/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "./av1_rtcd.h" #include "aom_dsp/inv_txfm.h" #include "av1/common/enums.h" #include "av1/common/av1_txfm.h" #include "av1/common/av1_inv_txfm1d.h" #include "av1/common/av1_inv_txfm1d_cfg.h" static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { switch (txfm_type) { case TXFM_TYPE_DCT4: return av1_idct4_new; case TXFM_TYPE_DCT8: return av1_idct8_new; case TXFM_TYPE_DCT16: return av1_idct16_new; case TXFM_TYPE_DCT32: return av1_idct32_new; #if CONFIG_TX64X64 case TXFM_TYPE_DCT64: return av1_idct64_new; #endif // CONFIG_TX64X64 case TXFM_TYPE_ADST4: return av1_iadst4_new; case TXFM_TYPE_ADST8: return av1_iadst8_new; case TXFM_TYPE_ADST16: return av1_iadst16_new; case TXFM_TYPE_ADST32: return av1_iadst32_new; #if CONFIG_EXT_TX case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c; case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c; case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c; case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c; #if CONFIG_TX64X64 case TXFM_TYPE_IDENTITY64: return av1_iidentity64_c; #endif // CONFIG_TX64X64 #endif // CONFIG_EXT_TX default: assert(0); return NULL; } } static const TXFM_1D_CFG *inv_txfm_col_cfg_ls[TX_TYPES_1D][TX_SIZES] = { // DCT { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_col_cfg_dct_4, &inv_txfm_1d_col_cfg_dct_8, &inv_txfm_1d_col_cfg_dct_16, &inv_txfm_1d_col_cfg_dct_32, #if CONFIG_TX64X64 &inv_txfm_1d_col_cfg_dct_64 #endif // CONFIG_TX64X64 }, // ADST { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8, &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32, #if CONFIG_TX64X64 NULL #endif // CONFIG_TX64X64 }, #if CONFIG_EXT_TX // FLIPADST { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8, &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32, #if CONFIG_TX64X64 NULL #endif // CONFIG_TX64X64 }, // IDENTITY { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8, &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32, #if CONFIG_TX64X64 &inv_txfm_1d_cfg_identity_64 #endif // CONFIG_TX64X64 }, #endif // CONFIG_EXT_TX }; static const TXFM_1D_CFG *inv_txfm_row_cfg_ls[TX_TYPES_1D][TX_SIZES] = { // DCT { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_row_cfg_dct_4, &inv_txfm_1d_row_cfg_dct_8, &inv_txfm_1d_row_cfg_dct_16, &inv_txfm_1d_row_cfg_dct_32, #if CONFIG_TX64X64 &inv_txfm_1d_row_cfg_dct_64, #endif // CONFIG_TX64X64 }, // ADST { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8, &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32, #if CONFIG_TX64X64 NULL #endif // CONFIG_TX64X64 }, #if CONFIG_EXT_TX // FLIPADST { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8, &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32, #if CONFIG_TX64X64 NULL #endif // CONFIG_TX64X64 }, // IDENTITY { #if CONFIG_CHROMA_2X2 NULL, #endif &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8, &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32, #if CONFIG_TX64X64 &inv_txfm_1d_cfg_identity_64 #endif // CONFIG_TX64X64 }, #endif // CONFIG_EXT_TX }; TXFM_2D_FLIP_CFG av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size) { TXFM_2D_FLIP_CFG cfg; set_flip_cfg(tx_type, &cfg); const TX_TYPE_1D tx_type_col = vtx_tab[tx_type]; const TX_TYPE_1D tx_type_row = htx_tab[tx_type]; const TX_SIZE tx_size_col = txsize_vert_map[tx_size]; const TX_SIZE tx_size_row = txsize_horz_map[tx_size]; cfg.col_cfg = inv_txfm_col_cfg_ls[tx_type_col][tx_size_col]; cfg.row_cfg = inv_txfm_row_cfg_ls[tx_type_row][tx_size_row]; return cfg; } #if CONFIG_TX64X64 TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x64_cfg(TX_TYPE tx_type) { TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; switch (tx_type) { case DCT_DCT: cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_64; cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_64; set_flip_cfg(tx_type, &cfg); break; default: assert(0); } return cfg; } TXFM_2D_FLIP_CFG av1_get_inv_txfm_32x64_cfg(int tx_type) { TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; switch (tx_type) { case DCT_DCT: cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_64; cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_32; set_flip_cfg(tx_type, &cfg); break; default: assert(0); } return cfg; } TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x32_cfg(int tx_type) { TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; switch (tx_type) { case DCT_DCT: cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_32; cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_64; set_flip_cfg(tx_type, &cfg); break; default: assert(0); } return cfg; } #endif // CONFIG_TX64X64 void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, const TXFM_2D_FLIP_CFG *cfg, int8_t fwd_shift, int bd) { // Note when assigning txfm_size_col, we use the txfm_size from the // row configuration and vice versa. This is intentionally done to // accurately perform rectangular transforms. When the transform is // rectangular, the number of columns will be the same as the // txfm_size stored in the row cfg struct. It will make no difference // for square transforms. const int txfm_size_col = cfg->row_cfg->txfm_size; const int txfm_size_row = cfg->col_cfg->txfm_size; // Take the shift from the larger dimension in the rectangular case. const int8_t *shift = (txfm_size_col > txfm_size_row) ? cfg->row_cfg->shift : cfg->col_cfg->shift; // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning for (int i = 0; i < cfg->row_cfg->stage_num && i < MAX_TXFM_STAGE_NUM; ++i) { stage_range_row[i] = cfg->row_cfg->stage_range[i] + fwd_shift + bd + 1; } // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning for (int i = 0; i < cfg->col_cfg->stage_num && i < MAX_TXFM_STAGE_NUM; ++i) { stage_range_col[i] = cfg->col_cfg->stage_range[i] + fwd_shift + shift[0] + bd + 1; } } static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output, int stride, TXFM_2D_FLIP_CFG *cfg, int32_t *txfm_buf, int8_t fwd_shift, int bd) { // Note when assigning txfm_size_col, we use the txfm_size from the // row configuration and vice versa. This is intentionally done to // accurately perform rectangular transforms. When the transform is // rectangular, the number of columns will be the same as the // txfm_size stored in the row cfg struct. It will make no difference // for square transforms. const int txfm_size_col = cfg->row_cfg->txfm_size; const int txfm_size_row = cfg->col_cfg->txfm_size; // Take the shift from the larger dimension in the rectangular case. const int8_t *shift = (txfm_size_col > txfm_size_row) ? cfg->row_cfg->shift : cfg->col_cfg->shift; int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; assert(cfg->row_cfg->stage_num <= MAX_TXFM_STAGE_NUM); assert(cfg->col_cfg->stage_num <= MAX_TXFM_STAGE_NUM); av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, fwd_shift, bd); const int8_t *cos_bit_col = cfg->col_cfg->cos_bit; const int8_t *cos_bit_row = cfg->row_cfg->cos_bit; const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->col_cfg->txfm_type); const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->row_cfg->txfm_type); // txfm_buf's length is txfm_size_row * txfm_size_col + 2 * txfm_size_row // it is used for intermediate data buffering int32_t *temp_in = txfm_buf; int32_t *temp_out = temp_in + txfm_size_row; int32_t *buf = temp_out + txfm_size_row; int32_t *buf_ptr = buf; int c, r; // Rows for (r = 0; r < txfm_size_row; ++r) { txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row); round_shift_array(buf_ptr, txfm_size_col, -shift[0]); // Multiply everything by Sqrt2 if the transform is rectangular if (txfm_size_row != txfm_size_col) { for (c = 0; c < txfm_size_col; ++c) buf_ptr[c] = (int32_t)dct_const_round_shift(buf_ptr[c] * Sqrt2); } input += txfm_size_col; buf_ptr += txfm_size_col; } // Columns for (c = 0; c < txfm_size_col; ++c) { if (cfg->lr_flip == 0) { for (r = 0; r < txfm_size_row; ++r) temp_in[r] = buf[r * txfm_size_col + c]; } else { // flip left right for (r = 0; r < txfm_size_row; ++r) temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)]; } txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); round_shift_array(temp_out, txfm_size_row, -shift[1]); if (cfg->ud_flip == 0) { for (r = 0; r < txfm_size_row; ++r) { output[r * stride + c] = highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd); } } else { // flip upside down for (r = 0; r < txfm_size_row; ++r) { output[r * stride + c] = highbd_clip_pixel_add( output[r * stride + c], temp_out[txfm_size_row - r - 1], bd); } } } } static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output, int stride, int32_t *txfm_buf, TX_TYPE tx_type, TX_SIZE tx_size, int bd) { TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, tx_size); TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, fwd_shift_sum[tx_size_sqr], bd); } void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[4 * 8 + 8 + 8]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd); } void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { #if CONFIG_TXMG int txfm_buf[8 * 4 + 8 + 8]; int32_t rinput[8 * 4]; uint16_t routput[8 * 4]; TX_SIZE tx_size = TX_8X4; TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); int w = tx_size_wide[tx_size]; int h = tx_size_high[tx_size]; int rw = h; int rh = w; transpose_int32(rinput, rw, input, w, w, h); transpose_uint16(routput, rw, output, stride, w, h); inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); transpose_uint16(output, stride, routput, rw, rw, rh); #else int txfm_buf[8 * 4 + 4 + 4]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd); #endif } void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[8 * 16 + 16 + 16]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd); } void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { #if CONFIG_TXMG int txfm_buf[16 * 8 + 16 + 16]; int32_t rinput[16 * 8]; uint16_t routput[16 * 8]; TX_SIZE tx_size = TX_16X8; TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); int w = tx_size_wide[tx_size]; int h = tx_size_high[tx_size]; int rw = h; int rh = w; transpose_int32(rinput, rw, input, w, w, h); transpose_uint16(routput, rw, output, stride, w, h); inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); transpose_uint16(output, stride, routput, rw, rw, rh); #else int txfm_buf[16 * 8 + 8 + 8]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd); #endif } void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[16 * 32 + 32 + 32]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd); } void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { #if CONFIG_TXMG int txfm_buf[32 * 16 + 32 + 32]; int32_t rinput[32 * 16]; uint16_t routput[32 * 16]; TX_SIZE tx_size = TX_32X16; TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); int w = tx_size_wide[tx_size]; int h = tx_size_high[tx_size]; int rw = h; int rh = w; transpose_int32(rinput, rw, input, w, w, h); transpose_uint16(routput, rw, output, stride, w, h); inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); transpose_uint16(output, stride, routput, rw, rw, rh); #else int txfm_buf[32 * 16 + 16 + 16]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd); #endif } void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[4 * 4 + 4 + 4]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd); } void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[8 * 8 + 8 + 8]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd); } void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[16 * 16 + 16 + 16]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd); } void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[32 * 32 + 32 + 32]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd); } #if CONFIG_TX64X64 void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[64 * 64 + 64 + 64]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_64X64, bd); } void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { #if CONFIG_TXMG int txfm_buf[64 * 32 + 64 + 64]; int32_t rinput[64 * 32]; uint16_t routput[64 * 32]; TX_SIZE tx_size = TX_64X32; TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); int w = tx_size_wide[tx_size]; int h = tx_size_high[tx_size]; int rw = h; int rh = w; transpose_int32(rinput, rw, input, w, w, h); transpose_uint16(routput, rw, output, stride, w, h); inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); transpose_uint16(output, stride, routput, rw, rw, rh); #else int txfm_buf[64 * 32 + 64 + 64]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_64X32, bd); #endif } void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output, int stride, TX_TYPE tx_type, int bd) { int txfm_buf[64 * 32 + 64 + 64]; inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X64, bd); } #endif // CONFIG_TX64X64