/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AOM_DSP_X86_CONVOLVE_AVX2_H_ #define AOM_AOM_DSP_X86_CONVOLVE_AVX2_H_ // filters for 16 DECLARE_ALIGNED(32, static const uint8_t, filt_global_avx2[]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; DECLARE_ALIGNED(32, static const uint8_t, filt_d4_global_avx2[]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, }; DECLARE_ALIGNED(32, static const uint8_t, filt4_d4_global_avx2[]) = { 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, }; static INLINE void prepare_coeffs_lowbd( const InterpFilterParams *const filter_params, const int subpel_q4, __m256i *const coeffs /* [4] */) { const int16_t *const filter = av1_get_interp_filter_subpel_kernel( filter_params, subpel_q4 & SUBPEL_MASK); const __m128i coeffs_8 = _mm_loadu_si128((__m128i *)filter); const __m256i filter_coeffs = _mm256_broadcastsi128_si256(coeffs_8); // right shift all filter co-efficients by 1 to reduce the bits required. // This extra right shift will be taken care of at the end while rounding // the result. // Since all filter co-efficients are even, this change will not affect the // end result assert(_mm_test_all_zeros(_mm_and_si128(coeffs_8, _mm_set1_epi16(1)), _mm_set1_epi16(0xffff))); const __m256i coeffs_1 = _mm256_srai_epi16(filter_coeffs, 1); // coeffs 0 1 0 1 0 1 0 1 coeffs[0] = _mm256_shuffle_epi8(coeffs_1, _mm256_set1_epi16(0x0200u)); // coeffs 2 3 2 3 2 3 2 3 coeffs[1] = _mm256_shuffle_epi8(coeffs_1, _mm256_set1_epi16(0x0604u)); // coeffs 4 5 4 5 4 5 4 5 coeffs[2] = _mm256_shuffle_epi8(coeffs_1, _mm256_set1_epi16(0x0a08u)); // coeffs 6 7 6 7 6 7 6 7 coeffs[3] = _mm256_shuffle_epi8(coeffs_1, _mm256_set1_epi16(0x0e0cu)); } static INLINE void prepare_coeffs(const InterpFilterParams *const filter_params, const int subpel_q4, __m256i *const coeffs /* [4] */) { const int16_t *filter = av1_get_interp_filter_subpel_kernel( filter_params, subpel_q4 & SUBPEL_MASK); const __m128i coeff_8 = _mm_loadu_si128((__m128i *)filter); const __m256i coeff = _mm256_broadcastsi128_si256(coeff_8); // coeffs 0 1 0 1 0 1 0 1 coeffs[0] = _mm256_shuffle_epi32(coeff, 0x00); // coeffs 2 3 2 3 2 3 2 3 coeffs[1] = _mm256_shuffle_epi32(coeff, 0x55); // coeffs 4 5 4 5 4 5 4 5 coeffs[2] = _mm256_shuffle_epi32(coeff, 0xaa); // coeffs 6 7 6 7 6 7 6 7 coeffs[3] = _mm256_shuffle_epi32(coeff, 0xff); } static INLINE __m256i convolve_lowbd(const __m256i *const s, const __m256i *const coeffs) { const __m256i res_01 = _mm256_maddubs_epi16(s[0], coeffs[0]); const __m256i res_23 = _mm256_maddubs_epi16(s[1], coeffs[1]); const __m256i res_45 = _mm256_maddubs_epi16(s[2], coeffs[2]); const __m256i res_67 = _mm256_maddubs_epi16(s[3], coeffs[3]); // order: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 const __m256i res = _mm256_add_epi16(_mm256_add_epi16(res_01, res_45), _mm256_add_epi16(res_23, res_67)); return res; } static INLINE __m256i convolve(const __m256i *const s, const __m256i *const coeffs) { const __m256i res_0 = _mm256_madd_epi16(s[0], coeffs[0]); const __m256i res_1 = _mm256_madd_epi16(s[1], coeffs[1]); const __m256i res_2 = _mm256_madd_epi16(s[2], coeffs[2]); const __m256i res_3 = _mm256_madd_epi16(s[3], coeffs[3]); const __m256i res = _mm256_add_epi32(_mm256_add_epi32(res_0, res_1), _mm256_add_epi32(res_2, res_3)); return res; } static INLINE __m256i convolve_lowbd_x(const __m256i data, const __m256i *const coeffs, const __m256i *const filt) { __m256i s[4]; s[0] = _mm256_shuffle_epi8(data, filt[0]); s[1] = _mm256_shuffle_epi8(data, filt[1]); s[2] = _mm256_shuffle_epi8(data, filt[2]); s[3] = _mm256_shuffle_epi8(data, filt[3]); return convolve_lowbd(s, coeffs); } static INLINE void add_store_aligned_256(CONV_BUF_TYPE *const dst, const __m256i *const res, const int do_average) { __m256i d; if (do_average) { d = _mm256_load_si256((__m256i *)dst); d = _mm256_add_epi32(d, *res); d = _mm256_srai_epi32(d, 1); } else { d = *res; } _mm256_store_si256((__m256i *)dst, d); } static INLINE __m256i comp_avg(const __m256i *const data_ref_0, const __m256i *const res_unsigned, const __m256i *const wt, const int use_jnt_comp_avg) { __m256i res; if (use_jnt_comp_avg) { const __m256i data_lo = _mm256_unpacklo_epi16(*data_ref_0, *res_unsigned); const __m256i data_hi = _mm256_unpackhi_epi16(*data_ref_0, *res_unsigned); const __m256i wt_res_lo = _mm256_madd_epi16(data_lo, *wt); const __m256i wt_res_hi = _mm256_madd_epi16(data_hi, *wt); const __m256i res_lo = _mm256_srai_epi32(wt_res_lo, DIST_PRECISION_BITS); const __m256i res_hi = _mm256_srai_epi32(wt_res_hi, DIST_PRECISION_BITS); res = _mm256_packs_epi32(res_lo, res_hi); } else { const __m256i wt_res = _mm256_add_epi16(*data_ref_0, *res_unsigned); res = _mm256_srai_epi16(wt_res, 1); } return res; } static INLINE __m256i convolve_rounding(const __m256i *const res_unsigned, const __m256i *const offset_const, const __m256i *const round_const, const int round_shift) { const __m256i res_signed = _mm256_sub_epi16(*res_unsigned, *offset_const); const __m256i res_round = _mm256_srai_epi16( _mm256_add_epi16(res_signed, *round_const), round_shift); return res_round; } static INLINE __m256i highbd_comp_avg(const __m256i *const data_ref_0, const __m256i *const res_unsigned, const __m256i *const wt0, const __m256i *const wt1, const int use_jnt_comp_avg) { __m256i res; if (use_jnt_comp_avg) { const __m256i wt0_res = _mm256_mullo_epi32(*data_ref_0, *wt0); const __m256i wt1_res = _mm256_mullo_epi32(*res_unsigned, *wt1); const __m256i wt_res = _mm256_add_epi32(wt0_res, wt1_res); res = _mm256_srai_epi32(wt_res, DIST_PRECISION_BITS); } else { const __m256i wt_res = _mm256_add_epi32(*data_ref_0, *res_unsigned); res = _mm256_srai_epi32(wt_res, 1); } return res; } static INLINE __m256i highbd_convolve_rounding( const __m256i *const res_unsigned, const __m256i *const offset_const, const __m256i *const round_const, const int round_shift) { const __m256i res_signed = _mm256_sub_epi32(*res_unsigned, *offset_const); const __m256i res_round = _mm256_srai_epi32( _mm256_add_epi32(res_signed, *round_const), round_shift); return res_round; } #endif // AOM_AOM_DSP_X86_CONVOLVE_AVX2_H_