/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <assert.h> #include <math.h> #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/intrapred_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/bitops.h" static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int r; (void)left; for (r = 0; r < bh; r++) { memcpy(dst, above, bw); dst += stride; } } static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int r; (void)above; for (r = 0; r < bh; r++) { memset(dst, left[r], bw); dst += stride; } } static INLINE int abs_diff(int a, int b) { return (a > b) ? a - b : b - a; } static INLINE uint16_t paeth_predictor_single(uint16_t left, uint16_t top, uint16_t top_left) { const int base = top + left - top_left; const int p_left = abs_diff(base, left); const int p_top = abs_diff(base, top); const int p_top_left = abs_diff(base, top_left); // Return nearest to base of left, top and top_left. return (p_left <= p_top && p_left <= p_top_left) ? left : (p_top <= p_top_left) ? top : top_left; } static INLINE void paeth_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int r, c; const uint8_t ytop_left = above[-1]; for (r = 0; r < bh; r++) { for (c = 0; c < bw; c++) dst[c] = (uint8_t)paeth_predictor_single(left[r], above[c], ytop_left); dst += stride; } } // Some basic checks on weights for smooth predictor. #define sm_weights_sanity_checks(weights_w, weights_h, weights_scale, \ pred_scale) \ assert(weights_w[0] < weights_scale); \ assert(weights_h[0] < weights_scale); \ assert(weights_scale - weights_w[bw - 1] < weights_scale); \ assert(weights_scale - weights_h[bh - 1] < weights_scale); \ assert(pred_scale < 31) // ensures no overflow when calculating predictor. #define divide_round(value, bits) (((value) + (1 << ((bits)-1))) >> (bits)) static INLINE void smooth_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { const uint8_t below_pred = left[bh - 1]; // estimated by bottom-left pixel const uint8_t right_pred = above[bw - 1]; // estimated by top-right pixel const uint8_t *const sm_weights_w = sm_weight_arrays + bw; const uint8_t *const sm_weights_h = sm_weight_arrays + bh; // scale = 2 * 2^sm_weight_log2_scale const int log2_scale = 1 + sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights_w, sm_weights_h, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; ++r) { int c; for (c = 0; c < bw; ++c) { const uint8_t pixels[] = { above[c], below_pred, left[r], right_pred }; const uint8_t weights[] = { sm_weights_h[r], scale - sm_weights_h[r], sm_weights_w[c], scale - sm_weights_w[c] }; uint32_t this_pred = 0; int i; assert(scale >= sm_weights_h[r] && scale >= sm_weights_w[c]); for (i = 0; i < 4; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void smooth_v_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { const uint8_t below_pred = left[bh - 1]; // estimated by bottom-left pixel const uint8_t *const sm_weights = sm_weight_arrays + bh; // scale = 2^sm_weight_log2_scale const int log2_scale = sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights, sm_weights, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; r++) { int c; for (c = 0; c < bw; ++c) { const uint8_t pixels[] = { above[c], below_pred }; const uint8_t weights[] = { sm_weights[r], scale - sm_weights[r] }; uint32_t this_pred = 0; assert(scale >= sm_weights[r]); int i; for (i = 0; i < 2; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void smooth_h_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { const uint8_t right_pred = above[bw - 1]; // estimated by top-right pixel const uint8_t *const sm_weights = sm_weight_arrays + bw; // scale = 2^sm_weight_log2_scale const int log2_scale = sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights, sm_weights, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; r++) { int c; for (c = 0; c < bw; ++c) { const uint8_t pixels[] = { left[r], right_pred }; const uint8_t weights[] = { sm_weights[c], scale - sm_weights[c] }; uint32_t this_pred = 0; assert(scale >= sm_weights[c]); int i; for (i = 0; i < 2; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int r; (void)above; (void)left; for (r = 0; r < bh; r++) { memset(dst, 128, bw); dst += stride; } } static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; (void)above; for (i = 0; i < bh; i++) sum += left[i]; expected_dc = (sum + (bh >> 1)) / bh; for (r = 0; r < bh; r++) { memset(dst, expected_dc, bw); dst += stride; } } static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; (void)left; for (i = 0; i < bw; i++) sum += above[i]; expected_dc = (sum + (bw >> 1)) / bw; for (r = 0; r < bh; r++) { memset(dst, expected_dc, bw); dst += stride; } } static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; const int count = bw + bh; for (i = 0; i < bw; i++) { sum += above[i]; } for (i = 0; i < bh; i++) { sum += left[i]; } expected_dc = (sum + (count >> 1)) / count; for (r = 0; r < bh; r++) { memset(dst, expected_dc, bw); dst += stride; } } static INLINE int divide_using_multiply_shift(int num, int shift1, int multiplier, int shift2) { const int interm = num >> shift1; return interm * multiplier >> shift2; } // The constants (multiplier and shifts) for a given block size are obtained // as follows: // - Let sum_w_h = block width + block height. // - Shift 'sum_w_h' right until we reach an odd number. Let the number of // shifts for that block size be called 'shift1' (see the parameter in // dc_predictor_rect() function), and let the odd number be 'd'. [d has only 2 // possible values: d = 3 for a 1:2 rect block and d = 5 for a 1:4 rect // block]. // - Find multipliers for (i) dividing by 3, and (ii) dividing by 5, // using the "Algorithm 1" in: // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467632 // by ensuring that m + n = 16 (in that algorithm). This ensures that our 2nd // shift will be 16, regardless of the block size. // Note: For low bitdepth, assembly code may be optimized by using smaller // constants for smaller block sizes, where the range of the 'sum' is // restricted to fewer bits. #define DC_MULTIPLIER_1X2 0x5556 #define DC_MULTIPLIER_1X4 0x3334 #define DC_SHIFT2 16 static INLINE void dc_predictor_rect(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int shift1, int multiplier) { int sum = 0; for (int i = 0; i < bw; i++) { sum += above[i]; } for (int i = 0; i < bh; i++) { sum += left[i]; } const int expected_dc = divide_using_multiply_shift( sum + ((bw + bh) >> 1), shift1, multiplier, DC_SHIFT2); assert(expected_dc < (1 << 8)); for (int r = 0; r < bh; r++) { memset(dst, expected_dc, bw); dst += stride; } } #undef DC_SHIFT2 void aom_dc_predictor_4x8_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 4, 8, above, left, 2, DC_MULTIPLIER_1X2); } void aom_dc_predictor_8x4_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 8, 4, above, left, 2, DC_MULTIPLIER_1X2); } void aom_dc_predictor_4x16_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 4, 16, above, left, 2, DC_MULTIPLIER_1X4); } void aom_dc_predictor_16x4_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 16, 4, above, left, 2, DC_MULTIPLIER_1X4); } void aom_dc_predictor_8x16_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 8, 16, above, left, 3, DC_MULTIPLIER_1X2); } void aom_dc_predictor_16x8_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 16, 8, above, left, 3, DC_MULTIPLIER_1X2); } void aom_dc_predictor_8x32_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 8, 32, above, left, 3, DC_MULTIPLIER_1X4); } void aom_dc_predictor_32x8_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 32, 8, above, left, 3, DC_MULTIPLIER_1X4); } void aom_dc_predictor_16x32_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 16, 32, above, left, 4, DC_MULTIPLIER_1X2); } void aom_dc_predictor_32x16_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 32, 16, above, left, 4, DC_MULTIPLIER_1X2); } void aom_dc_predictor_16x64_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 16, 64, above, left, 4, DC_MULTIPLIER_1X4); } void aom_dc_predictor_64x16_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 64, 16, above, left, 4, DC_MULTIPLIER_1X4); } void aom_dc_predictor_32x64_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 32, 64, above, left, 5, DC_MULTIPLIER_1X2); } void aom_dc_predictor_64x32_c(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { dc_predictor_rect(dst, stride, 64, 32, above, left, 5, DC_MULTIPLIER_1X2); } #undef DC_MULTIPLIER_1X2 #undef DC_MULTIPLIER_1X4 static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int r; (void)left; (void)bd; for (r = 0; r < bh; r++) { memcpy(dst, above, bw * sizeof(uint16_t)); dst += stride; } } static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int r; (void)above; (void)bd; for (r = 0; r < bh; r++) { aom_memset16(dst, left[r], bw); dst += stride; } } static INLINE void highbd_paeth_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int r, c; const uint16_t ytop_left = above[-1]; (void)bd; for (r = 0; r < bh; r++) { for (c = 0; c < bw; c++) dst[c] = paeth_predictor_single(left[r], above[c], ytop_left); dst += stride; } } static INLINE void highbd_smooth_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { (void)bd; const uint16_t below_pred = left[bh - 1]; // estimated by bottom-left pixel const uint16_t right_pred = above[bw - 1]; // estimated by top-right pixel const uint8_t *const sm_weights_w = sm_weight_arrays + bw; const uint8_t *const sm_weights_h = sm_weight_arrays + bh; // scale = 2 * 2^sm_weight_log2_scale const int log2_scale = 1 + sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights_w, sm_weights_h, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; ++r) { int c; for (c = 0; c < bw; ++c) { const uint16_t pixels[] = { above[c], below_pred, left[r], right_pred }; const uint8_t weights[] = { sm_weights_h[r], scale - sm_weights_h[r], sm_weights_w[c], scale - sm_weights_w[c] }; uint32_t this_pred = 0; int i; assert(scale >= sm_weights_h[r] && scale >= sm_weights_w[c]); for (i = 0; i < 4; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void highbd_smooth_v_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { (void)bd; const uint16_t below_pred = left[bh - 1]; // estimated by bottom-left pixel const uint8_t *const sm_weights = sm_weight_arrays + bh; // scale = 2^sm_weight_log2_scale const int log2_scale = sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights, sm_weights, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; r++) { int c; for (c = 0; c < bw; ++c) { const uint16_t pixels[] = { above[c], below_pred }; const uint8_t weights[] = { sm_weights[r], scale - sm_weights[r] }; uint32_t this_pred = 0; assert(scale >= sm_weights[r]); int i; for (i = 0; i < 2; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void highbd_smooth_h_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { (void)bd; const uint16_t right_pred = above[bw - 1]; // estimated by top-right pixel const uint8_t *const sm_weights = sm_weight_arrays + bw; // scale = 2^sm_weight_log2_scale const int log2_scale = sm_weight_log2_scale; const uint16_t scale = (1 << sm_weight_log2_scale); sm_weights_sanity_checks(sm_weights, sm_weights, scale, log2_scale + sizeof(*dst)); int r; for (r = 0; r < bh; r++) { int c; for (c = 0; c < bw; ++c) { const uint16_t pixels[] = { left[r], right_pred }; const uint8_t weights[] = { sm_weights[c], scale - sm_weights[c] }; uint32_t this_pred = 0; assert(scale >= sm_weights[c]); int i; for (i = 0; i < 2; ++i) { this_pred += weights[i] * pixels[i]; } dst[c] = divide_round(this_pred, log2_scale); } dst += stride; } } static INLINE void highbd_dc_128_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int r; (void)above; (void)left; for (r = 0; r < bh; r++) { aom_memset16(dst, 128 << (bd - 8), bw); dst += stride; } } static INLINE void highbd_dc_left_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; (void)above; (void)bd; for (i = 0; i < bh; i++) sum += left[i]; expected_dc = (sum + (bh >> 1)) / bh; for (r = 0; r < bh; r++) { aom_memset16(dst, expected_dc, bw); dst += stride; } } static INLINE void highbd_dc_top_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; (void)left; (void)bd; for (i = 0; i < bw; i++) sum += above[i]; expected_dc = (sum + (bw >> 1)) / bw; for (r = 0; r < bh; r++) { aom_memset16(dst, expected_dc, bw); dst += stride; } } static INLINE void highbd_dc_predictor(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd) { int i, r, expected_dc, sum = 0; const int count = bw + bh; (void)bd; for (i = 0; i < bw; i++) { sum += above[i]; } for (i = 0; i < bh; i++) { sum += left[i]; } expected_dc = (sum + (count >> 1)) / count; for (r = 0; r < bh; r++) { aom_memset16(dst, expected_dc, bw); dst += stride; } } // Obtained similarly as DC_MULTIPLIER_1X2 and DC_MULTIPLIER_1X4 above, but // assume 2nd shift of 17 bits instead of 16. // Note: Strictly speaking, 2nd shift needs to be 17 only when: // - bit depth == 12, and // - bw + bh is divisible by 5 (as opposed to divisible by 3). // All other cases can use half the multipliers with a shift of 16 instead. // This special optimization can be used when writing assembly code. #define HIGHBD_DC_MULTIPLIER_1X2 0xAAAB // Note: This constant is odd, but a smaller even constant (0x199a) with the // appropriate shift should work for neon in 8/10-bit. #define HIGHBD_DC_MULTIPLIER_1X4 0x6667 #define HIGHBD_DC_SHIFT2 17 static INLINE void highbd_dc_predictor_rect(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int bd, int shift1, uint32_t multiplier) { int sum = 0; (void)bd; for (int i = 0; i < bw; i++) { sum += above[i]; } for (int i = 0; i < bh; i++) { sum += left[i]; } const int expected_dc = divide_using_multiply_shift( sum + ((bw + bh) >> 1), shift1, multiplier, HIGHBD_DC_SHIFT2); assert(expected_dc < (1 << bd)); for (int r = 0; r < bh; r++) { aom_memset16(dst, expected_dc, bw); dst += stride; } } #undef HIGHBD_DC_SHIFT2 void aom_highbd_dc_predictor_4x8_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 4, 8, above, left, bd, 2, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_8x4_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 8, 4, above, left, bd, 2, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_4x16_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 4, 16, above, left, bd, 2, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_16x4_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 16, 4, above, left, bd, 2, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_8x16_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 8, 16, above, left, bd, 3, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_16x8_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 16, 8, above, left, bd, 3, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_8x32_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 8, 32, above, left, bd, 3, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_32x8_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 32, 8, above, left, bd, 3, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_16x32_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 16, 32, above, left, bd, 4, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_32x16_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 32, 16, above, left, bd, 4, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_16x64_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 16, 64, above, left, bd, 4, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_64x16_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 64, 16, above, left, bd, 4, HIGHBD_DC_MULTIPLIER_1X4); } void aom_highbd_dc_predictor_32x64_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 32, 64, above, left, bd, 5, HIGHBD_DC_MULTIPLIER_1X2); } void aom_highbd_dc_predictor_64x32_c(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { highbd_dc_predictor_rect(dst, stride, 64, 32, above, left, bd, 5, HIGHBD_DC_MULTIPLIER_1X2); } #undef HIGHBD_DC_MULTIPLIER_1X2 #undef HIGHBD_DC_MULTIPLIER_1X4 // This serves as a wrapper function, so that all the prediction functions // can be unified and accessed as a pointer array. Note that the boundary // above and left are not necessarily used all the time. #define intra_pred_sized(type, width, height) \ void aom_##type##_predictor_##width##x##height##_c( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *above, \ const uint8_t *left) { \ type##_predictor(dst, stride, width, height, above, left); \ } #define intra_pred_highbd_sized(type, width, height) \ void aom_highbd_##type##_predictor_##width##x##height##_c( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ highbd_##type##_predictor(dst, stride, width, height, above, left, bd); \ } /* clang-format off */ #define intra_pred_rectangular(type) \ intra_pred_sized(type, 4, 8) \ intra_pred_sized(type, 8, 4) \ intra_pred_sized(type, 8, 16) \ intra_pred_sized(type, 16, 8) \ intra_pred_sized(type, 16, 32) \ intra_pred_sized(type, 32, 16) \ intra_pred_sized(type, 32, 64) \ intra_pred_sized(type, 64, 32) \ intra_pred_sized(type, 4, 16) \ intra_pred_sized(type, 16, 4) \ intra_pred_sized(type, 8, 32) \ intra_pred_sized(type, 32, 8) \ intra_pred_sized(type, 16, 64) \ intra_pred_sized(type, 64, 16) \ intra_pred_highbd_sized(type, 4, 8) \ intra_pred_highbd_sized(type, 8, 4) \ intra_pred_highbd_sized(type, 8, 16) \ intra_pred_highbd_sized(type, 16, 8) \ intra_pred_highbd_sized(type, 16, 32) \ intra_pred_highbd_sized(type, 32, 16) \ intra_pred_highbd_sized(type, 32, 64) \ intra_pred_highbd_sized(type, 64, 32) \ intra_pred_highbd_sized(type, 4, 16) \ intra_pred_highbd_sized(type, 16, 4) \ intra_pred_highbd_sized(type, 8, 32) \ intra_pred_highbd_sized(type, 32, 8) \ intra_pred_highbd_sized(type, 16, 64) \ intra_pred_highbd_sized(type, 64, 16) #define intra_pred_above_4x4(type) \ intra_pred_sized(type, 8, 8) \ intra_pred_sized(type, 16, 16) \ intra_pred_sized(type, 32, 32) \ intra_pred_sized(type, 64, 64) \ intra_pred_highbd_sized(type, 4, 4) \ intra_pred_highbd_sized(type, 8, 8) \ intra_pred_highbd_sized(type, 16, 16) \ intra_pred_highbd_sized(type, 32, 32) \ intra_pred_highbd_sized(type, 64, 64) \ intra_pred_rectangular(type) #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4, 4) \ intra_pred_above_4x4(type) #define intra_pred_square(type) \ intra_pred_sized(type, 4, 4) \ intra_pred_sized(type, 8, 8) \ intra_pred_sized(type, 16, 16) \ intra_pred_sized(type, 32, 32) \ intra_pred_sized(type, 64, 64) \ intra_pred_highbd_sized(type, 4, 4) \ intra_pred_highbd_sized(type, 8, 8) \ intra_pred_highbd_sized(type, 16, 16) \ intra_pred_highbd_sized(type, 32, 32) \ intra_pred_highbd_sized(type, 64, 64) intra_pred_allsizes(v) intra_pred_allsizes(h) intra_pred_allsizes(smooth) intra_pred_allsizes(smooth_v) intra_pred_allsizes(smooth_h) intra_pred_allsizes(paeth) intra_pred_allsizes(dc_128) intra_pred_allsizes(dc_left) intra_pred_allsizes(dc_top) intra_pred_square(dc) /* clang-format on */ #undef intra_pred_allsizes