(val * Sqrt2); default: assert(0); break; } return 0; } // This inline function corresponds to the bit shift before summing with the // destination in the av1_iht* functions static INLINE tran_low_t inv_downscale_wrt_txsize(const tran_low_t val, const TX_SIZE tx_size) { switch (tx_size) { case TX_4X4: return ROUND_POWER_OF_TWO(val, 4); case TX_4X8: case TX_8X4: case TX_8X8: case TX_4X16: case TX_16X4: return ROUND_POWER_OF_TWO(val, 5); case TX_8X16: case TX_16X8: case TX_8X32: case TX_32X8: return ROUND_POWER_OF_TWO(val, 6); default: assert(0); break; } return 0; } void ilgt2d_from_pred_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_SIZE tx_size = txfm_param->tx_size; const int w = tx_size_wide[tx_size]; const int h = tx_size_high[tx_size]; const int wlog2 = tx_size_wide_log2[tx_size]; const int hlog2 = tx_size_high_log2[tx_size]; assert(w <= 8 || h <= 8); int i, j; // largest 1D size allowed for LGT: 32 // largest 2D size allowed for LGT: 8x32=256 tran_low_t tmp[256], out[256], temp1d[32]; const tran_high_t *lgtmtx_col[1]; const tran_high_t *lgtmtx_row[1]; get_lgt_func[hlog2 - 2](txfm_param, 1, lgtmtx_col, w); get_lgt_func[wlog2 - 2](txfm_param, 0, lgtmtx_row, h); // for inverse transform, to be consistent with av1_iht functions, we always // apply row transforms first and column transforms second, but both // row-first and column-first versions are implemented here for future // tests (use different lgtmtx_col[i], and choose row or column tx first // depending on transforms). #if 1 // inverse column transforms for (i = 0; i < w; ++i) { // transpose for (j = 0; j < h; ++j) tmp[i * h + j] = input[j * w + i]; ilgt_func[hlog2 - 2](&tmp[i * h], temp1d, lgtmtx_col[0]); // upscale, and store in place for (j = 0; j < h; ++j) tmp[i * h + j] = inv_upscale_wrt_txsize(temp1d[j], tx_size); } // inverse row transforms for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) temp1d[j] = tmp[j * h + i]; ilgt_func[wlog2 - 2](temp1d, &out[i * w], lgtmtx_row[0]); } // downscale + sum with the destination for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int d = i * stride + j; int s = i * w + j; dest[d] = clip_pixel_add(dest[d], inv_downscale_wrt_txsize(out[s], tx_size)); } } #else // inverse row transforms for (i = 0; i < h; ++i) { ilgt_func[wlog2 - 2](input, temp1d, lgtmtx_row[0]); // upscale and transpose (tmp[j*h+i] <--> tmp[j][i]) for (j = 0; j < w; ++j) tmp[j * h + i] = inv_upscale_wrt_txsize(temp1d[j], tx_size); input += w; } // inverse column transforms for (i = 0; i < w; ++i) ilgt_func[hlog2 - 2](&tmp[i * h], &out[i * h], lgtmtx_col[0]); // here, out[] is the transpose of 2D block of transform coefficients // downscale + transform + sum with dest for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int d = i * stride + j; int s = j * h + i; dest[d] = clip_pixel_add(dest[d], inv_downscale_wrt_txsize(out[s], tx_size)); } } #endif } #endif // CONFIG_LGT_FROM_PRED void av1_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if !CONFIG_DAALA_DCT4 if (tx_type == DCT_DCT) { aom_idct4x4_16_add(input, dest, stride); return; } #endif static const transform_2d IHT_4[] = { #if CONFIG_DAALA_DCT4 { daala_idct4, daala_idct4 }, // DCT_DCT = 0 { daala_idst4, daala_idct4 }, // ADST_DCT = 1 { daala_idct4, daala_idst4 }, // DCT_ADST = 2 { daala_idst4, daala_idst4 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { daala_idst4, daala_idct4 }, // FLIPADST_DCT { daala_idct4, daala_idst4 }, // DCT_FLIPADST { daala_idst4, daala_idst4 }, // FLIPADST_FLIPADST { daala_idst4, daala_idst4 }, // ADST_FLIPADST { daala_idst4, daala_idst4 }, // FLIPADST_ADST { daala_idtx4, daala_idtx4 }, // IDTX { daala_idct4, daala_idtx4 }, // V_DCT { daala_idtx4, daala_idct4 }, // H_DCT { daala_idst4, daala_idtx4 }, // V_ADST { daala_idtx4, daala_idst4 }, // H_ADST { daala_idst4, daala_idtx4 }, // V_FLIPADST { daala_idtx4, daala_idst4 }, // H_FLIPADST #endif #else { aom_idct4_c, aom_idct4_c }, // DCT_DCT = 0 { aom_iadst4_c, aom_idct4_c }, // ADST_DCT = 1 { aom_idct4_c, aom_iadst4_c }, // DCT_ADST = 2 { aom_iadst4_c, aom_iadst4_c }, // ADST_ADST = 3 #if CONFIG_EXT_TX { aom_iadst4_c, aom_idct4_c }, // FLIPADST_DCT { aom_idct4_c, aom_iadst4_c }, // DCT_FLIPADST { aom_iadst4_c, aom_iadst4_c }, // FLIPADST_FLIPADST { aom_iadst4_c, aom_iadst4_c }, // ADST_FLIPADST { aom_iadst4_c, aom_iadst4_c }, // FLIPADST_ADST { iidtx4_c, iidtx4_c }, // IDTX { aom_idct4_c, iidtx4_c }, // V_DCT { iidtx4_c, aom_idct4_c }, // H_DCT { aom_iadst4_c, iidtx4_c }, // V_ADST { iidtx4_c, aom_iadst4_c }, // H_ADST { aom_iadst4_c, iidtx4_c }, // V_FLIPADST { iidtx4_c, aom_iadst4_c }, // H_FLIPADST #endif #endif }; int i, j; tran_low_t tmp[4][4]; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; const tran_high_t *lgtmtx_row[1]; int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors for (i = 0; i < 4; ++i) { #if CONFIG_DAALA_DCT4 tran_low_t temp_in[4]; for (j = 0; j < 4; j++) temp_in[j] = input[j] * 2; IHT_4[tx_type].rows(temp_in, out[i]); #else #if CONFIG_LGT if (use_lgt_row) ilgt4(input, out[i], lgtmtx_row[0]); else #endif IHT_4[tx_type].rows(input, out[i]); #endif input += 4; } // transpose for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { tmp[j][i] = out[i][j]; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt4(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_4[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; #if CONFIG_DAALA_DCT4 dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); #else dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); #endif } } } void av1_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_4x8[] = { { aom_idct8_c, aom_idct4_c }, // DCT_DCT { aom_iadst8_c, aom_idct4_c }, // ADST_DCT { aom_idct8_c, aom_iadst4_c }, // DCT_ADST { aom_iadst8_c, aom_iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst8_c, aom_idct4_c }, // FLIPADST_DCT { aom_idct8_c, aom_iadst4_c }, // DCT_FLIPADST { aom_iadst8_c, aom_iadst4_c }, // FLIPADST_FLIPADST { aom_iadst8_c, aom_iadst4_c }, // ADST_FLIPADST { aom_iadst8_c, aom_iadst4_c }, // FLIPADST_ADST { iidtx8_c, iidtx4_c }, // IDTX { aom_idct8_c, iidtx4_c }, // V_DCT { iidtx8_c, aom_idct4_c }, // H_DCT { aom_iadst8_c, iidtx4_c }, // V_ADST { iidtx8_c, aom_iadst4_c }, // H_ADST { aom_iadst8_c, iidtx4_c }, // V_FLIPADST { iidtx8_c, aom_iadst4_c }, // H_FLIPADST #endif }; const int n = 4; const int n2 = 8; int i, j; tran_low_t out[4][8], tmp[4][8], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = n2; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; const tran_high_t *lgtmtx_row[1]; int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { #if CONFIG_LGT if (use_lgt_row) ilgt4(input, outtmp, lgtmtx_row[0]); else #endif IHT_4x8[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt8(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_4x8[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); #endif // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_8x4[] = { { aom_idct4_c, aom_idct8_c }, // DCT_DCT { aom_iadst4_c, aom_idct8_c }, // ADST_DCT { aom_idct4_c, aom_iadst8_c }, // DCT_ADST { aom_iadst4_c, aom_iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst4_c, aom_idct8_c }, // FLIPADST_DCT { aom_idct4_c, aom_iadst8_c }, // DCT_FLIPADST { aom_iadst4_c, aom_iadst8_c }, // FLIPADST_FLIPADST { aom_iadst4_c, aom_iadst8_c }, // ADST_FLIPADST { aom_iadst4_c, aom_iadst8_c }, // FLIPADST_ADST { iidtx4_c, iidtx8_c }, // IDTX { aom_idct4_c, iidtx8_c }, // V_DCT { iidtx4_c, aom_idct8_c }, // H_DCT { aom_iadst4_c, iidtx8_c }, // V_ADST { iidtx4_c, aom_iadst8_c }, // H_ADST { aom_iadst4_c, iidtx8_c }, // V_FLIPADST { iidtx4_c, aom_iadst8_c }, // H_FLIPADST #endif }; const int n = 4; const int n2 = 8; int i, j; tran_low_t out[8][4], tmp[8][4], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; const tran_high_t *lgtmtx_row[1]; int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { #if CONFIG_LGT if (use_lgt_row) ilgt8(input, outtmp, lgtmtx_row[0]); else #endif IHT_8x4[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt4(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_8x4[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht4x16_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_4x16[] = { { aom_idct16_c, aom_idct4_c }, // DCT_DCT { aom_iadst16_c, aom_idct4_c }, // ADST_DCT { aom_idct16_c, aom_iadst4_c }, // DCT_ADST { aom_iadst16_c, aom_iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst16_c, aom_idct4_c }, // FLIPADST_DCT { aom_idct16_c, aom_iadst4_c }, // DCT_FLIPADST { aom_iadst16_c, aom_iadst4_c }, // FLIPADST_FLIPADST { aom_iadst16_c, aom_iadst4_c }, // ADST_FLIPADST { aom_iadst16_c, aom_iadst4_c }, // FLIPADST_ADST { iidtx16_c, iidtx4_c }, // IDTX { aom_idct16_c, iidtx4_c }, // V_DCT { iidtx16_c, aom_idct4_c }, // H_DCT { aom_iadst16_c, iidtx4_c }, // V_ADST { iidtx16_c, aom_iadst4_c }, // H_ADST { aom_iadst16_c, iidtx4_c }, // V_FLIPADST { iidtx16_c, aom_iadst4_c }, // H_FLIPADST #endif }; const int n = 4; const int n4 = 16; int i, j; tran_low_t out[4][16], tmp[4][16], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = n4; #if CONFIG_LGT const tran_high_t *lgtmtx_row[1]; int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors and transpose for (i = 0; i < n4; ++i) { #if CONFIG_LGT if (use_lgt_row) ilgt4(input, outtmp, lgtmtx_row[0]); else #endif IHT_4x16[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = outtmp[j]; input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_4x16[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n4, n); #endif // Sum with the destination for (i = 0; i < n4; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht16x4_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_16x4[] = { { aom_idct4_c, aom_idct16_c }, // DCT_DCT { aom_iadst4_c, aom_idct16_c }, // ADST_DCT { aom_idct4_c, aom_iadst16_c }, // DCT_ADST { aom_iadst4_c, aom_iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst4_c, aom_idct16_c }, // FLIPADST_DCT { aom_idct4_c, aom_iadst16_c }, // DCT_FLIPADST { aom_iadst4_c, aom_iadst16_c }, // FLIPADST_FLIPADST { aom_iadst4_c, aom_iadst16_c }, // ADST_FLIPADST { aom_iadst4_c, aom_iadst16_c }, // FLIPADST_ADST { iidtx4_c, iidtx16_c }, // IDTX { aom_idct4_c, iidtx16_c }, // V_DCT { iidtx4_c, aom_idct16_c }, // H_DCT { aom_iadst4_c, iidtx16_c }, // V_ADST { iidtx4_c, aom_iadst16_c }, // H_ADST { aom_iadst4_c, iidtx16_c }, // V_FLIPADST { iidtx4_c, aom_iadst16_c }, // H_FLIPADST #endif }; const int n = 4; const int n4 = 16; int i, j; tran_low_t out[16][4], tmp[16][4], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); #endif // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_16x4[tx_type].rows(input, outtmp); for (j = 0; j < n4; ++j) tmp[j][i] = outtmp[j]; input += n4; } // inverse transform column vectors for (i = 0; i < n4; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt4(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_16x4[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n4); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_8x16[] = { { aom_idct16_c, aom_idct8_c }, // DCT_DCT { aom_iadst16_c, aom_idct8_c }, // ADST_DCT { aom_idct16_c, aom_iadst8_c }, // DCT_ADST { aom_iadst16_c, aom_iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst16_c, aom_idct8_c }, // FLIPADST_DCT { aom_idct16_c, aom_iadst8_c }, // DCT_FLIPADST { aom_iadst16_c, aom_iadst8_c }, // FLIPADST_FLIPADST { aom_iadst16_c, aom_iadst8_c }, // ADST_FLIPADST { aom_iadst16_c, aom_iadst8_c }, // FLIPADST_ADST { iidtx16_c, iidtx8_c }, // IDTX { aom_idct16_c, iidtx8_c }, // V_DCT { iidtx16_c, aom_idct8_c }, // H_DCT { aom_iadst16_c, iidtx8_c }, // V_ADST { iidtx16_c, aom_iadst8_c }, // H_ADST { aom_iadst16_c, iidtx8_c }, // V_FLIPADST { iidtx16_c, aom_iadst8_c }, // H_FLIPADST #endif }; const int n = 8; const int n2 = 16; int i, j; tran_low_t out[8][16], tmp[8][16], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n2; #if CONFIG_LGT const tran_high_t *lgtmtx_row[1]; int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { #if CONFIG_LGT if (use_lgt_row) ilgt8(input, outtmp, lgtmtx_row[0]); else #endif IHT_8x16[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_8x16[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); #endif // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_16x8[] = { { aom_idct8_c, aom_idct16_c }, // DCT_DCT { aom_iadst8_c, aom_idct16_c }, // ADST_DCT { aom_idct8_c, aom_iadst16_c }, // DCT_ADST { aom_iadst8_c, aom_iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst8_c, aom_idct16_c }, // FLIPADST_DCT { aom_idct8_c, aom_iadst16_c }, // DCT_FLIPADST { aom_iadst8_c, aom_iadst16_c }, // FLIPADST_FLIPADST { aom_iadst8_c, aom_iadst16_c }, // ADST_FLIPADST { aom_iadst8_c, aom_iadst16_c }, // FLIPADST_ADST { iidtx8_c, iidtx16_c }, // IDTX { aom_idct8_c, iidtx16_c }, // V_DCT { iidtx8_c, aom_idct16_c }, // H_DCT { aom_iadst8_c, iidtx16_c }, // V_ADST { iidtx8_c, aom_iadst16_c }, // H_ADST { aom_iadst8_c, iidtx16_c }, // V_FLIPADST { iidtx8_c, aom_iadst16_c }, // H_FLIPADST #endif }; const int n = 8; const int n2 = 16; int i, j; tran_low_t out[16][8], tmp[16][8], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); #endif // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_16x8[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt8(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_16x8[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht8x32_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_8x32[] = { { aom_idct32_c, aom_idct8_c }, // DCT_DCT { ihalfright32_c, aom_idct8_c }, // ADST_DCT { aom_idct32_c, aom_iadst8_c }, // DCT_ADST { ihalfright32_c, aom_iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { ihalfright32_c, aom_idct8_c }, // FLIPADST_DCT { aom_idct32_c, aom_iadst8_c }, // DCT_FLIPADST { ihalfright32_c, aom_iadst8_c }, // FLIPADST_FLIPADST { ihalfright32_c, aom_iadst8_c }, // ADST_FLIPADST { ihalfright32_c, aom_iadst8_c }, // FLIPADST_ADST { iidtx32_c, iidtx8_c }, // IDTX { aom_idct32_c, iidtx8_c }, // V_DCT { iidtx32_c, aom_idct8_c }, // H_DCT { ihalfright32_c, iidtx8_c }, // V_ADST { iidtx32_c, aom_iadst8_c }, // H_ADST { ihalfright32_c, iidtx8_c }, // V_FLIPADST { iidtx32_c, aom_iadst8_c }, // H_FLIPADST #endif }; const int n = 8; const int n4 = 32; int i, j; tran_low_t out[8][32], tmp[8][32], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n4; #if CONFIG_LGT const tran_high_t *lgtmtx_row[1]; int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors and transpose for (i = 0; i < n4; ++i) { #if CONFIG_LGT if (use_lgt_row) ilgt8(input, outtmp, lgtmtx_row[0]); else #endif IHT_8x32[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = outtmp[j]; input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_8x32[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n4, n); #endif // Sum with the destination for (i = 0; i < n4; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht32x8_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_32x8[] = { { aom_idct8_c, aom_idct32_c }, // DCT_DCT { aom_iadst8_c, aom_idct32_c }, // ADST_DCT { aom_idct8_c, ihalfright32_c }, // DCT_ADST { aom_iadst8_c, ihalfright32_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst8_c, aom_idct32_c }, // FLIPADST_DCT { aom_idct8_c, ihalfright32_c }, // DCT_FLIPADST { aom_iadst8_c, ihalfright32_c }, // FLIPADST_FLIPADST { aom_iadst8_c, ihalfright32_c }, // ADST_FLIPADST { aom_iadst8_c, ihalfright32_c }, // FLIPADST_ADST { iidtx8_c, iidtx32_c }, // IDTX { aom_idct8_c, iidtx32_c }, // V_DCT { iidtx8_c, aom_idct32_c }, // H_DCT { aom_iadst8_c, iidtx32_c }, // V_ADST { iidtx8_c, ihalfright32_c }, // H_ADST { aom_iadst8_c, iidtx32_c }, // V_FLIPADST { iidtx8_c, ihalfright32_c }, // H_FLIPADST #endif }; const int n = 8; const int n4 = 32; int i, j; tran_low_t out[32][8], tmp[32][8], outtmp[32]; tran_low_t *outp = &out[0][0]; int outstride = n; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); #endif // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_32x8[tx_type].rows(input, outtmp); for (j = 0; j < n4; ++j) tmp[j][i] = outtmp[j]; input += n4; } // inverse transform column vectors for (i = 0; i < n4; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt8(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_32x8[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n4); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_16x32[] = { { aom_idct32_c, aom_idct16_c }, // DCT_DCT { ihalfright32_c, aom_idct16_c }, // ADST_DCT { aom_idct32_c, aom_iadst16_c }, // DCT_ADST { ihalfright32_c, aom_iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { ihalfright32_c, aom_idct16_c }, // FLIPADST_DCT { aom_idct32_c, aom_iadst16_c }, // DCT_FLIPADST { ihalfright32_c, aom_iadst16_c }, // FLIPADST_FLIPADST { ihalfright32_c, aom_iadst16_c }, // ADST_FLIPADST { ihalfright32_c, aom_iadst16_c }, // FLIPADST_ADST { iidtx32_c, iidtx16_c }, // IDTX { aom_idct32_c, iidtx16_c }, // V_DCT { iidtx32_c, aom_idct16_c }, // H_DCT { ihalfright32_c, iidtx16_c }, // V_ADST { iidtx32_c, aom_iadst16_c }, // H_ADST { ihalfright32_c, iidtx16_c }, // V_FLIPADST { iidtx32_c, aom_iadst16_c }, // H_FLIPADST #endif }; const int n = 16; const int n2 = 32; int i, j; tran_low_t out[16][32], tmp[16][32], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { IHT_16x32[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) IHT_16x32[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); #endif // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_32x16[] = { { aom_idct16_c, aom_idct32_c }, // DCT_DCT { aom_iadst16_c, aom_idct32_c }, // ADST_DCT { aom_idct16_c, ihalfright32_c }, // DCT_ADST { aom_iadst16_c, ihalfright32_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_iadst16_c, aom_idct32_c }, // FLIPADST_DCT { aom_idct16_c, ihalfright32_c }, // DCT_FLIPADST { aom_iadst16_c, ihalfright32_c }, // FLIPADST_FLIPADST { aom_iadst16_c, ihalfright32_c }, // ADST_FLIPADST { aom_iadst16_c, ihalfright32_c }, // FLIPADST_ADST { iidtx16_c, iidtx32_c }, // IDTX { aom_idct16_c, iidtx32_c }, // V_DCT { iidtx16_c, aom_idct32_c }, // H_DCT { aom_iadst16_c, iidtx32_c }, // V_ADST { iidtx16_c, ihalfright32_c }, // H_ADST { aom_iadst16_c, iidtx32_c }, // V_FLIPADST { iidtx16_c, ihalfright32_c }, // H_FLIPADST #endif }; const int n = 16; const int n2 = 32; int i, j; tran_low_t out[32][16], tmp[32][16], outtmp[32]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_32x16[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) IHT_32x16[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_8[] = { #if CONFIG_DAALA_DCT8 { daala_idct8, daala_idct8 }, // DCT_DCT = 0 { daala_idst8, daala_idct8 }, // ADST_DCT = 1 { daala_idct8, daala_idst8 }, // DCT_ADST = 2 { daala_idst8, daala_idst8 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { daala_idst8, daala_idct8 }, // FLIPADST_DCT { daala_idct8, daala_idst8 }, // DCT_FLIPADST { daala_idst8, daala_idst8 }, // FLIPADST_FLIPADST { daala_idst8, daala_idst8 }, // ADST_FLIPADST { daala_idst8, daala_idst8 }, // FLIPADST_ADST { daala_idtx8, daala_idtx8 }, // IDTX { daala_idct8, daala_idtx8 }, // V_DCT { daala_idtx8, daala_idct8 }, // H_DCT { daala_idst8, daala_idtx8 }, // V_ADST { daala_idtx8, daala_idst8 }, // H_ADST { daala_idst8, daala_idtx8 }, // V_FLIPADST { daala_idtx8, daala_idst8 }, // H_FLIPADST #endif #else { aom_idct8_c, aom_idct8_c }, // DCT_DCT = 0 { aom_iadst8_c, aom_idct8_c }, // ADST_DCT = 1 { aom_idct8_c, aom_iadst8_c }, // DCT_ADST = 2 { aom_iadst8_c, aom_iadst8_c }, // ADST_ADST = 3 #if CONFIG_EXT_TX { aom_iadst8_c, aom_idct8_c }, // FLIPADST_DCT { aom_idct8_c, aom_iadst8_c }, // DCT_FLIPADST { aom_iadst8_c, aom_iadst8_c }, // FLIPADST_FLIPADST { aom_iadst8_c, aom_iadst8_c }, // ADST_FLIPADST { aom_iadst8_c, aom_iadst8_c }, // FLIPADST_ADST { iidtx8_c, iidtx8_c }, // IDTX { aom_idct8_c, iidtx8_c }, // V_DCT { iidtx8_c, aom_idct8_c }, // H_DCT { aom_iadst8_c, iidtx8_c }, // V_ADST { iidtx8_c, aom_iadst8_c }, // H_ADST { aom_iadst8_c, iidtx8_c }, // V_FLIPADST { iidtx8_c, aom_iadst8_c }, // H_FLIPADST #endif #endif }; int i, j; tran_low_t tmp[8][8]; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; #if CONFIG_LGT const tran_high_t *lgtmtx_col[1]; const tran_high_t *lgtmtx_row[1]; int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); #endif // inverse transform row vectors for (i = 0; i < 8; ++i) { #if CONFIG_DAALA_DCT8 tran_low_t temp_in[8]; for (j = 0; j < 8; j++) temp_in[j] = input[j] * 2; IHT_8[tx_type].rows(temp_in, out[i]); #else #if CONFIG_LGT if (use_lgt_row) ilgt8(input, out[i], lgtmtx_row[0]); else #endif IHT_8[tx_type].rows(input, out[i]); #endif input += 8; } // transpose for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { tmp[j][i] = out[i][j]; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { #if CONFIG_LGT if (use_lgt_col) ilgt8(tmp[i], out[i], lgtmtx_col[0]); else #endif IHT_8[tx_type].cols(tmp[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; #if CONFIG_DAALA_DCT8 dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); #else dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); #endif } } } void av1_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_16[] = { #if CONFIG_DAALA_DCT16 { daala_idct16, daala_idct16 }, // DCT_DCT = 0 { daala_idst16, daala_idct16 }, // ADST_DCT = 1 { daala_idct16, daala_idst16 }, // DCT_ADST = 2 { daala_idst16, daala_idst16 }, // ADST_ADST = 3 #if CONFIG_EXT_TX { daala_idst16, daala_idct16 }, // FLIPADST_DCT { daala_idct16, daala_idst16 }, // DCT_FLIPADST { daala_idst16, daala_idst16 }, // FLIPADST_FLIPADST { daala_idst16, daala_idst16 }, // ADST_FLIPADST { daala_idst16, daala_idst16 }, // FLIPADST_ADST { daala_idtx16, daala_idtx16 }, // IDTX { daala_idct16, daala_idtx16 }, // V_DCT { daala_idtx16, daala_idct16 }, // H_DCT { daala_idst16, daala_idtx16 }, // V_ADST { daala_idtx16, daala_idst16 }, // H_ADST { daala_idst16, daala_idtx16 }, // V_FLIPADST { daala_idtx16, daala_idst16 }, // H_FLIPADST #endif #else { aom_idct16_c, aom_idct16_c }, // DCT_DCT = 0 { aom_iadst16_c, aom_idct16_c }, // ADST_DCT = 1 { aom_idct16_c, aom_iadst16_c }, // DCT_ADST = 2 { aom_iadst16_c, aom_iadst16_c }, // ADST_ADST = 3 #if CONFIG_EXT_TX { aom_iadst16_c, aom_idct16_c }, // FLIPADST_DCT { aom_idct16_c, aom_iadst16_c }, // DCT_FLIPADST { aom_iadst16_c, aom_iadst16_c }, // FLIPADST_FLIPADST { aom_iadst16_c, aom_iadst16_c }, // ADST_FLIPADST { aom_iadst16_c, aom_iadst16_c }, // FLIPADST_ADST { iidtx16_c, iidtx16_c }, // IDTX { aom_idct16_c, iidtx16_c }, // V_DCT { iidtx16_c, aom_idct16_c }, // H_DCT { aom_iadst16_c, iidtx16_c }, // V_ADST { iidtx16_c, aom_iadst16_c }, // H_ADST { aom_iadst16_c, iidtx16_c }, // V_FLIPADST { iidtx16_c, aom_iadst16_c }, // H_FLIPADST #endif #endif }; int i, j; tran_low_t tmp[16][16]; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { #if CONFIG_DAALA_DCT16 tran_low_t temp_in[16]; for (j = 0; j < 16; j++) temp_in[j] = input[j] * 2; IHT_16[tx_type].rows(temp_in, out[i]); #else IHT_16[tx_type].rows(input, out[i]); #endif input += 16; } // transpose for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) { tmp[j][i] = out[i][j]; } } // inverse transform column vectors for (i = 0; i < 16; ++i) IHT_16[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; #if CONFIG_DAALA_DCT16 dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); #else dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); #endif } } } #if CONFIG_EXT_TX || CONFIG_DAALA_DCT32 void av1_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_32[] = { #if CONFIG_DAALA_DCT32 { daala_idct32, daala_idct32 }, // DCT_DCT #if CONFIG_EXT_TX { daala_idst32, daala_idct32 }, // ADST_DCT { daala_idct32, daala_idst32 }, // DCT_ADST { daala_idst32, daala_idst32 }, // ADST_ADST { daala_idst32, daala_idct32 }, // FLIPADST_DCT { daala_idct32, daala_idst32 }, // DCT_FLIPADST { daala_idst32, daala_idst32 }, // FLIPADST_FLIPADST { daala_idst32, daala_idst32 }, // ADST_FLIPADST { daala_idst32, daala_idst32 }, // FLIPADST_ADST { daala_idtx32, daala_idtx32 }, // IDTX { daala_idct32, daala_idtx32 }, // V_DCT { daala_idtx32, daala_idct32 }, // H_DCT { daala_idst32, daala_idtx32 }, // V_ADST { daala_idtx32, daala_idst32 }, // H_ADST { daala_idst32, daala_idtx32 }, // V_FLIPADST { daala_idtx32, daala_idst32 }, // H_FLIPADST #endif #else { aom_idct32_c, aom_idct32_c }, // DCT_DCT #if CONFIG_EXT_TX { ihalfright32_c, aom_idct32_c }, // ADST_DCT { aom_idct32_c, ihalfright32_c }, // DCT_ADST { ihalfright32_c, ihalfright32_c }, // ADST_ADST { ihalfright32_c, aom_idct32_c }, // FLIPADST_DCT { aom_idct32_c, ihalfright32_c }, // DCT_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST { iidtx32_c, iidtx32_c }, // IDTX { aom_idct32_c, iidtx32_c }, // V_DCT { iidtx32_c, aom_idct32_c }, // H_DCT { ihalfright32_c, iidtx32_c }, // V_ADST { iidtx32_c, ihalfright32_c }, // H_ADST { ihalfright32_c, iidtx32_c }, // V_FLIPADST { iidtx32_c, ihalfright32_c }, // H_FLIPADST #endif #endif }; int i, j; tran_low_t tmp[32][32]; tran_low_t out[32][32]; tran_low_t *outp = &out[0][0]; int outstride = 32; // inverse transform row vectors for (i = 0; i < 32; ++i) { #if CONFIG_DAALA_DCT32 tran_low_t temp_in[32]; for (j = 0; j < 32; j++) temp_in[j] = input[j] * 2; IHT_32[tx_type].rows(temp_in, out[i]); #else IHT_32[tx_type].rows(input, out[i]); #endif input += 32; } // transpose for (i = 0; i < 32; i++) { for (j = 0; j < 32; j++) { #if CONFIG_DAALA_DCT32 tmp[j][i] = out[i][j] * 4; #else tmp[j][i] = out[i][j]; #endif } } // inverse transform column vectors for (i = 0; i < 32; ++i) IHT_32[tx_type].cols(tmp[i], out[i]); maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32, 32); // Sum with the destination for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { int d = i * stride + j; int s = j * outstride + i; #if CONFIG_DAALA_DCT32 dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); #else dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); #endif } } } #endif // CONFIG_EXT_TX || CONFIG_DAALA_DCT32 #if CONFIG_TX64X64 void av1_iht64x64_4096_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_64[] = { #if CONFIG_DAALA_DCT64 { daala_idct64, daala_idct64 }, // DCT_DCT { daala_idst64, daala_idct64 }, // ADST_DCT { daala_idct64, daala_idst64 }, // DCT_ADST { daala_idst64, daala_idst64 }, // ADST_ADST #if CONFIG_EXT_TX { daala_idst64, daala_idct64 }, // FLIPADST_DCT { daala_idct64, daala_idst64 }, // DCT_FLIPADST { daala_idst64, daala_idst64 }, // FLIPADST_FLIPADST { daala_idst64, daala_idst64 }, // ADST_FLIPADST { daala_idst64, daala_idst64 }, // FLIPADST_ADST { daala_idtx64, daala_idtx64 }, // IDTX { daala_idct64, daala_idtx64 }, // V_DCT { daala_idtx64, daala_idct64 }, // H_DCT { daala_idst64, daala_idtx64 }, // V_ADST { daala_idtx64, daala_idst64 }, // H_ADST { daala_idst64, daala_idtx64 }, // V_FLIPADST { daala_idtx64, daala_idst64 }, // H_FLIPADST #endif #else { idct64_col_c, idct64_row_c }, // DCT_DCT { ihalfright64_c, idct64_row_c }, // ADST_DCT { idct64_col_c, ihalfright64_c }, // DCT_ADST { ihalfright64_c, ihalfright64_c }, // ADST_ADST #if CONFIG_EXT_TX { ihalfright64_c, idct64_row_c }, // FLIPADST_DCT { idct64_col_c, ihalfright64_c }, // DCT_FLIPADST { ihalfright64_c, ihalfright64_c }, // FLIPADST_FLIPADST { ihalfright64_c, ihalfright64_c }, // ADST_FLIPADST { ihalfright64_c, ihalfright64_c }, // FLIPADST_ADST { iidtx64_c, iidtx64_c }, // IDTX { idct64_col_c, iidtx64_c }, // V_DCT { iidtx64_c, idct64_row_c }, // H_DCT { ihalfright64_c, iidtx64_c }, // V_ADST { iidtx64_c, ihalfright64_c }, // H_ADST { ihalfright64_c, iidtx64_c }, // V_FLIPADST { iidtx64_c, ihalfright64_c }, // H_FLIPADST #endif #endif }; int i, j; tran_low_t tmp[64][64]; tran_low_t out[64][64]; tran_low_t *outp = &out[0][0]; int outstride = 64; // inverse transform row vectors for (i = 0; i < 64; ++i) { #if CONFIG_DAALA_DCT64 tran_low_t temp_in[64]; for (j = 0; j < 64; j++) temp_in[j] = input[j] * 2; IHT_64[tx_type].rows(temp_in, out[i]); // Do not rescale intermediate for Daala #else IHT_64[tx_type].rows(input, out[i]); for (j = 0; j < 64; ++j) out[i][j] = ROUND_POWER_OF_TWO(out[i][j], 1); #endif input += 64; } // transpose for (i = 0; i < 64; i++) { for (j = 0; j < 64; j++) { tmp[j][i] = out[i][j]; } } // inverse transform column vectors for (i = 0; i < 64; ++i) IHT_64[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 64, 64); #endif // CONFIG_EXT_TX // Sum with the destination for (i = 0; i < 64; ++i) { for (j = 0; j < 64; ++j) { int d = i * stride + j; int s = j * outstride + i; #if CONFIG_DAALA_DCT64 dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 2)); #else dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); #endif } } } void av1_iht64x32_2048_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_64x32[] = { { aom_idct32_c, idct64_row_c }, // DCT_DCT { ihalfright32_c, idct64_row_c }, // ADST_DCT { aom_idct32_c, ihalfright64_c }, // DCT_ADST { ihalfright32_c, ihalfright64_c }, // ADST_ADST #if CONFIG_EXT_TX { ihalfright32_c, idct64_row_c }, // FLIPADST_DCT { aom_idct32_c, ihalfright64_c }, // DCT_FLIPADST { ihalfright32_c, ihalfright64_c }, // FLIPADST_FLIPADST { ihalfright32_c, ihalfright64_c }, // ADST_FLIPADST { ihalfright32_c, ihalfright64_c }, // FLIPADST_ADST { iidtx32_c, iidtx64_c }, // IDTX { aom_idct32_c, iidtx64_c }, // V_DCT { iidtx32_c, idct64_row_c }, // H_DCT { ihalfright32_c, iidtx64_c }, // V_ADST { iidtx32_c, ihalfright64_c }, // H_ADST { ihalfright32_c, iidtx64_c }, // V_FLIPADST { iidtx32_c, ihalfright64_c }, // H_FLIPADST #endif }; const int n = 32; const int n2 = 64; int i, j; tran_low_t out[64][32], tmp[64][32], outtmp[64]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_64x32[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * InvSqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) IHT_64x32[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); #endif // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht32x64_2048_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; #if CONFIG_MRC_TX assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX #if CONFIG_DCT_ONLY assert(tx_type == DCT_DCT); #endif static const transform_2d IHT_32x64[] = { { idct64_col_c, aom_idct32_c }, // DCT_DCT { ihalfright64_c, aom_idct32_c }, // ADST_DCT { idct64_col_c, ihalfright32_c }, // DCT_ADST { ihalfright64_c, ihalfright32_c }, // ADST_ADST #if CONFIG_EXT_TX { ihalfright64_c, aom_idct32_c }, // FLIPADST_DCT { idct64_col_c, ihalfright32_c }, // DCT_FLIPADST { ihalfright64_c, ihalfright32_c }, // FLIPADST_FLIPADST { ihalfright64_c, ihalfright32_c }, // ADST_FLIPADST { ihalfright64_c, ihalfright32_c }, // FLIPADST_ADST { iidtx64_c, iidtx32_c }, // IDTX { idct64_col_c, iidtx32_c }, // V_DCT { iidtx64_c, aom_idct32_c }, // H_DCT { ihalfright64_c, iidtx32_c }, // V_ADST { iidtx64_c, ihalfright32_c }, // H_ADST { ihalfright64_c, iidtx32_c }, // V_FLIPADST { iidtx64_c, ihalfright32_c }, // H_FLIPADST #endif }; const int n = 32; const int n2 = 64; int i, j; tran_low_t out[32][64], tmp[32][64], outtmp[32]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { IHT_32x64[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * InvSqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) IHT_32x64[tx_type].cols(tmp[i], out[i]); #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); #endif // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } #endif // CONFIG_TX64X64 // idct void av1_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int eob = txfm_param->eob; if (eob > 1) av1_iht4x4_16_add(input, dest, stride, txfm_param); else aom_idct4x4_1_add(input, dest, stride); } void av1_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int eob = txfm_param->eob; if (eob > 1) aom_iwht4x4_16_add(input, dest, stride); else aom_iwht4x4_1_add(input, dest, stride); } #if !CONFIG_DAALA_DCT8 static void idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c. // Combine that with code here. #if CONFIG_ADAPT_SCAN const int16_t half = txfm_param->eob_threshold[0]; #else const int16_t half = 12; #endif const int eob = txfm_param->eob; if (eob == 1) // DC only DCT coefficient aom_idct8x8_1_add(input, dest, stride); else if (eob <= half) aom_idct8x8_12_add(input, dest, stride); else aom_idct8x8_64_add(input, dest, stride); } #endif #if !CONFIG_DAALA_DCT16 static void idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. #if CONFIG_ADAPT_SCAN const int16_t half = txfm_param->eob_threshold[0]; const int16_t quarter = txfm_param->eob_threshold[1]; #else const int16_t half = 38; const int16_t quarter = 10; #endif const int eob = txfm_param->eob; if (eob == 1) /* DC only DCT coefficient. */ aom_idct16x16_1_add(input, dest, stride); else if (eob <= quarter) aom_idct16x16_10_add(input, dest, stride); else if (eob <= half) aom_idct16x16_38_add(input, dest, stride); else aom_idct16x16_256_add(input, dest, stride); } #endif #if CONFIG_MRC_TX static void imrc32x32_add_c(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_ADAPT_SCAN const int16_t half = txfm_param->eob_threshold[0]; const int16_t quarter = txfm_param->eob_threshold[1]; #else const int16_t half = 135; const int16_t quarter = 34; #endif const int eob = txfm_param->eob; int n_masked_vals = 0; uint8_t *mask; uint8_t mask_tmp[32 * 32]; if (eob == 1) { aom_idct32x32_1_add_c(input, dest, stride); } else { if ((txfm_param->is_inter && SIGNAL_MRC_MASK_INTER) || (!txfm_param->is_inter && SIGNAL_MRC_MASK_INTRA)) { mask = txfm_param->mask; } else { n_masked_vals = get_mrc_pred_mask(txfm_param->dst, txfm_param->stride, mask_tmp, 32, 32, 32, txfm_param->is_inter); if (!is_valid_mrc_mask(n_masked_vals, 32, 32)) assert(0 && "Invalid MRC mask"); mask = mask_tmp; } if (eob <= quarter) // non-zero coeff only in upper-left 8x8 aom_imrc32x32_34_add_c(input, dest, stride, mask); else if (eob <= half) // non-zero coeff only in upper-left 16x16 aom_imrc32x32_135_add_c(input, dest, stride, mask); else aom_imrc32x32_1024_add_c(input, dest, stride, mask); } } #endif // CONFIG_MRC_TX #if !CONFIG_DAALA_DCT32 static void idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_ADAPT_SCAN const int16_t half = txfm_param->eob_threshold[0]; const int16_t quarter = txfm_param->eob_threshold[1]; #else const int16_t half = 135; const int16_t quarter = 34; #endif const int eob = txfm_param->eob; if (eob == 1) aom_idct32x32_1_add(input, dest, stride); else if (eob <= quarter) // non-zero coeff only in upper-left 8x8 aom_idct32x32_34_add(input, dest, stride); else if (eob <= half) // non-zero coeff only in upper-left 16x16 aom_idct32x32_135_add(input, dest, stride); else aom_idct32x32_1024_add(input, dest, stride); } #endif #if CONFIG_TX64X64 && !CONFIG_DAALA_DCT64 static void idct64x64_add(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { (void)txfm_param; av1_iht64x64_4096_add(input, dest, stride, txfm_param); } #endif // CONFIG_TX64X64 && !CONFIG_DAALA_DCT64 #if CONFIG_CHROMA_2X2 static void inv_txfm_add_2x2(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { tran_high_t a1 = input[0] >> UNIT_QUANT_SHIFT; tran_high_t b1 = input[1] >> UNIT_QUANT_SHIFT; tran_high_t c1 = input[2] >> UNIT_QUANT_SHIFT; tran_high_t d1 = input[3] >> UNIT_QUANT_SHIFT; tran_high_t a2 = a1 + c1; tran_high_t b2 = b1 + d1; tran_high_t c2 = a1 - c1; tran_high_t d2 = b1 - d1; (void)txfm_param; a1 = (a2 + b2) >> 2; b1 = (a2 - b2) >> 2; c1 = (c2 + d2) >> 2; d1 = (c2 - d2) >> 2; dest[0] = clip_pixel_add(dest[0], WRAPLOW(a1)); dest[1] = clip_pixel_add(dest[1], WRAPLOW(b1)); dest[stride] = clip_pixel_add(dest[stride], WRAPLOW(c1)); dest[stride + 1] = clip_pixel_add(dest[stride + 1], WRAPLOW(d1)); } #endif static void inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; if (txfm_param->lossless) { assert(tx_type == DCT_DCT); av1_iwht4x4_add(input, dest, stride, txfm_param); return; } switch (tx_type) { #if !CONFIG_DAALA_DCT4 case DCT_DCT: av1_idct4x4_add(input, dest, stride, txfm_param); break; #else case DCT_DCT: #endif case ADST_DCT: case DCT_ADST: case ADST_ADST: #if CONFIG_LGT || CONFIG_DAALA_DCT4 // LGT only exists in C verson av1_iht4x4_16_add_c(input, dest, stride, txfm_param); break; #else av1_iht4x4_16_add(input, dest, stride, txfm_param); break; #endif #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: #if CONFIG_LGT || CONFIG_DAALA_DCT4 av1_iht4x4_16_add_c(input, dest, stride, txfm_param); break; #else av1_iht4x4_16_add(input, dest, stride, txfm_param); break; #endif case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_iht4x4_16_add_c(input, dest, stride, txfm_param); break; case IDTX: inv_idtx_add_c(input, dest, stride, 4, 4, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } static void inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht4x8_32_add_c(input, dest, stride, txfm_param); #else av1_iht4x8_32_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht8x4_32_add_c(input, dest, stride, txfm_param); #else av1_iht8x4_32_add(input, dest, stride, txfm_param); #endif } // These will be used by the masked-tx experiment in the future. #if CONFIG_RECT_TX_EXT && (CONFIG_EXT_TX || CONFIG_VAR_TX) static void inv_txfm_add_4x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht4x16_64_add_c(input, dest, stride, txfm_param); #else av1_iht4x16_64_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_16x4(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht16x4_64_add_c(input, dest, stride, txfm_param); #else av1_iht16x4_64_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_8x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht8x32_256_add_c(input, dest, stride, txfm_param); #else av1_iht8x32_256_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_32x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht32x8_256_add_c(input, dest, stride, txfm_param); #else av1_iht32x8_256_add(input, dest, stride, txfm_param); #endif } #endif static void inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht8x16_128_add_c(input, dest, stride, txfm_param); #else av1_iht8x16_128_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { #if CONFIG_LGT av1_iht16x8_128_add_c(input, dest, stride, txfm_param); #else av1_iht16x8_128_add(input, dest, stride, txfm_param); #endif } static void inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { av1_iht16x32_512_add(input, dest, stride, txfm_param); } static void inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { av1_iht32x16_512_add(input, dest, stride, txfm_param); } #if CONFIG_TX64X64 static void inv_txfm_add_32x64(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { av1_iht32x64_2048_add(input, dest, stride, txfm_param); } static void inv_txfm_add_64x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { av1_iht64x32_2048_add(input, dest, stride, txfm_param); } #endif // CONFIG_TX64X64 static void inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; switch (tx_type) { #if !CONFIG_DAALA_DCT8 case DCT_DCT: idct8x8_add(input, dest, stride, txfm_param); break; #else case DCT_DCT: #endif case ADST_DCT: case DCT_ADST: case ADST_ADST: #if CONFIG_LGT || CONFIG_DAALA_DCT8 av1_iht8x8_64_add_c(input, dest, stride, txfm_param); break; #else av1_iht8x8_64_add(input, dest, stride, txfm_param); break; #endif #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: #if CONFIG_LGT || CONFIG_DAALA_DCT8 av1_iht8x8_64_add_c(input, dest, stride, txfm_param); break; #else av1_iht8x8_64_add(input, dest, stride, txfm_param); break; #endif case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_iht8x8_64_add_c(input, dest, stride, txfm_param); break; case IDTX: inv_idtx_add_c(input, dest, stride, 8, 8, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } static void inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; switch (tx_type) { #if !CONFIG_DAALA_DCT16 case DCT_DCT: idct16x16_add(input, dest, stride, txfm_param); break; #else case DCT_DCT: #endif case ADST_DCT: case DCT_ADST: case ADST_ADST: #if CONFIG_DAALA_DCT16 av1_iht16x16_256_add_c(input, dest, stride, txfm_param); #else av1_iht16x16_256_add(input, dest, stride, txfm_param); #endif // CONFIG_DAALA_DCT16 break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: #if CONFIG_DAALA_DCT16 av1_iht16x16_256_add_c(input, dest, stride, txfm_param); #else av1_iht16x16_256_add(input, dest, stride, txfm_param); #endif // CONFIG_DAALA_DCT16 break; case IDTX: inv_idtx_add_c(input, dest, stride, 16, 16, tx_type); break; #endif // CONFIG_EXT_TX #if CONFIG_MRC_TX case MRC_DCT: assert(0 && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX default: assert(0); break; } } static void inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; switch (tx_type) { #if !CONFIG_DAALA_DCT32 case DCT_DCT: idct32x32_add(input, dest, stride, txfm_param); break; #else case DCT_DCT: av1_iht32x32_1024_add_c(input, dest, stride, txfm_param); break; #endif #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: av1_iht32x32_1024_add_c(input, dest, stride, txfm_param); break; case IDTX: inv_idtx_add_c(input, dest, stride, 32, 32, tx_type); break; #endif // CONFIG_EXT_TX #if CONFIG_MRC_TX case MRC_DCT: imrc32x32_add_c(input, dest, stride, txfm_param); break; #endif // CONFIG_MRC_TX default: assert(0); break; } } #if CONFIG_TX64X64 static void inv_txfm_add_64x64(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const TX_TYPE tx_type = txfm_param->tx_type; assert(tx_type == DCT_DCT); switch (tx_type) { #if !CONFIG_DAALA_DCT64 case DCT_DCT: idct64x64_add(input, dest, stride, txfm_param); break; #else case DCT_DCT: #endif #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: av1_iht64x64_4096_add_c(input, dest, stride, txfm_param); break; case IDTX: inv_idtx_add_c(input, dest, stride, 64, 64, tx_type); break; #endif // CONFIG_EXT_TX #if CONFIG_MRC_TX case MRC_DCT: assert(0 && "Invalid tx type for tx size"); #endif // CONFIG_MRC_TX default: assert(0); break; } } #endif // CONFIG_TX64X64 void av1_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) aom_highbd_iwht4x4_16_add(input, dest, stride, bd); else aom_highbd_iwht4x4_1_add(input, dest, stride, bd); } #if CONFIG_CHROMA_2X2 static void highbd_inv_txfm_add_2x2(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int eob = txfm_param->eob; int bd = txfm_param->bd; int lossless = txfm_param->lossless; const TX_TYPE tx_type = txfm_param->tx_type; tran_high_t a1 = input[0] >> UNIT_QUANT_SHIFT; tran_high_t b1 = input[1] >> UNIT_QUANT_SHIFT; tran_high_t c1 = input[2] >> UNIT_QUANT_SHIFT; tran_high_t d1 = input[3] >> UNIT_QUANT_SHIFT; tran_high_t a2 = a1 + c1; tran_high_t b2 = b1 + d1; tran_high_t c2 = a1 - c1; tran_high_t d2 = b1 - d1; uint16_t *dst = CONVERT_TO_SHORTPTR(dest); (void)tx_type; (void)lossless; (void)eob; a1 = (a2 + b2) >> 2; b1 = (a2 - b2) >> 2; c1 = (c2 + d2) >> 2; d1 = (c2 - d2) >> 2; dst[0] = highbd_clip_pixel_add(dst[0], a1, bd); dst[1] = highbd_clip_pixel_add(dst[1], b1, bd); dst[stride] = highbd_clip_pixel_add(dst[stride], c1, bd); dst[stride + 1] = highbd_clip_pixel_add(dst[stride + 1], d1, bd); } #endif static const int32_t *cast_to_int32(const tran_low_t *input) { assert(sizeof(int32_t) == sizeof(tran_low_t)); return (const int32_t *)input; } void av1_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int eob = txfm_param->eob; int bd = txfm_param->bd; int lossless = txfm_param->lossless; const int32_t *src = cast_to_int32(input); const TX_TYPE tx_type = txfm_param->tx_type; if (lossless) { assert(tx_type == DCT_DCT); av1_highbd_iwht4x4_add(input, dest, stride, eob, bd); return; } switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_4x4(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_4x4(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; // use the c version for anything including identity for now case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: case IDTX: av1_inv_txfm2d_add_4x4_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void av1_highbd_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_4x8_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } void av1_highbd_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_8x4_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } static void highbd_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_8x16_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } static void highbd_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_16x8_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } static void highbd_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_16x32_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } static void highbd_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_32x16_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } #if CONFIG_TX64X64 static void highbd_inv_txfm_add_32x64(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_32x64_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } static void highbd_inv_txfm_add_64x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { const int32_t *src = cast_to_int32(input); av1_inv_txfm2d_add_64x32_c(src, CONVERT_TO_SHORTPTR(dest), stride, txfm_param->tx_type, txfm_param->bd); } #endif // CONFIG_TX64X64 static void highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int bd = txfm_param->bd; const TX_TYPE tx_type = txfm_param->tx_type; const int32_t *src = cast_to_int32(input); switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_8x8(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_8x8(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; // use the c version for anything including identity for now case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: case IDTX: av1_inv_txfm2d_add_8x8_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); } } static void highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int bd = txfm_param->bd; const TX_TYPE tx_type = txfm_param->tx_type; const int32_t *src = cast_to_int32(input); switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_16x16(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_16x16(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; // use the c version for anything including identity for now case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: case IDTX: av1_inv_txfm2d_add_16x16_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); } } static void highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int bd = txfm_param->bd; const TX_TYPE tx_type = txfm_param->tx_type; const int32_t *src = cast_to_int32(input); switch (tx_type) { case DCT_DCT: av1_inv_txfm2d_add_32x32(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; // The optimised version only supports DCT_DCT, so force use of // the C version for all other transform types. case ADST_DCT: case DCT_ADST: case ADST_ADST: #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: #endif // CONFIG_EXT_TX av1_inv_txfm2d_add_32x32_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; default: assert(0); } } #if CONFIG_TX64X64 static void highbd_inv_txfm_add_64x64(const tran_low_t *input, uint8_t *dest, int stride, const TxfmParam *txfm_param) { int bd = txfm_param->bd; const TX_TYPE tx_type = txfm_param->tx_type; const int32_t *src = cast_to_int32(input); switch (tx_type) { case DCT_DCT: av1_inv_txfm2d_add_64x64(src, CONVERT_TO_SHORTPTR(dest), stride, DCT_DCT, bd); break; #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // TODO(sarahparker) // I've deleted the 64x64 implementations that existed in lieu // of adst, flipadst and identity for simplicity but will bring back // in a later change. This shouldn't impact performance since // DCT_DCT is the only extended type currently allowed for 64x64, // as dictated by get_ext_tx_set_type in blockd.h. av1_inv_txfm2d_add_64x64_c(src, CONVERT_TO_SHORTPTR(dest), stride, DCT_DCT, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 64, 64, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #endif // CONFIG_TX64X64 void av1_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, TxfmParam *txfm_param) { const TX_SIZE tx_size = txfm_param->tx_size; #if CONFIG_LGT_FROM_PRED if (txfm_param->use_lgt) { assert(is_lgt_allowed(txfm_param->mode, tx_size)); ilgt2d_from_pred_add(input, dest, stride, txfm_param); return; } #endif // CONFIG_LGT_FROM_PRED switch (tx_size) { #if CONFIG_TX64X64 case TX_64X64: inv_txfm_add_64x64(input, dest, stride, txfm_param); break; #endif // CONFIG_TX64X64 case TX_32X32: inv_txfm_add_32x32(input, dest, stride, txfm_param); break; case TX_16X16: inv_txfm_add_16x16(input, dest, stride, txfm_param); break; case TX_8X8: inv_txfm_add_8x8(input, dest, stride, txfm_param); break; case TX_4X8: inv_txfm_add_4x8(input, dest, stride, txfm_param); break; case TX_8X4: inv_txfm_add_8x4(input, dest, stride, txfm_param); break; case TX_8X16: inv_txfm_add_8x16(input, dest, stride, txfm_param); break; case TX_16X8: inv_txfm_add_16x8(input, dest, stride, txfm_param); break; case TX_16X32: inv_txfm_add_16x32(input, dest, stride, txfm_param); break; case TX_32X16: inv_txfm_add_32x16(input, dest, stride, txfm_param); break; #if CONFIG_TX64X64 case TX_64X32: inv_txfm_add_64x32(input, dest, stride, txfm_param); break; case TX_32X64: inv_txfm_add_32x64(input, dest, stride, txfm_param); break; #endif // CONFIG_TX64X64 case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. inv_txfm_add_4x4(input, dest, stride, txfm_param); break; #if CONFIG_CHROMA_2X2 case TX_2X2: inv_txfm_add_2x2(input, dest, stride, txfm_param); break; #endif #if CONFIG_RECT_TX_EXT && (CONFIG_EXT_TX || CONFIG_VAR_TX) case TX_32X8: inv_txfm_add_32x8(input, dest, stride, txfm_param); break; case TX_8X32: inv_txfm_add_8x32(input, dest, stride, txfm_param); break; case TX_16X4: inv_txfm_add_16x4(input, dest, stride, txfm_param); break; case TX_4X16: inv_txfm_add_4x16(input, dest, stride, txfm_param); break; #endif default: assert(0 && "Invalid transform size"); break; } } static void init_txfm_param(const MACROBLOCKD *xd, TX_SIZE tx_size, TX_TYPE tx_type, int eob, TxfmParam *txfm_param) { txfm_param->tx_type = tx_type; txfm_param->tx_size = tx_size; txfm_param->eob = eob; txfm_param->lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; txfm_param->bd = xd->bd; #if CONFIG_LGT txfm_param->is_inter = is_inter_block(&xd->mi[0]->mbmi); #endif #if CONFIG_LGT_FROM_PRED txfm_param->use_lgt = xd->mi[0]->mbmi.use_lgt; #endif #if CONFIG_ADAPT_SCAN txfm_param->eob_threshold = (const int16_t *)&xd->eob_threshold_md[tx_size][tx_type][0]; #endif } #if !CONFIG_TXMG typedef void (*InvTxfmFunc)(const tran_low_t *dqcoeff, uint8_t *dst, int stride, TxfmParam *txfm_param); static InvTxfmFunc inv_txfm_func[2] = { av1_inv_txfm_add, av1_highbd_inv_txfm_add }; #endif void av1_inverse_transform_block(const MACROBLOCKD *xd, const tran_low_t *dqcoeff, #if CONFIG_LGT_FROM_PRED PREDICTION_MODE mode, #endif #if CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK uint8_t *mrc_mask, #endif // CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK TX_TYPE tx_type, TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { if (!eob) return; #if CONFIG_PVQ const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; const int txb_width = block_size_wide[tx_bsize]; const int txb_height = block_size_high[tx_bsize]; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (int r = 0; r < txb_height; r++) for (int c = 0; c < txb_width; c++) CONVERT_TO_SHORTPTR(dst)[r * stride + c] = 0; } else { for (int r = 0; r < txb_height; r++) for (int c = 0; c < txb_width; c++) dst[r * stride + c] = 0; } #endif // CONFIG_PVQ TxfmParam txfm_param; init_txfm_param(xd, tx_size, tx_type, eob, &txfm_param); #if CONFIG_LGT || CONFIG_MRC_TX txfm_param.is_inter = is_inter_block(&xd->mi[0]->mbmi); #endif // CONFIG_LGT || CONFIG_MRC_TX #if CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK txfm_param.mask = mrc_mask; #endif // CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK #if CONFIG_LGT_FROM_PRED || CONFIG_MRC_TX txfm_param.dst = dst; txfm_param.stride = stride; #if CONFIG_LGT_FROM_PRED txfm_param.mode = mode; #endif // CONFIG_LGT_FROM_PRED #endif // CONFIG_LGT_FROM_PRED || CONFIG_MRC_TX const int is_hbd = get_bitdepth_data_path_index(xd); #if CONFIG_TXMG if (is_hbd) { av1_highbd_inv_txfm_add(dqcoeff, dst, stride, &txfm_param); } else { DECLARE_ALIGNED(16, uint16_t, tmp[MAX_TX_SQUARE]); int tmp_stride = MAX_TX_SIZE; int w = tx_size_wide[tx_size]; int h = tx_size_high[tx_size]; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { tmp[r * tmp_stride + c] = dst[r * stride + c]; } } av1_highbd_inv_txfm_add(dqcoeff, CONVERT_TO_BYTEPTR(tmp), tmp_stride, &txfm_param); for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { dst[r * stride + c] = (uint8_t)tmp[r * tmp_stride + c]; } } } #else // CONFIG_TXMG inv_txfm_func[is_hbd](dqcoeff, dst, stride, &txfm_param); #endif // CONFIG_TXMG } void av1_inverse_transform_block_facade(MACROBLOCKD *xd, int plane, int block, int blk_row, int blk_col, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); #if CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK uint8_t *mrc_mask = BLOCK_OFFSET(xd->mrc_mask, block); #endif // CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK const PLANE_TYPE plane_type = get_plane_type(plane); const TX_SIZE tx_size = av1_get_tx_size(plane, xd); const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size); const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; av1_inverse_transform_block(xd, dqcoeff, #if CONFIG_LGT_FROM_PRED xd->mi[0]->mbmi.mode, #endif // CONFIG_LGT_FROM_PRED #if CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK mrc_mask, #endif // CONFIG_MRC_TX && SIGNAL_ANY_MRC_MASK tx_type, tx_size, dst, dst_stride, eob); } void av1_highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, TxfmParam *txfm_param) { const TX_SIZE tx_size = txfm_param->tx_size; switch (tx_size) { #if CONFIG_TX64X64 case TX_64X64: highbd_inv_txfm_add_64x64(input, dest, stride, txfm_param); break; #endif // CONFIG_TX64X64 case TX_32X32: highbd_inv_txfm_add_32x32(input, dest, stride, txfm_param); break; case TX_16X16: highbd_inv_txfm_add_16x16(input, dest, stride, txfm_param); break; case TX_8X8: highbd_inv_txfm_add_8x8(input, dest, stride, txfm_param); break; case TX_4X8: av1_highbd_inv_txfm_add_4x8(input, dest, stride, txfm_param); break; case TX_8X4: av1_highbd_inv_txfm_add_8x4(input, dest, stride, txfm_param); break; case TX_8X16: highbd_inv_txfm_add_8x16(input, dest, stride, txfm_param); break; case TX_16X8: highbd_inv_txfm_add_16x8(input, dest, stride, txfm_param); break; case TX_16X32: highbd_inv_txfm_add_16x32(input, dest, stride, txfm_param); break; case TX_32X16: highbd_inv_txfm_add_32x16(input, dest, stride, txfm_param); break; #if CONFIG_TX64X64 case TX_64X32: highbd_inv_txfm_add_64x32(input, dest, stride, txfm_param); break; case TX_32X64: highbd_inv_txfm_add_32x64(input, dest, stride, txfm_param); break; #endif // CONFIG_TX64X64 case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_highbd_inv_txfm_add_4x4(input, dest, stride, txfm_param); break; #if CONFIG_CHROMA_2X2 case TX_2X2: highbd_inv_txfm_add_2x2(input, dest, stride, txfm_param); break; #endif default: assert(0 && "Invalid transform size"); break; } }