/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_CFL_H_ #define AV1_COMMON_CFL_H_ #include "av1/common/blockd.h" #include "av1/common/onyxc_int.h" // Can we use CfL for the current block? static INLINE CFL_ALLOWED_TYPE is_cfl_allowed(const MACROBLOCKD *xd) { const MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->sb_type; assert(bsize < BLOCK_SIZES_ALL); if (xd->lossless[mbmi->segment_id]) { // In lossless, CfL is available when the partition size is equal to the // transform size. const int ssx = xd->plane[AOM_PLANE_U].subsampling_x; const int ssy = xd->plane[AOM_PLANE_U].subsampling_y; const int plane_bsize = get_plane_block_size(bsize, ssx, ssy); return (CFL_ALLOWED_TYPE)(plane_bsize == BLOCK_4X4); } // Spec: CfL is available to luma partitions lesser than or equal to 32x32 return (CFL_ALLOWED_TYPE)(block_size_wide[bsize] <= 32 && block_size_high[bsize] <= 32); } // Do we need to save the luma pixels from the current block, // for a possible future CfL prediction? static INLINE CFL_ALLOWED_TYPE store_cfl_required(const AV1_COMMON *cm, const MACROBLOCKD *xd) { const MB_MODE_INFO *mbmi = xd->mi[0]; if (cm->seq_params.monochrome) return CFL_DISALLOWED; if (!xd->cfl.is_chroma_reference) { // For non-chroma-reference blocks, we should always store the luma pixels, // in case the corresponding chroma-reference block uses CfL. // Note that this can only happen for block sizes which are <8 on // their shortest side, as otherwise they would be chroma reference // blocks. return CFL_ALLOWED; } // If this block has chroma information, we know whether we're // actually going to perform a CfL prediction return (CFL_ALLOWED_TYPE)(!is_inter_block(mbmi) && mbmi->uv_mode == UV_CFL_PRED); } static INLINE int get_scaled_luma_q0(int alpha_q3, int16_t pred_buf_q3) { int scaled_luma_q6 = alpha_q3 * pred_buf_q3; return ROUND_POWER_OF_TWO_SIGNED(scaled_luma_q6, 6); } static INLINE CFL_PRED_TYPE get_cfl_pred_type(PLANE_TYPE plane) { assert(plane > 0); return (CFL_PRED_TYPE)(plane - 1); } void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, TX_SIZE tx_size, int plane); void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size); void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, BLOCK_SIZE bsize); void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input, CFL_PRED_TYPE pred_plane, int width); void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, TX_SIZE tx_size, CFL_PRED_TYPE pred_plane); // Null function used for invalid tx_sizes void cfl_subsample_lbd_null(const uint8_t *input, int input_stride, uint16_t *output_q3); // Null function used for invalid tx_sizes void cfl_subsample_hbd_null(const uint16_t *input, int input_stride, uint16_t *output_q3); // Allows the CFL_SUBSAMPLE function to switch types depending on the bitdepth. #define CFL_lbd_TYPE uint8_t *cfl_type #define CFL_hbd_TYPE uint16_t *cfl_type // Declare a size-specific wrapper for the size-generic function. The compiler // will inline the size generic function in here, the advantage is that the size // will be constant allowing for loop unrolling and other constant propagated // goodness. #define CFL_SUBSAMPLE(arch, sub, bd, width, height) \ void subsample_##bd##_##sub##_##width##x##height##_##arch( \ const CFL_##bd##_TYPE, int input_stride, uint16_t *output_q3) { \ cfl_luma_subsampling_##sub##_##bd##_##arch(cfl_type, input_stride, \ output_q3, width, height); \ } // Declare size-specific wrappers for all valid CfL sizes. #define CFL_SUBSAMPLE_FUNCTIONS(arch, sub, bd) \ CFL_SUBSAMPLE(arch, sub, bd, 4, 4) \ CFL_SUBSAMPLE(arch, sub, bd, 8, 8) \ CFL_SUBSAMPLE(arch, sub, bd, 16, 16) \ CFL_SUBSAMPLE(arch, sub, bd, 32, 32) \ CFL_SUBSAMPLE(arch, sub, bd, 4, 8) \ CFL_SUBSAMPLE(arch, sub, bd, 8, 4) \ CFL_SUBSAMPLE(arch, sub, bd, 8, 16) \ CFL_SUBSAMPLE(arch, sub, bd, 16, 8) \ CFL_SUBSAMPLE(arch, sub, bd, 16, 32) \ CFL_SUBSAMPLE(arch, sub, bd, 32, 16) \ CFL_SUBSAMPLE(arch, sub, bd, 4, 16) \ CFL_SUBSAMPLE(arch, sub, bd, 16, 4) \ CFL_SUBSAMPLE(arch, sub, bd, 8, 32) \ CFL_SUBSAMPLE(arch, sub, bd, 32, 8) \ cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_##arch( \ TX_SIZE tx_size) { \ CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \ return subfn_##sub[tx_size]; \ } // Declare an architecture-specific array of function pointers for size-specific // wrappers. #define CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \ static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \ subsample_##bd##_##sub##_4x4_##arch, /* 4x4 */ \ subsample_##bd##_##sub##_8x8_##arch, /* 8x8 */ \ subsample_##bd##_##sub##_16x16_##arch, /* 16x16 */ \ subsample_##bd##_##sub##_32x32_##arch, /* 32x32 */ \ cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \ subsample_##bd##_##sub##_4x8_##arch, /* 4x8 */ \ subsample_##bd##_##sub##_8x4_##arch, /* 8x4 */ \ subsample_##bd##_##sub##_8x16_##arch, /* 8x16 */ \ subsample_##bd##_##sub##_16x8_##arch, /* 16x8 */ \ subsample_##bd##_##sub##_16x32_##arch, /* 16x32 */ \ subsample_##bd##_##sub##_32x16_##arch, /* 32x16 */ \ cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \ cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \ subsample_##bd##_##sub##_4x16_##arch, /* 4x16 */ \ subsample_##bd##_##sub##_16x4_##arch, /* 16x4 */ \ subsample_##bd##_##sub##_8x32_##arch, /* 8x32 */ \ subsample_##bd##_##sub##_32x8_##arch, /* 32x8 */ \ cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \ cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \ }; // The RTCD script does not support passing in an array, so we wrap it in this // function. #define CFL_GET_SUBSAMPLE_FUNCTION(arch) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 420, lbd) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 422, lbd) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 444, lbd) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 420, hbd) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 422, hbd) \ CFL_SUBSAMPLE_FUNCTIONS(arch, 444, hbd) // Null function used for invalid tx_sizes static INLINE void cfl_subtract_average_null(const uint16_t *src, int16_t *dst) { (void)dst; (void)src; assert(0); } // Declare a size-specific wrapper for the size-generic function. The compiler // will inline the size generic function in here, the advantage is that the size // will be constant allowing for loop unrolling and other constant propagated // goodness. #define CFL_SUB_AVG_X(arch, width, height, round_offset, num_pel_log2) \ void subtract_average_##width##x##height##_##arch(const uint16_t *src, \ int16_t *dst) { \ subtract_average_##arch(src, dst, width, height, round_offset, \ num_pel_log2); \ } // Declare size-specific wrappers for all valid CfL sizes. #define CFL_SUB_AVG_FN(arch) \ CFL_SUB_AVG_X(arch, 4, 4, 8, 4) \ CFL_SUB_AVG_X(arch, 4, 8, 16, 5) \ CFL_SUB_AVG_X(arch, 4, 16, 32, 6) \ CFL_SUB_AVG_X(arch, 8, 4, 16, 5) \ CFL_SUB_AVG_X(arch, 8, 8, 32, 6) \ CFL_SUB_AVG_X(arch, 8, 16, 64, 7) \ CFL_SUB_AVG_X(arch, 8, 32, 128, 8) \ CFL_SUB_AVG_X(arch, 16, 4, 32, 6) \ CFL_SUB_AVG_X(arch, 16, 8, 64, 7) \ CFL_SUB_AVG_X(arch, 16, 16, 128, 8) \ CFL_SUB_AVG_X(arch, 16, 32, 256, 9) \ CFL_SUB_AVG_X(arch, 32, 8, 128, 8) \ CFL_SUB_AVG_X(arch, 32, 16, 256, 9) \ CFL_SUB_AVG_X(arch, 32, 32, 512, 10) \ cfl_subtract_average_fn get_subtract_average_fn_##arch(TX_SIZE tx_size) { \ static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { \ subtract_average_4x4_##arch, /* 4x4 */ \ subtract_average_8x8_##arch, /* 8x8 */ \ subtract_average_16x16_##arch, /* 16x16 */ \ subtract_average_32x32_##arch, /* 32x32 */ \ cfl_subtract_average_null, /* 64x64 (invalid CFL size) */ \ subtract_average_4x8_##arch, /* 4x8 */ \ subtract_average_8x4_##arch, /* 8x4 */ \ subtract_average_8x16_##arch, /* 8x16 */ \ subtract_average_16x8_##arch, /* 16x8 */ \ subtract_average_16x32_##arch, /* 16x32 */ \ subtract_average_32x16_##arch, /* 32x16 */ \ cfl_subtract_average_null, /* 32x64 (invalid CFL size) */ \ cfl_subtract_average_null, /* 64x32 (invalid CFL size) */ \ subtract_average_4x16_##arch, /* 4x16 (invalid CFL size) */ \ subtract_average_16x4_##arch, /* 16x4 (invalid CFL size) */ \ subtract_average_8x32_##arch, /* 8x32 (invalid CFL size) */ \ subtract_average_32x8_##arch, /* 32x8 (invalid CFL size) */ \ cfl_subtract_average_null, /* 16x64 (invalid CFL size) */ \ cfl_subtract_average_null, /* 64x16 (invalid CFL size) */ \ }; \ /* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \ /* index the function pointer array out of bounds. */ \ return sub_avg[tx_size % TX_SIZES_ALL]; \ } // For VSX SIMD optimization, the C versions of width == 4 subtract are // faster than the VSX. As such, the VSX code calls the C versions. void subtract_average_4x4_c(const uint16_t *src, int16_t *dst); void subtract_average_4x8_c(const uint16_t *src, int16_t *dst); void subtract_average_4x16_c(const uint16_t *src, int16_t *dst); #define CFL_PREDICT_lbd(arch, width, height) \ void predict_lbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \ uint8_t *dst, int dst_stride, \ int alpha_q3) { \ cfl_predict_lbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, width, \ height); \ } #define CFL_PREDICT_hbd(arch, width, height) \ void predict_hbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \ uint16_t *dst, int dst_stride, \ int alpha_q3, int bd) { \ cfl_predict_hbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, bd, width, \ height); \ } // This wrapper exists because clang format does not like calling macros with // lowercase letters. #define CFL_PREDICT_X(arch, width, height, bd) \ CFL_PREDICT_##bd(arch, width, height) // Null function used for invalid tx_sizes void cfl_predict_lbd_null(const int16_t *pred_buf_q3, uint8_t *dst, int dst_stride, int alpha_q3); // Null function used for invalid tx_sizes void cfl_predict_hbd_null(const int16_t *pred_buf_q3, uint16_t *dst, int dst_stride, int alpha_q3, int bd); #define CFL_PREDICT_FN(arch, bd) \ CFL_PREDICT_X(arch, 4, 4, bd) \ CFL_PREDICT_X(arch, 4, 8, bd) \ CFL_PREDICT_X(arch, 4, 16, bd) \ CFL_PREDICT_X(arch, 8, 4, bd) \ CFL_PREDICT_X(arch, 8, 8, bd) \ CFL_PREDICT_X(arch, 8, 16, bd) \ CFL_PREDICT_X(arch, 8, 32, bd) \ CFL_PREDICT_X(arch, 16, 4, bd) \ CFL_PREDICT_X(arch, 16, 8, bd) \ CFL_PREDICT_X(arch, 16, 16, bd) \ CFL_PREDICT_X(arch, 16, 32, bd) \ CFL_PREDICT_X(arch, 32, 8, bd) \ CFL_PREDICT_X(arch, 32, 16, bd) \ CFL_PREDICT_X(arch, 32, 32, bd) \ cfl_predict_##bd##_fn get_predict_##bd##_fn_##arch(TX_SIZE tx_size) { \ static const cfl_predict_##bd##_fn pred[TX_SIZES_ALL] = { \ predict_##bd##_4x4_##arch, /* 4x4 */ \ predict_##bd##_8x8_##arch, /* 8x8 */ \ predict_##bd##_16x16_##arch, /* 16x16 */ \ predict_##bd##_32x32_##arch, /* 32x32 */ \ cfl_predict_##bd##_null, /* 64x64 (invalid CFL size) */ \ predict_##bd##_4x8_##arch, /* 4x8 */ \ predict_##bd##_8x4_##arch, /* 8x4 */ \ predict_##bd##_8x16_##arch, /* 8x16 */ \ predict_##bd##_16x8_##arch, /* 16x8 */ \ predict_##bd##_16x32_##arch, /* 16x32 */ \ predict_##bd##_32x16_##arch, /* 32x16 */ \ cfl_predict_##bd##_null, /* 32x64 (invalid CFL size) */ \ cfl_predict_##bd##_null, /* 64x32 (invalid CFL size) */ \ predict_##bd##_4x16_##arch, /* 4x16 */ \ predict_##bd##_16x4_##arch, /* 16x4 */ \ predict_##bd##_8x32_##arch, /* 8x32 */ \ predict_##bd##_32x8_##arch, /* 32x8 */ \ cfl_predict_##bd##_null, /* 16x64 (invalid CFL size) */ \ cfl_predict_##bd##_null, /* 64x16 (invalid CFL size) */ \ }; \ /* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \ /* index the function pointer array out of bounds. */ \ return pred[tx_size % TX_SIZES_ALL]; \ } #endif // AV1_COMMON_CFL_H_