/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <assert.h> #include <immintrin.h> #include "config/aom_config.h" #include "aom_ports/mem.h" #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/x86/obmc_intrinsic_ssse3.h" #include "aom_dsp/x86/synonyms.h" //////////////////////////////////////////////////////////////////////////////// // 8 bit //////////////////////////////////////////////////////////////////////////////// static AOM_FORCE_INLINE unsigned int obmc_sad_w4(const uint8_t *pre, const int pre_stride, const int32_t *wsrc, const int32_t *mask, const int height) { const int pre_step = pre_stride - 4; int n = 0; __m128i v_sad_d = _mm_setzero_si128(); do { const __m128i v_p_b = xx_loadl_32(pre + n); const __m128i v_m_d = xx_load_128(mask + n); const __m128i v_w_d = xx_load_128(wsrc + n); const __m128i v_p_d = _mm_cvtepu8_epi32(v_p_b); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d); const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d); const __m128i v_absdiff_d = _mm_abs_epi32(v_diff_d); // Rounded absolute difference const __m128i v_rad_d = xx_roundn_epu32(v_absdiff_d, 12); v_sad_d = _mm_add_epi32(v_sad_d, v_rad_d); n += 4; if (n % 4 == 0) pre += pre_step; } while (n < 4 * height); return xx_hsum_epi32_si32(v_sad_d); } static AOM_FORCE_INLINE unsigned int obmc_sad_w8n( const uint8_t *pre, const int pre_stride, const int32_t *wsrc, const int32_t *mask, const int width, const int height) { const int pre_step = pre_stride - width; int n = 0; __m128i v_sad_d = _mm_setzero_si128(); assert(width >= 8); assert(IS_POWER_OF_TWO(width)); do { const __m128i v_p1_b = xx_loadl_32(pre + n + 4); const __m128i v_m1_d = xx_load_128(mask + n + 4); const __m128i v_w1_d = xx_load_128(wsrc + n + 4); const __m128i v_p0_b = xx_loadl_32(pre + n); const __m128i v_m0_d = xx_load_128(mask + n); const __m128i v_w0_d = xx_load_128(wsrc + n); const __m128i v_p0_d = _mm_cvtepu8_epi32(v_p0_b); const __m128i v_p1_d = _mm_cvtepu8_epi32(v_p1_b); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d); const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d); const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d); const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d); const __m128i v_absdiff0_d = _mm_abs_epi32(v_diff0_d); const __m128i v_absdiff1_d = _mm_abs_epi32(v_diff1_d); // Rounded absolute difference const __m128i v_rad0_d = xx_roundn_epu32(v_absdiff0_d, 12); const __m128i v_rad1_d = xx_roundn_epu32(v_absdiff1_d, 12); v_sad_d = _mm_add_epi32(v_sad_d, v_rad0_d); v_sad_d = _mm_add_epi32(v_sad_d, v_rad1_d); n += 8; if (n % width == 0) pre += pre_step; } while (n < width * height); return xx_hsum_epi32_si32(v_sad_d); } #define OBMCSADWXH(w, h) \ unsigned int aom_obmc_sad##w##x##h##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *msk) { \ if (w == 4) { \ return obmc_sad_w4(pre, pre_stride, wsrc, msk, h); \ } else { \ return obmc_sad_w8n(pre, pre_stride, wsrc, msk, w, h); \ } \ } OBMCSADWXH(128, 128) OBMCSADWXH(128, 64) OBMCSADWXH(64, 128) OBMCSADWXH(64, 64) OBMCSADWXH(64, 32) OBMCSADWXH(32, 64) OBMCSADWXH(32, 32) OBMCSADWXH(32, 16) OBMCSADWXH(16, 32) OBMCSADWXH(16, 16) OBMCSADWXH(16, 8) OBMCSADWXH(8, 16) OBMCSADWXH(8, 8) OBMCSADWXH(8, 4) OBMCSADWXH(4, 8) OBMCSADWXH(4, 4) OBMCSADWXH(4, 16) OBMCSADWXH(16, 4) OBMCSADWXH(8, 32) OBMCSADWXH(32, 8) OBMCSADWXH(16, 64) OBMCSADWXH(64, 16) //////////////////////////////////////////////////////////////////////////////// // High bit-depth //////////////////////////////////////////////////////////////////////////////// static AOM_FORCE_INLINE unsigned int hbd_obmc_sad_w4(const uint8_t *pre8, const int pre_stride, const int32_t *wsrc, const int32_t *mask, const int height) { const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); const int pre_step = pre_stride - 4; int n = 0; __m128i v_sad_d = _mm_setzero_si128(); do { const __m128i v_p_w = xx_loadl_64(pre + n); const __m128i v_m_d = xx_load_128(mask + n); const __m128i v_w_d = xx_load_128(wsrc + n); const __m128i v_p_d = _mm_cvtepu16_epi32(v_p_w); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d); const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d); const __m128i v_absdiff_d = _mm_abs_epi32(v_diff_d); // Rounded absolute difference const __m128i v_rad_d = xx_roundn_epu32(v_absdiff_d, 12); v_sad_d = _mm_add_epi32(v_sad_d, v_rad_d); n += 4; if (n % 4 == 0) pre += pre_step; } while (n < 4 * height); return xx_hsum_epi32_si32(v_sad_d); } static AOM_FORCE_INLINE unsigned int hbd_obmc_sad_w8n( const uint8_t *pre8, const int pre_stride, const int32_t *wsrc, const int32_t *mask, const int width, const int height) { const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8); const int pre_step = pre_stride - width; int n = 0; __m128i v_sad_d = _mm_setzero_si128(); assert(width >= 8); assert(IS_POWER_OF_TWO(width)); do { const __m128i v_p1_w = xx_loadl_64(pre + n + 4); const __m128i v_m1_d = xx_load_128(mask + n + 4); const __m128i v_w1_d = xx_load_128(wsrc + n + 4); const __m128i v_p0_w = xx_loadl_64(pre + n); const __m128i v_m0_d = xx_load_128(mask + n); const __m128i v_w0_d = xx_load_128(wsrc + n); const __m128i v_p0_d = _mm_cvtepu16_epi32(v_p0_w); const __m128i v_p1_d = _mm_cvtepu16_epi32(v_p1_w); // Values in both pre and mask fit in 15 bits, and are packed at 32 bit // boundaries. We use pmaddwd, as it has lower latency on Haswell // than pmulld but produces the same result with these inputs. const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d); const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d); const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d); const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d); const __m128i v_absdiff0_d = _mm_abs_epi32(v_diff0_d); const __m128i v_absdiff1_d = _mm_abs_epi32(v_diff1_d); // Rounded absolute difference const __m128i v_rad0_d = xx_roundn_epu32(v_absdiff0_d, 12); const __m128i v_rad1_d = xx_roundn_epu32(v_absdiff1_d, 12); v_sad_d = _mm_add_epi32(v_sad_d, v_rad0_d); v_sad_d = _mm_add_epi32(v_sad_d, v_rad1_d); n += 8; if (n % width == 0) pre += pre_step; } while (n < width * height); return xx_hsum_epi32_si32(v_sad_d); } #define HBD_OBMCSADWXH(w, h) \ unsigned int aom_highbd_obmc_sad##w##x##h##_sse4_1( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask) { \ if (w == 4) { \ return hbd_obmc_sad_w4(pre, pre_stride, wsrc, mask, h); \ } else { \ return hbd_obmc_sad_w8n(pre, pre_stride, wsrc, mask, w, h); \ } \ } HBD_OBMCSADWXH(128, 128) HBD_OBMCSADWXH(128, 64) HBD_OBMCSADWXH(64, 128) HBD_OBMCSADWXH(64, 64) HBD_OBMCSADWXH(64, 32) HBD_OBMCSADWXH(32, 64) HBD_OBMCSADWXH(32, 32) HBD_OBMCSADWXH(32, 16) HBD_OBMCSADWXH(16, 32) HBD_OBMCSADWXH(16, 16) HBD_OBMCSADWXH(16, 8) HBD_OBMCSADWXH(8, 16) HBD_OBMCSADWXH(8, 8) HBD_OBMCSADWXH(8, 4) HBD_OBMCSADWXH(4, 8) HBD_OBMCSADWXH(4, 4) HBD_OBMCSADWXH(4, 16) HBD_OBMCSADWXH(16, 4) HBD_OBMCSADWXH(8, 32) HBD_OBMCSADWXH(32, 8) HBD_OBMCSADWXH(16, 64) HBD_OBMCSADWXH(64, 16)