/* * makeprime.c * * A simple prime generator function (and test driver). Prints out the * first prime it finds greater than or equal to the starting value. * * Usage: makeprime * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include /* These two must be included for make_prime() to work */ #include "mpi.h" #include "mpprime.h" /* make_prime(p, nr) Find the smallest prime integer greater than or equal to p, where primality is verified by 'nr' iterations of the Rabin-Miller probabilistic primality test. The caller is responsible for generating the initial value of p. Returns MP_OKAY if a prime has been generated, otherwise the error code indicates some other problem. The value of p is clobbered; the caller should keep a copy if the value is needed. */ mp_err make_prime(mp_int *p, int nr); /* The main() is not required -- it's just a test driver */ int main(int argc, char *argv[]) { mp_int start; mp_err res; if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return 1; } mp_init(&start); if (argv[1][0] == '0' && tolower(argv[1][1]) == 'x') { mp_read_radix(&start, argv[1] + 2, 16); } else { mp_read_radix(&start, argv[1], 10); } mp_abs(&start, &start); if ((res = make_prime(&start, 5)) != MP_OKAY) { fprintf(stderr, "%s: error: %s\n", argv[0], mp_strerror(res)); mp_clear(&start); return 1; } else { char *buf = malloc(mp_radix_size(&start, 10)); mp_todecimal(&start, buf); printf("%s\n", buf); free(buf); mp_clear(&start); return 0; } } /* end main() */ /*------------------------------------------------------------------------*/ mp_err make_prime(mp_int *p, int nr) { mp_err res; if (mp_iseven(p)) { mp_add_d(p, 1, p); } do { mp_digit which = prime_tab_size; /* First test for divisibility by a few small primes */ if ((res = mpp_divis_primes(p, &which)) == MP_YES) continue; else if (res != MP_NO) goto CLEANUP; /* If that passes, try one iteration of Fermat's test */ if ((res = mpp_fermat(p, 2)) == MP_NO) continue; else if (res != MP_YES) goto CLEANUP; /* If that passes, run Rabin-Miller as often as requested */ if ((res = mpp_pprime(p, nr)) == MP_YES) break; else if (res != MP_NO) goto CLEANUP; } while ((res = mp_add_d(p, 2, p)) == MP_OKAY); CLEANUP: return res; } /* end make_prime() */ /*------------------------------------------------------------------------*/ /* HERE THERE BE DRAGONS */