/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/x86/masked_variance_intrin_ssse3.h" static INLINE __m128i mm256_add_hi_lo_epi16(const __m256i val) { return _mm_add_epi16(_mm256_castsi256_si128(val), _mm256_extractf128_si256(val, 1)); } static INLINE __m128i mm256_add_hi_lo_epi32(const __m256i val) { return _mm_add_epi32(_mm256_castsi256_si128(val), _mm256_extractf128_si256(val, 1)); } static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref, __m256i *const sse, __m256i *const sum) { const __m256i adj_sub = _mm256_set1_epi16(0xff01); // (1,-1) // unpack into pairs of source and reference values const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref); const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref); // subtract adjacent elements using src*1 + ref*-1 const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub); const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub); const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); // add to the running totals *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1)); *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1)); } static INLINE int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum, unsigned int *const sse) { // extract the low lane and add it to the high lane const __m128i sse_reg_128 = mm256_add_hi_lo_epi32(vsse); // unpack sse and sum registers and add const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, vsum); const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, vsum); const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); // perform the final summation and extract the results const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); *((int *)sse) = _mm_cvtsi128_si32(res); return _mm_extract_epi32(res, 1); } // handle pixels (<= 512) static INLINE int variance_final_512_avx2(__m256i vsse, __m256i vsum, unsigned int *const sse) { // extract the low lane and add it to the high lane const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum); const __m128i vsum_64 = _mm_add_epi16(vsum_128, _mm_srli_si128(vsum_128, 8)); const __m128i sum_int32 = _mm_cvtepi16_epi32(vsum_64); return variance_final_from_32bit_sum_avx2(vsse, sum_int32, sse); } // handle 1024 pixels (32x32, 16x64, 64x16) static INLINE int variance_final_1024_avx2(__m256i vsse, __m256i vsum, unsigned int *const sse) { // extract the low lane and add it to the high lane const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum); const __m128i vsum_64 = _mm_add_epi32(_mm_cvtepi16_epi32(vsum_128), _mm_cvtepi16_epi32(_mm_srli_si128(vsum_128, 8))); return variance_final_from_32bit_sum_avx2(vsse, vsum_64, sse); } static INLINE __m256i sum_to_32bit_avx2(const __m256i sum) { const __m256i sum_lo = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum)); const __m256i sum_hi = _mm256_cvtepi16_epi32(_mm256_extractf128_si256(sum, 1)); return _mm256_add_epi32(sum_lo, sum_hi); } // handle 2048 pixels (32x64, 64x32) static INLINE int variance_final_2048_avx2(__m256i vsse, __m256i vsum, unsigned int *const sse) { vsum = sum_to_32bit_avx2(vsum); const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum); return variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse); } static INLINE void variance16_kernel_avx2( const uint8_t *const src, const int src_stride, const uint8_t *const ref, const int ref_stride, __m256i *const sse, __m256i *const sum) { const __m128i s0 = _mm_loadu_si128((__m128i const *)(src + 0 * src_stride)); const __m128i s1 = _mm_loadu_si128((__m128i const *)(src + 1 * src_stride)); const __m128i r0 = _mm_loadu_si128((__m128i const *)(ref + 0 * ref_stride)); const __m128i r1 = _mm_loadu_si128((__m128i const *)(ref + 1 * ref_stride)); const __m256i s = _mm256_inserti128_si256(_mm256_castsi128_si256(s0), s1, 1); const __m256i r = _mm256_inserti128_si256(_mm256_castsi128_si256(r0), r1, 1); variance_kernel_avx2(s, r, sse, sum); } static INLINE void variance32_kernel_avx2(const uint8_t *const src, const uint8_t *const ref, __m256i *const sse, __m256i *const sum) { const __m256i s = _mm256_loadu_si256((__m256i const *)(src)); const __m256i r = _mm256_loadu_si256((__m256i const *)(ref)); variance_kernel_avx2(s, r, sse, sum); } static INLINE void variance16_avx2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m256i *const vsse, __m256i *const vsum) { *vsum = _mm256_setzero_si256(); for (int i = 0; i < h; i += 2) { variance16_kernel_avx2(src, src_stride, ref, ref_stride, vsse, vsum); src += 2 * src_stride; ref += 2 * ref_stride; } } static INLINE void variance32_avx2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m256i *const vsse, __m256i *const vsum) { *vsum = _mm256_setzero_si256(); for (int i = 0; i < h; i++) { variance32_kernel_avx2(src, ref, vsse, vsum); src += src_stride; ref += ref_stride; } } static INLINE void variance64_avx2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m256i *const vsse, __m256i *const vsum) { *vsum = _mm256_setzero_si256(); for (int i = 0; i < h; i++) { variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum); variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum); src += src_stride; ref += ref_stride; } } static INLINE void variance128_avx2(const uint8_t *src, const int src_stride, const uint8_t *ref, const int ref_stride, const int h, __m256i *const vsse, __m256i *const vsum) { *vsum = _mm256_setzero_si256(); for (int i = 0; i < h; i++) { variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum); variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum); variance32_kernel_avx2(src + 64, ref + 64, vsse, vsum); variance32_kernel_avx2(src + 96, ref + 96, vsse, vsum); src += src_stride; ref += ref_stride; } } #define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel) \ unsigned int aom_variance##bw##x##bh##_avx2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m256i vsse = _mm256_setzero_si256(); \ __m256i vsum; \ variance##bw##_avx2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \ const int sum = variance_final_##max_pixel##_avx2(vsse, vsum, sse); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512); AOM_VAR_NO_LOOP_AVX2(16, 8, 7, 512); AOM_VAR_NO_LOOP_AVX2(16, 16, 8, 512); AOM_VAR_NO_LOOP_AVX2(16, 32, 9, 512); AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024); AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512); AOM_VAR_NO_LOOP_AVX2(32, 16, 9, 512); AOM_VAR_NO_LOOP_AVX2(32, 32, 10, 1024); AOM_VAR_NO_LOOP_AVX2(32, 64, 11, 2048); AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024); AOM_VAR_NO_LOOP_AVX2(64, 32, 11, 2048); #define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh) \ unsigned int aom_variance##bw##x##bh##_avx2( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ __m256i vsse = _mm256_setzero_si256(); \ __m256i vsum = _mm256_setzero_si256(); \ for (int i = 0; i < (bh / uh); i++) { \ __m256i vsum16; \ variance##bw##_avx2(src, src_stride, ref, ref_stride, uh, &vsse, \ &vsum16); \ vsum = _mm256_add_epi32(vsum, sum_to_32bit_avx2(vsum16)); \ src += uh * src_stride; \ ref += uh * ref_stride; \ } \ const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum); \ const int sum = variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse); \ return *sse - (unsigned int)(((int64_t)sum * sum) >> bits); \ } AOM_VAR_LOOP_AVX2(64, 64, 12, 32); // 64x32 * ( 64/32) AOM_VAR_LOOP_AVX2(64, 128, 13, 32); // 64x32 * (128/32) AOM_VAR_LOOP_AVX2(128, 64, 13, 16); // 128x16 * ( 64/16) AOM_VAR_LOOP_AVX2(128, 128, 14, 16); // 128x16 * (128/16) unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { aom_variance16x16_avx2(src, src_stride, ref, ref_stride, sse); return *sse; } unsigned int aom_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, int height, unsigned int *sse); unsigned int aom_sub_pixel_avg_variance32xh_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int height, unsigned int *sseptr); #define AOM_SUB_PIXEL_VAR_AVX2(w, h, wf, wlog2, hlog2) \ unsigned int aom_sub_pixel_variance##w##x##h##_avx2( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_variance##wf##xh_avx2( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, hf, \ &sse2); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(((int64_t)se * se) >> (wlog2 + hlog2)); \ } AOM_SUB_PIXEL_VAR_AVX2(128, 128, 32, 7, 7); AOM_SUB_PIXEL_VAR_AVX2(128, 64, 32, 7, 6); AOM_SUB_PIXEL_VAR_AVX2(64, 128, 32, 6, 7); AOM_SUB_PIXEL_VAR_AVX2(64, 64, 32, 6, 6); AOM_SUB_PIXEL_VAR_AVX2(64, 32, 32, 6, 5); AOM_SUB_PIXEL_VAR_AVX2(32, 64, 32, 5, 6); AOM_SUB_PIXEL_VAR_AVX2(32, 32, 32, 5, 5); AOM_SUB_PIXEL_VAR_AVX2(32, 16, 32, 5, 4); #define AOM_SUB_PIXEL_AVG_VAR_AVX2(w, h, wf, wlog2, hlog2) \ unsigned int aom_sub_pixel_avg_variance##w##x##h##_avx2( \ const uint8_t *src, int src_stride, int x_offset, int y_offset, \ const uint8_t *dst, int dst_stride, unsigned int *sse_ptr, \ const uint8_t *sec) { \ /*Avoid overflow in helper by capping height.*/ \ const int hf = AOMMIN(h, 64); \ unsigned int sse = 0; \ int se = 0; \ for (int i = 0; i < (w / wf); ++i) { \ const uint8_t *src_ptr = src; \ const uint8_t *dst_ptr = dst; \ const uint8_t *sec_ptr = sec; \ for (int j = 0; j < (h / hf); ++j) { \ unsigned int sse2; \ const int se2 = aom_sub_pixel_avg_variance##wf##xh_avx2( \ src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, \ sec_ptr, w, hf, &sse2); \ dst_ptr += hf * dst_stride; \ src_ptr += hf * src_stride; \ sec_ptr += hf * w; \ se += se2; \ sse += sse2; \ } \ src += wf; \ dst += wf; \ sec += wf; \ } \ *sse_ptr = sse; \ return sse - (unsigned int)(((int64_t)se * se) >> (wlog2 + hlog2)); \ } AOM_SUB_PIXEL_AVG_VAR_AVX2(128, 128, 32, 7, 7); AOM_SUB_PIXEL_AVG_VAR_AVX2(128, 64, 32, 7, 6); AOM_SUB_PIXEL_AVG_VAR_AVX2(64, 128, 32, 6, 7); AOM_SUB_PIXEL_AVG_VAR_AVX2(64, 64, 32, 6, 6); AOM_SUB_PIXEL_AVG_VAR_AVX2(64, 32, 32, 6, 5); AOM_SUB_PIXEL_AVG_VAR_AVX2(32, 64, 32, 5, 6); AOM_SUB_PIXEL_AVG_VAR_AVX2(32, 32, 32, 5, 5); AOM_SUB_PIXEL_AVG_VAR_AVX2(32, 16, 32, 5, 4); static INLINE __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) { const __m256i d = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1)); return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1); } static INLINE __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) { const __m256i d = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1)); return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1); } static INLINE void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1, const __m256i a, uint8_t *comp_pred) { const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA); const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS; const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits)); const __m256i ma = _mm256_sub_epi8(alpha_max, a); const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1); const __m256i aaAL = _mm256_unpacklo_epi8(a, ma); const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1); const __m256i aaAH = _mm256_unpackhi_epi8(a, ma); const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL); const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH); const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset); const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset); const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH); _mm256_storeu_si256((__m256i *)(comp_pred), roundA); } void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i = 0; const uint8_t *src0 = invert_mask ? pred : ref; const uint8_t *src1 = invert_mask ? ref : pred; const int stride0 = invert_mask ? width : ref_stride; const int stride1 = invert_mask ? ref_stride : width; if (width == 8) { comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1, mask, mask_stride); } else if (width == 16) { do { const __m256i sA0 = mm256_loadu2(src0 + stride0, src0); const __m256i sA1 = mm256_loadu2(src1 + stride1, src1); const __m256i aA = mm256_loadu2(mask + mask_stride, mask); src0 += (stride0 << 1); src1 += (stride1 << 1); mask += (mask_stride << 1); const __m256i sB0 = mm256_loadu2(src0 + stride0, src0); const __m256i sB1 = mm256_loadu2(src1 + stride1, src1); const __m256i aB = mm256_loadu2(mask + mask_stride, mask); src0 += (stride0 << 1); src1 += (stride1 << 1); mask += (mask_stride << 1); // comp_pred's stride == width == 16 comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred); comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32); comp_pred += (16 << 2); i += 4; } while (i < height); } else { // for width == 32 do { const __m256i sA0 = _mm256_lddqu_si256((const __m256i *)(src0)); const __m256i sA1 = _mm256_lddqu_si256((const __m256i *)(src1)); const __m256i aA = _mm256_lddqu_si256((const __m256i *)(mask)); const __m256i sB0 = _mm256_lddqu_si256((const __m256i *)(src0 + stride0)); const __m256i sB1 = _mm256_lddqu_si256((const __m256i *)(src1 + stride1)); const __m256i aB = _mm256_lddqu_si256((const __m256i *)(mask + mask_stride)); comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred); comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32); comp_pred += (32 << 1); src0 += (stride0 << 1); src1 += (stride1 << 1); mask += (mask_stride << 1); i += 2; } while (i < height); } } static INLINE __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1, const __m256i a) { const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); const __m256i round_const = _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); const __m256i a_inv = _mm256_sub_epi16(alpha_max, a); const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1); const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv); const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo); const __m256i pred_l = _mm256_srai_epi32( _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS); const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1); const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv); const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi); const __m256i pred_h = _mm256_srai_epi32( _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS); const __m256i comp = _mm256_packs_epi32(pred_l, pred_h); return comp; } void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask) { int i = 0; uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); const uint16_t *src0 = invert_mask ? pred : ref; const uint16_t *src1 = invert_mask ? ref : pred; const int stride0 = invert_mask ? width : ref_stride; const int stride1 = invert_mask ? ref_stride : width; const __m256i zero = _mm256_setzero_si256(); if (width == 8) { do { const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0); const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1); const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask); const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8)); __m256i m = _mm256_castsi128_si256(m_l); m = _mm256_insertf128_si256(m, m_h, 1); const __m256i m_16 = _mm256_unpacklo_epi8(m, zero); const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16); _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp)); _mm_storeu_si128((__m128i *)(comp_pred + width), _mm256_extractf128_si256(comp, 1)); src0 += (stride0 << 1); src1 += (stride1 << 1); mask += (mask_stride << 1); comp_pred += (width << 1); i += 2; } while (i < height); } else if (width == 16) { do { const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0)); const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1)); const __m256i m_16 = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask)); const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16); _mm256_storeu_si256((__m256i *)comp_pred, comp); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } else if (width == 32) { do { const __m256i s0 = _mm256_loadu_si256((const __m256i *)src0); const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + 16)); const __m256i s1 = _mm256_loadu_si256((const __m256i *)src1); const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + 16)); const __m256i m01_16 = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask)); const __m256i m23_16 = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + 16))); const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16); const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16); _mm256_storeu_si256((__m256i *)comp_pred, comp); _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1); src0 += stride0; src1 += stride1; mask += mask_stride; comp_pred += width; i += 1; } while (i < height); } }