/* * pi.c * * Compute pi to an arbitrary number of digits. Uses Machin's formula, * like everyone else on the planet: * * pi = 16 * arctan(1/5) - 4 * arctan(1/239) * * This is pretty effective for up to a few thousand digits, but it * gets pretty slow after that. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include "mpi.h" mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum); int main(int argc, char *argv[]) { mp_err res; mp_digit ndigits; mp_int sum1, sum2; clock_t start, stop; int out = 0; /* Make the user specify precision on the command line */ if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return 1; } if ((ndigits = abs(atoi(argv[1]))) == 0) { fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]); return 1; } start = clock(); mp_init(&sum1); mp_init(&sum2); /* sum1 = 16 * arctan(1/5) */ if ((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) { fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } /* sum2 = 4 * arctan(1/239) */ if ((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) { fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } /* pi = sum1 - sum2 */ if ((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) { fprintf(stderr, "%s: mp_sub: %s\n", argv[0], mp_strerror(res)); out = 1; goto CLEANUP; } stop = clock(); /* Write the output in decimal */ { char *buf = malloc(mp_radix_size(&sum1, 10)); if (buf == NULL) { fprintf(stderr, "%s: out of memory\n", argv[0]); out = 1; goto CLEANUP; } mp_todecimal(&sum1, buf); printf("%s\n", buf); free(buf); } fprintf(stderr, "Computation took %.2f sec.\n", (double)(stop - start) / CLOCKS_PER_SEC); CLEANUP: mp_clear(&sum1); mp_clear(&sum2); return out; } /* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */ mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum) { mp_int t, v; mp_digit q = 1, rd; mp_err res; int sign = 1; prec += 3; /* push inaccuracies off the end */ mp_init(&t); mp_set(&t, 10); mp_init(&v); if ((res = mp_expt_d(&t, prec, &t)) != MP_OKAY || /* get 10^prec */ (res = mp_mul_d(&t, mul, &t)) != MP_OKAY || /* ... times mul */ (res = mp_mul_d(&t, x, &t)) != MP_OKAY) /* ... times x */ goto CLEANUP; /* The extra multiplication by x in the above takes care of what would otherwise have to be a special case for 1 / x^1 during the first loop iteration. A little sneaky, but effective. We compute arctan(1/x) by the formula: 1 1 1 1 - - ----- + ----- - ----- + ... x 3 x^3 5 x^5 7 x^7 We multiply through by 'mul' beforehand, which gives us a couple more iterations and more precision */ x *= x; /* works as long as x < sqrt(RADIX), which it is here */ mp_zero(sum); do { if ((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY) goto CLEANUP; if (sign < 0 && rd != 0) mp_add_d(&t, 1, &t); if ((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY) goto CLEANUP; if (sign < 0 && rd != 0) mp_add_d(&v, 1, &v); if (sign > 0) res = mp_add(sum, &v, sum); else res = mp_sub(sum, &v, sum); if (res != MP_OKAY) goto CLEANUP; sign *= -1; q += 2; } while (mp_cmp_z(&t) != 0); /* Chop off inaccurate low-order digits */ mp_div_d(sum, 1000, sum, NULL); CLEANUP: mp_clear(&v); mp_clear(&t); return res; } /*------------------------------------------------------------------------*/ /* HERE THERE BE DRAGONS */