# -*- coding: utf-8 -*-

# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

from __future__ import absolute_import, print_function, unicode_literals

import unittest

from ..graph import Graph
from mozunit import main


class TestGraph(unittest.TestCase):

    tree = Graph(set(['a', 'b', 'c', 'd', 'e', 'f', 'g']), {
        ('a', 'b', 'L'),
        ('a', 'c', 'L'),
        ('b', 'd', 'K'),
        ('b', 'e', 'K'),
        ('c', 'f', 'N'),
        ('c', 'g', 'N'),
    })

    linear = Graph(set(['1', '2', '3', '4']), {
        ('1', '2', 'L'),
        ('2', '3', 'L'),
        ('3', '4', 'L'),
    })

    diamonds = Graph(set(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']),
                     set(tuple(x) for x in
                         'AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL'.split()
                         ))

    multi_edges = Graph(set(['1', '2', '3', '4']), {
        ('2', '1', 'red'),
        ('2', '1', 'blue'),
        ('3', '1', 'red'),
        ('3', '2', 'blue'),
        ('3', '2', 'green'),
        ('4', '3', 'green'),
    })

    disjoint = Graph(set(['1', '2', '3', '4', 'α', 'β', 'γ']), {
        ('2', '1', 'red'),
        ('3', '1', 'red'),
        ('3', '2', 'green'),
        ('4', '3', 'green'),
        ('α', 'β', 'πράσινο'),
        ('β', 'γ', 'κόκκινο'),
        ('α', 'γ', 'μπλε'),
    })

    def test_transitive_closure_empty(self):
        "transitive closure of an empty set is an empty graph"
        g = Graph(set(['a', 'b', 'c']), {('a', 'b', 'L'), ('a', 'c', 'L')})
        self.assertEqual(g.transitive_closure(set()),
                         Graph(set(), set()))

    def test_transitive_closure_disjoint(self):
        "transitive closure of a disjoint set is a subset"
        g = Graph(set(['a', 'b', 'c']), set())
        self.assertEqual(g.transitive_closure(set(['a', 'c'])),
                         Graph(set(['a', 'c']), set()))

    def test_transitive_closure_trees(self):
        "transitive closure of a tree, at two non-root nodes, is the two subtrees"
        self.assertEqual(self.tree.transitive_closure(set(['b', 'c'])),
                         Graph(set(['b', 'c', 'd', 'e', 'f', 'g']), {
                             ('b', 'd', 'K'),
                             ('b', 'e', 'K'),
                             ('c', 'f', 'N'),
                             ('c', 'g', 'N'),
                         }))

    def test_transitive_closure_multi_edges(self):
        "transitive closure of a tree with multiple edges between nodes keeps those edges"
        self.assertEqual(self.multi_edges.transitive_closure(set(['3'])),
                         Graph(set(['1', '2', '3']), {
                             ('2', '1', 'red'),
                             ('2', '1', 'blue'),
                             ('3', '1', 'red'),
                             ('3', '2', 'blue'),
                             ('3', '2', 'green'),
                         }))

    def test_transitive_closure_disjoint_edges(self):
        "transitive closure of a disjoint graph keeps those edges"
        self.assertEqual(self.disjoint.transitive_closure(set(['3', 'β'])),
                         Graph(set(['1', '2', '3', 'β', 'γ']), {
                             ('2', '1', 'red'),
                             ('3', '1', 'red'),
                             ('3', '2', 'green'),
                             ('β', 'γ', 'κόκκινο'),
                         }))

    def test_transitive_closure_linear(self):
        "transitive closure of a linear graph includes all nodes in the line"
        self.assertEqual(self.linear.transitive_closure(set(['1'])), self.linear)

    def test_visit_postorder_empty(self):
        "postorder visit of an empty graph is empty"
        self.assertEqual(list(Graph(set(), set()).visit_postorder()), [])

    def assert_postorder(self, seq, all_nodes):
        seen = set()
        for e in seq:
            for l, r, n in self.tree.edges:
                if l == e:
                    self.failUnless(r in seen)
            seen.add(e)
        self.assertEqual(seen, all_nodes)

    def test_visit_postorder_tree(self):
        "postorder visit of a tree satisfies invariant"
        self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes)

    def test_visit_postorder_diamonds(self):
        "postorder visit of a graph full of diamonds satisfies invariant"
        self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes)

    def test_visit_postorder_multi_edges(self):
        "postorder visit of a graph with duplicate edges satisfies invariant"
        self.assert_postorder(self.multi_edges.visit_postorder(), self.multi_edges.nodes)

    def test_visit_postorder_disjoint(self):
        "postorder visit of a disjoint graph satisfies invariant"
        self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes)

    def test_links_dict(self):
        "link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.links_dict(), {
            '2': set(['1']),
            '3': set(['1', '2']),
            '4': set(['3']),
        })

    def test_named_links_dict(self):
        "named link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.named_links_dict(), {
            '2': dict(red='1', blue='1'),
            '3': dict(red='1', blue='2', green='2'),
            '4': dict(green='3'),
        })

    def test_reverse_links_dict(self):
        "reverse link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.reverse_links_dict(), {
            '1': set(['2', '3']),
            '2': set(['3']),
            '3': set(['4']),
        })

if __name__ == '__main__':
    main()