/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // SSE2 #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/blend.h" #include "aom_dsp/x86/synonyms.h" #include "aom_ports/mem.h" #include "av1/common/filter.h" #include "av1/common/onyxc_int.h" #include "av1/common/reconinter.h" unsigned int aom_get_mb_ss_sse2(const int16_t *src) { __m128i vsum = _mm_setzero_si128(); int i; for (i = 0; i < 32; ++i) { const __m128i v = xx_loadu_128(src); vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v)); src += 8; } vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4)); return _mm_cvtsi128_si32(vsum); } static INLINE __m128i load4x2_sse2(const uint8_t *const p, const int stride) { const __m128i p0 = _mm_cvtsi32_si128(*(const uint32_t *)(p + 0 * stride)); const __m128i p1 = _mm_cvtsi32_si128(*(const uint32_t *)(p + 1 * stride)); return _mm_unpacklo_epi8(_mm_unpacklo_epi32(p0, p1), _mm_setzero_si128()); } static INLINE __m128i load8_8to16_sse2(const uint8_t *const p) { const __m128i p0 = _mm_loadl_epi64((const __m128i *)p); return _mm_unpacklo_epi8(p0, _mm_setzero_si128()); } // Accumulate 4 32bit numbers in val to 1 32bit number static INLINE unsigned int add32x4_sse2(__m128i val) { val = _mm_add_epi32(val, _mm_srli_si128(val, 8)); val = _mm_add_epi32(val, _mm_srli_si128(val, 4)); return _mm_cvtsi128_si32(val); } // Accumulate 8 16bit in sum to 4 32bit number static INLINE __m128i sum_to_32bit_sse2(const __m128i sum) { const __m128i sum_lo = _mm_srai_epi32(_mm_unpacklo_epi16(sum, sum), 16); const __m128i sum_hi = _mm_srai_epi32(_mm_unpackhi_epi16(sum, sum), 16); return _mm_add_epi32(sum_lo, sum_hi); } static INLINE void variance_kernel_sse2(const __m128i src, const __m128i ref, __m128i *const sse, __m128i *const sum) { const __m128i diff = _mm_sub_epi16(src, ref); *sse = _mm_add_epi32(*sse, _mm_madd_epi16(diff, diff)); *sum = _mm_add_epi16(*sum, diff); } // Can handle 128 pixels' diff sum (such as 8x16 or 16x8) // Slightly faster than variance_final_256_pel_sse2() // diff sum of 128 pixels can still fit in 16bit integer static INLINE void variance_final_128_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2)); *sum = (int16_t)_mm_extract_epi16(vsum, 0); } // Can handle 256 pixels' diff sum (such as 16x16) static INLINE void variance_final_256_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); *sum = (int16_t)_mm_extract_epi16(vsum, 0); *sum += (int16_t)_mm_extract_epi16(vsum, 1); } // Can handle 512 pixels' diff sum (such as 16x32 or 32x16) static INLINE void variance_final_512_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); vsum = _mm_unpacklo_epi16(vsum, vsum); vsum = _mm_srai_epi32(vsum, 16); *sum = add32x4_sse2(vsum); } // Can handle 1024 pixels' diff sum (such as 32x32) static INLINE void variance_final_1024_pel_sse2(__m128i vsse, __m128i vsum, unsigned int *const sse, int *const sum) { *sse = add32x4_sse2(vsse); vsum = sum_to_32bit_sse2(vsum); *sum = add32x4_sse2(vsum); } static INLINE void variance4_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 256); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; i += 2) { const __m128i s = load4x2_sse2(src, src_stride); const __m128i r = load4x2_sse2(ref, ref_stride); variance_kernel_sse2(s, r, sse, sum); src += 2 * src_stride; ref += 2 * ref_stride; } } static INLINE void variance8_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 128); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; i++) { const __m128i s = load8_8to16_sse2(src); const __m128i r = load8_8to16_sse2(ref); variance_kernel_sse2(s, r, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance16_kernel_sse2(const uint8_t *const src, const uint8_t *const ref, __m128i *const sse, __m128i *const sum) { const __m128i zero = _mm_setzero_si128(); const __m128i s = _mm_loadu_si128((const __m128i *)src); const __m128i r = _mm_loadu_si128((const __m128i *)ref); const __m128i src0 = _mm_unpacklo_epi8(s, zero); const __m128i ref0 = _mm_unpacklo_epi8(r, zero); const __m128i src1 = _mm_unpackhi_epi8(s, zero); const __m128i ref1 = _mm_unpackhi_epi8(r, zero); variance_kernel_sse2(src0, ref0, sse, sum); variance_kernel_sse2(src1, ref1, sse, sum); } static INLINE void variance16_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 64); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src, ref, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance32_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 32); // May overflow for larger height. // Don't initialize sse here since it's an accumulation. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src + 0, ref + 0, sse, sum); variance16_kernel_sse2(src + 16, ref + 16, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance64_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 16); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { variance16_kernel_sse2(src + 0, ref + 0, sse, sum); variance16_kernel_sse2(src + 16, ref + 16, sse, sum); variance16_kernel_sse2(src + 32, ref + 32, sse, sum); variance16_kernel_sse2(src + 48, ref + 48, sse, sum); src += src_stride; ref += ref_stride; } } static INLINE void variance128_sse2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m128i *const sse, __m128i *const sum) { assert(h <= 8); // May overflow for larger height. *sum = _mm_setzero_si128(); for (int i = 0; i < h; ++i) { for (int j = 0; j < 4; ++j) { const int offset0 = j << 5; const int offset1 = offset0 + 16; variance16_kernel_sse2(src + offset0, ref + offset0, sse, sum); variance16_kernel_sse2(src + offset1, ref + offset1, sse, sum); } src += src_stride; ref += ref_stride; } } #define AOM_VAR_NO_LOOP_SSE2(bw, bh, bits, max_pixels) \ unsigned int aom_variance##bw##x##bh##_sse2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m128i vsse = _mm_setzero_si128(); \ __m128i vsum; \ int sum = 0; \ variance##bw##_sse2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \ variance_final_##max_pixels##_pel_sse2(vsse, vsum, sse, &sum); \ assert(sum <= 255 * bw * bh); \ assert(sum >= -255 * bw * bh); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_NO_LOOP_SSE2(4, 4, 4, 128); AOM_VAR_NO_LOOP_SSE2(4, 8, 5, 128); AOM_VAR_NO_LOOP_SSE2(4, 16, 6, 128); AOM_VAR_NO_LOOP_SSE2(8, 4, 5, 128); AOM_VAR_NO_LOOP_SSE2(8, 8, 6, 128); AOM_VAR_NO_LOOP_SSE2(8, 16, 7, 128); AOM_VAR_NO_LOOP_SSE2(8, 32, 8, 256); AOM_VAR_NO_LOOP_SSE2(16, 4, 6, 128); AOM_VAR_NO_LOOP_SSE2(16, 8, 7, 128); AOM_VAR_NO_LOOP_SSE2(16, 16, 8, 256); AOM_VAR_NO_LOOP_SSE2(16, 32, 9, 512); AOM_VAR_NO_LOOP_SSE2(16, 64, 10, 1024); AOM_VAR_NO_LOOP_SSE2(32, 8, 8, 256); AOM_VAR_NO_LOOP_SSE2(32, 16, 9, 512); AOM_VAR_NO_LOOP_SSE2(32, 32, 10, 1024); #define AOM_VAR_LOOP_SSE2(bw, bh, bits, uh) \ unsigned int aom_variance##bw##x##bh##_sse2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m128i vsse = _mm_setzero_si128(); \ __m128i vsum = _mm_setzero_si128(); \ for (int i = 0; i < (bh / uh); ++i) { \ __m128i vsum16; \ variance##bw##_sse2(src, src_stride, ref, ref_stride, uh, &vsse, \ &vsum16); \ vsum = _mm_add_epi32(vsum, sum_to_32bit_sse2(vsum16)); \ src += (src_stride * uh); \ ref += (ref_stride * uh); \ } \ *sse = add32x4_sse2(vsse); \ int sum = add32x4_sse2(vsum); \ assert(sum <= 255 * bw * bh); \ assert(sum >= -255 * bw * bh); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_LOOP_SSE2(32, 64, 11, 32); // 32x32 * ( 64/32 ) AOM_VAR_NO_LOOP_SSE2(64, 16, 10, 1024); AOM_VAR_LOOP_SSE2(64, 32, 11, 16); // 64x16 * ( 32/16 ) AOM_VAR_LOOP_SSE2(64, 64, 12, 16); // 64x16 * ( 64/16 ) AOM_VAR_LOOP_SSE2(64, 128, 13, 16); // 64x16 * ( 128/16 ) AOM_VAR_LOOP_SSE2(128, 64, 13, 8); // 128x8 * ( 64/8 ) AOM_VAR_LOOP_SSE2(128, 128, 14, 8); // 128x8 * ( 128/8 ) unsigned int aom_mse8x8_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance8x8_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse8x16_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance8x16_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse16x8_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance16x8_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_mse16x16_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance16x16_sse2(src, src_stride, ref, ref_stride, sse); return *sse; } // The 2 unused parameters are place holders for PIC enabled build. // These definitions are for functions defined in subpel_variance.asm #define DECL(w, opt) \ int aom_sub_pixel_variance##w##xh_##opt( \ const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \ void *unused0, void *unused) #define DECLS(opt) \ DECL(4, opt); \ DECL(8, opt); \ DECL(16, opt) DECLS(sse2); DECLS(ssse3); #undef DECLS #undef DECL #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ unsigned int aom_sub_pixel_variance##w##x##h##_##opt( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_variance##wf##xh_##opt( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, hf, \ &sse2, NULL, NULL); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ } #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \ FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)); \ FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)); \ FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)); \ FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)); \ FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)); \ FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)); \ FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \ FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \ FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \ FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \ FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \ FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) FNS(sse2); FNS(ssse3); #undef FNS #undef FN // The 2 unused parameters are place holders for PIC enabled build. #define DECL(w, opt) \ int aom_sub_pixel_avg_variance##w##xh_##opt( \ const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \ ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \ void *unused) #define DECLS(opt) \ DECL(4, opt); \ DECL(8, opt); \ DECL(16, opt) DECLS(sse2); DECLS(ssse3); #undef DECL #undef DECLS #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ unsigned int aom_sub_pixel_avg_variance##w##x##h##_##opt( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr, \ const uint8_t *sec) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ const uint8_t *sec_ptr = sec; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, \ sec_ptr, w, hf, &sse2, NULL, NULL); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ sec_ptr += hf * w; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ sec += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ } #define FNS(opt) \ FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \ FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \ FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \ FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \ FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \ FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \ FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \ FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \ FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \ FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \ FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)); \ FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)); \ FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)); \ FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)); \ FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)); \ FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)); \ FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \ FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \ FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \ FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \ FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \ FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) FNS(sse2); FNS(ssse3); #undef FNS #undef FN void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { // Note: This is mostly a copy from the >=8X8 case in // build_inter_predictors() function, with some small tweaks. // Some assumptions. const int plane = 0; // Get pre-requisites. const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; assert(ssx == 0 && ssy == 0); const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; // Calculate subpel_x/y and x/y_step. const int row_start = 0; // Because ss_y is 0. const int col_start = 0; // Because ss_x is 0. const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx; const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy; int orig_pos_y = pre_y << SUBPEL_BITS; orig_pos_y += mv->row * (1 << (1 - ssy)); int orig_pos_x = pre_x << SUBPEL_BITS; orig_pos_x += mv->col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); const uint8_t *const pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, pos_x & SCALE_SUBPEL_MASK, pos_y & SCALE_SUBPEL_MASK }; // Get warp types. const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref_num]]; const int is_global = is_global_mv_block(mi, wm->wmtype); WarpTypesAllowed warp_types; warp_types.global_warp_allowed = is_global; warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; // Get convolve parameters. ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); const InterpFilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); // Get the inter predictor. const int build_for_obmc = 0; av1_make_inter_predictor(pre, pre_buf->stride, comp_pred, width, &subpel_params, sf, width, height, &conv_params, filters, &warp_types, mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref_num, mi, build_for_obmc, xd, cm->allow_warped_motion); return; } } const InterpFilterParams *filter = (subpel_search == 1) ? av1_get_4tap_interp_filter_params(EIGHTTAP_REGULAR) : av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8); int filter_taps = (subpel_search == 1) ? 4 : SUBPEL_TAPS; if (!subpel_x_q3 && !subpel_y_q3) { if (width >= 16) { int i; assert(!(width & 15)); /*Read 16 pixels one row at a time.*/ for (i = 0; i < height; i++) { int j; for (j = 0; j < width; j += 16) { xx_storeu_128(comp_pred, xx_loadu_128(ref)); comp_pred += 16; ref += 16; } ref += ref_stride - width; } } else if (width >= 8) { int i; assert(!(width & 7)); assert(!(height & 1)); /*Read 8 pixels two rows at a time.*/ for (i = 0; i < height; i += 2) { __m128i s0 = xx_loadl_64(ref + 0 * ref_stride); __m128i s1 = xx_loadl_64(ref + 1 * ref_stride); xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1)); comp_pred += 16; ref += 2 * ref_stride; } } else { int i; assert(!(width & 3)); assert(!(height & 3)); /*Read 4 pixels four rows at a time.*/ for (i = 0; i < height; i++) { const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride); const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride); const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride); const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride); const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1), _mm_unpacklo_epi32(row2, row3)); xx_storeu_128(comp_pred, reg); comp_pred += 16; ref += 4 * ref_stride; } } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1, width, height); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16, width, height); } else { DECLARE_ALIGNED(16, uint8_t, temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const uint8_t *ref_start = ref - ref_stride * ((filter_taps >> 1) - 1); uint8_t *temp_start_horiz = (subpel_search == 1) ? temp + (filter_taps >> 1) * MAX_SB_SIZE : temp; uint8_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1); int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); // TODO(Deepa): Remove the memset below when we have // 4 tap simd for sse2 and ssse3. if (subpel_search == 1) { memset(temp_start_vert - 3 * MAX_SB_SIZE, 0, width); memset(temp_start_vert - 2 * MAX_SB_SIZE, 0, width); memset(temp_start_vert + (height + 2) * MAX_SB_SIZE, 0, width); memset(temp_start_vert + (height + 3) * MAX_SB_SIZE, 0, width); } aom_convolve8_horiz(ref_start, ref_stride, temp_start_horiz, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height); aom_convolve8_vert(temp_start_vert, MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16, width, height); } } void aom_comp_avg_upsampled_pred_sse2( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { int n; int i; aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); /*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/ assert(!(width * height & 15)); n = width * height >> 4; for (i = 0; i < n; i++) { __m128i s0 = xx_loadu_128(comp_pred); __m128i p0 = xx_loadu_128(pred); xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0)); comp_pred += 16; pred += 16; } } void aom_comp_mask_upsampled_pred_sse2( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask, int subpel_search) { if (subpel_x_q3 | subpel_y_q3) { aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); ref = comp_pred; ref_stride = width; } aom_comp_mask_pred(comp_pred, pred, width, height, ref, ref_stride, mask, mask_stride, invert_mask); } static INLINE __m128i highbd_comp_mask_pred_line_sse2(const __m128i s0, const __m128i s1, const __m128i a) { const __m128i alpha_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m128i round_const = _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m128i a_inv = _mm_sub_epi16(alpha_max, a); const __m128i s_lo = _mm_unpacklo_epi16(s0, s1); const __m128i a_lo = _mm_unpacklo_epi16(a, a_inv); const __m128i pred_lo = _mm_madd_epi16(s_lo, a_lo); const __m128i pred_l = _mm_srai_epi32(_mm_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i s_hi = _mm_unpackhi_epi16(s0, s1); const __m128i a_hi = _mm_unpackhi_epi16(a, a_inv); const __m128i pred_hi = _mm_madd_epi16(s_hi, a_hi); const __m128i pred_h = _mm_srai_epi32(_mm_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS); const __m128i comp = _mm_packs_epi32(pred_l, pred_h); return comp; } void aom_highbd_comp_mask_pred_sse2(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i = 0; uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); const uint16_t *src0 = invert_mask ? pred : ref; const uint16_t *src1 = invert_mask ? ref : pred; const int stride0 = invert_mask ? width : ref_stride; const int stride1 = invert_mask ? ref_stride : width; const __m128i zero = _mm_setzero_si128(); if (width == 8) { do { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1)); const __m128i m_8 = _mm_loadl_epi64((const __m128i *)mask); const __m128i m_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m_16); _mm_storeu_si128((__m128i *)comp_pred, comp); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } else if (width == 16) { do { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0)); const __m128i s2 = _mm_loadu_si128((const __m128i *)(src0 + 8)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1)); const __m128i s3 = _mm_loadu_si128((const __m128i *)(src1 + 8)); const __m128i m_8 = _mm_loadu_si128((const __m128i *)mask); const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16); const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16); _mm_storeu_si128((__m128i *)comp_pred, comp); _mm_storeu_si128((__m128i *)(comp_pred + 8), comp1); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } else if (width == 32) { do { for (int j = 0; j < 2; j++) { const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0 + j * 16)); const __m128i s2 = _mm_loadu_si128((const __m128i *)(src0 + 8 + j * 16)); const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1 + j * 16)); const __m128i s3 = _mm_loadu_si128((const __m128i *)(src1 + 8 + j * 16)); const __m128i m_8 = _mm_loadu_si128((const __m128i *)(mask + j * 16)); const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero); const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero); const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16); const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16); _mm_storeu_si128((__m128i *)(comp_pred + j * 16), comp); _mm_storeu_si128((__m128i *)(comp_pred + 8 + j * 16), comp1); } src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } }