/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * Derived from public domain C code by Adan Langley and Daniel J. Bernstein */ #include "uint128.h" #include "ecl-priv.h" #include "mpi.h" #include <stdint.h> #include <stdio.h> #include <string.h> typedef uint8_t u8; typedef uint64_t felem; /* Sum two numbers: output += in */ static void fsum(felem *output, const felem *in) { unsigned i; for (i = 0; i < 5; ++i) { output[i] += in[i]; } } /* Find the difference of two numbers: output = in - output * (note the order of the arguments!) */ static void fdifference_backwards(felem *ioutput, const felem *iin) { static const int64_t twotothe51 = ((int64_t)1l << 51); const int64_t *in = (const int64_t *)iin; int64_t *out = (int64_t *)ioutput; out[0] = in[0] - out[0]; out[1] = in[1] - out[1]; out[2] = in[2] - out[2]; out[3] = in[3] - out[3]; out[4] = in[4] - out[4]; // An arithmetic shift right of 63 places turns a positive number to 0 and a // negative number to all 1's. This gives us a bitmask that lets us avoid // side-channel prone branches. int64_t t; #define NEGCHAIN(a, b) \ t = out[a] >> 63; \ out[a] += twotothe51 & t; \ out[b] -= 1 & t; #define NEGCHAIN19(a, b) \ t = out[a] >> 63; \ out[a] += twotothe51 & t; \ out[b] -= 19 & t; NEGCHAIN(0, 1); NEGCHAIN(1, 2); NEGCHAIN(2, 3); NEGCHAIN(3, 4); NEGCHAIN19(4, 0); NEGCHAIN(0, 1); NEGCHAIN(1, 2); NEGCHAIN(2, 3); NEGCHAIN(3, 4); } /* Multiply a number by a scalar: output = in * scalar */ static void fscalar_product(felem *output, const felem *in, const felem scalar) { uint128_t tmp, tmp2; tmp = mul6464(in[0], scalar); output[0] = mask51(tmp); tmp2 = mul6464(in[1], scalar); tmp = add128(tmp2, rshift128(tmp, 51)); output[1] = mask51(tmp); tmp2 = mul6464(in[2], scalar); tmp = add128(tmp2, rshift128(tmp, 51)); output[2] = mask51(tmp); tmp2 = mul6464(in[3], scalar); tmp = add128(tmp2, rshift128(tmp, 51)); output[3] = mask51(tmp); tmp2 = mul6464(in[4], scalar); tmp = add128(tmp2, rshift128(tmp, 51)); output[4] = mask51(tmp); output[0] += mask_lower(rshift128(tmp, 51)) * 19; } /* Multiply two numbers: output = in2 * in * * output must be distinct to both inputs. The inputs are reduced coefficient * form, the output is not. */ static void fmul(felem *output, const felem *in2, const felem *in) { uint128_t t0, t1, t2, t3, t4, t5, t6, t7, t8; t0 = mul6464(in[0], in2[0]); t1 = add128(mul6464(in[1], in2[0]), mul6464(in[0], in2[1])); t2 = add128(add128(mul6464(in[0], in2[2]), mul6464(in[2], in2[0])), mul6464(in[1], in2[1])); t3 = add128(add128(add128(mul6464(in[0], in2[3]), mul6464(in[3], in2[0])), mul6464(in[1], in2[2])), mul6464(in[2], in2[1])); t4 = add128(add128(add128(add128(mul6464(in[0], in2[4]), mul6464(in[4], in2[0])), mul6464(in[3], in2[1])), mul6464(in[1], in2[3])), mul6464(in[2], in2[2])); t5 = add128(add128(add128(mul6464(in[4], in2[1]), mul6464(in[1], in2[4])), mul6464(in[2], in2[3])), mul6464(in[3], in2[2])); t6 = add128(add128(mul6464(in[4], in2[2]), mul6464(in[2], in2[4])), mul6464(in[3], in2[3])); t7 = add128(mul6464(in[3], in2[4]), mul6464(in[4], in2[3])); t8 = mul6464(in[4], in2[4]); t0 = add128(t0, mul12819(t5)); t1 = add128(t1, mul12819(t6)); t2 = add128(t2, mul12819(t7)); t3 = add128(t3, mul12819(t8)); t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t4 = add128(t4, rshift128(t3, 51)); t0 = add128(t0, mul12819(rshift128(t4, 51))); t1 = add128(t1, rshift128(t0, 51)); t2 = mask51full(t2); t2 = add128(t2, rshift128(t1, 51)); output[0] = mask51(t0); output[1] = mask51(t1); output[2] = mask_lower(t2); output[3] = mask51(t3); output[4] = mask51(t4); } static void fsquare(felem *output, const felem *in) { uint128_t t0, t1, t2, t3, t4, t5, t6, t7, t8; t0 = mul6464(in[0], in[0]); t1 = lshift128(mul6464(in[0], in[1]), 1); t2 = add128(lshift128(mul6464(in[0], in[2]), 1), mul6464(in[1], in[1])); t3 = add128(lshift128(mul6464(in[0], in[3]), 1), lshift128(mul6464(in[1], in[2]), 1)); t4 = add128(add128(lshift128(mul6464(in[0], in[4]), 1), lshift128(mul6464(in[3], in[1]), 1)), mul6464(in[2], in[2])); t5 = add128(lshift128(mul6464(in[4], in[1]), 1), lshift128(mul6464(in[2], in[3]), 1)); t6 = add128(lshift128(mul6464(in[4], in[2]), 1), mul6464(in[3], in[3])); t7 = lshift128(mul6464(in[3], in[4]), 1); t8 = mul6464(in[4], in[4]); t0 = add128(t0, mul12819(t5)); t1 = add128(t1, mul12819(t6)); t2 = add128(t2, mul12819(t7)); t3 = add128(t3, mul12819(t8)); t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t4 = add128(t4, rshift128(t3, 51)); t0 = add128(t0, mul12819(rshift128(t4, 51))); t1 = add128(t1, rshift128(t0, 51)); output[0] = mask51(t0); output[1] = mask_lower(t1); output[2] = mask51(t2); output[3] = mask51(t3); output[4] = mask51(t4); } /* Take a 32-byte number and expand it into polynomial form */ static void NO_SANITIZE_ALIGNMENT fexpand(felem *output, const u8 *in) { output[0] = *((const uint64_t *)(in)) & MASK51; output[1] = (*((const uint64_t *)(in + 6)) >> 3) & MASK51; output[2] = (*((const uint64_t *)(in + 12)) >> 6) & MASK51; output[3] = (*((const uint64_t *)(in + 19)) >> 1) & MASK51; output[4] = (*((const uint64_t *)(in + 24)) >> 12) & MASK51; } /* Take a fully reduced polynomial form number and contract it into a * 32-byte array */ static void fcontract(u8 *output, const felem *input) { uint128_t t0 = init128x(input[0]); uint128_t t1 = init128x(input[1]); uint128_t t2 = init128x(input[2]); uint128_t t3 = init128x(input[3]); uint128_t t4 = init128x(input[4]); uint128_t tmp = init128x(19); t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t2 = mask51full(t2); t4 = add128(t4, rshift128(t3, 51)); t3 = mask51full(t3); t0 = add128(t0, mul12819(rshift128(t4, 51))); t4 = mask51full(t4); t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t2 = mask51full(t2); t4 = add128(t4, rshift128(t3, 51)); t3 = mask51full(t3); t0 = add128(t0, mul12819(rshift128(t4, 51))); t4 = mask51full(t4); /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ t0 = add128(t0, tmp); t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t2 = mask51full(t2); t4 = add128(t4, rshift128(t3, 51)); t3 = mask51full(t3); t0 = add128(t0, mul12819(rshift128(t4, 51))); t4 = mask51full(t4); /* now between 19 and 2^255-1 in both cases, and offset by 19. */ t0 = add128(t0, init128x(0x8000000000000 - 19)); tmp = init128x(0x8000000000000 - 1); t1 = add128(t1, tmp); t2 = add128(t2, tmp); t3 = add128(t3, tmp); t4 = add128(t4, tmp); /* now between 2^255 and 2^256-20, and offset by 2^255. */ t1 = add128(t1, rshift128(t0, 51)); t0 = mask51full(t0); t2 = add128(t2, rshift128(t1, 51)); t1 = mask51full(t1); t3 = add128(t3, rshift128(t2, 51)); t2 = mask51full(t2); t4 = add128(t4, rshift128(t3, 51)); t3 = mask51full(t3); t4 = mask51full(t4); *((uint64_t *)(output)) = mask_lower(t0) | mask_lower(t1) << 51; *((uint64_t *)(output + 8)) = (mask_lower(t1) >> 13) | (mask_lower(t2) << 38); *((uint64_t *)(output + 16)) = (mask_lower(t2) >> 26) | (mask_lower(t3) << 25); *((uint64_t *)(output + 24)) = (mask_lower(t3) >> 39) | (mask_lower(t4) << 12); } /* Input: Q, Q', Q-Q' * Output: 2Q, Q+Q' * * x2 z3: long form * x3 z3: long form * x z: short form, destroyed * xprime zprime: short form, destroyed * qmqp: short form, preserved */ static void fmonty(felem *x2, felem *z2, /* output 2Q */ felem *x3, felem *z3, /* output Q + Q' */ felem *x, felem *z, /* input Q */ felem *xprime, felem *zprime, /* input Q' */ const felem *qmqp /* input Q - Q' */) { felem origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5], zzprime[5], zzzprime[5]; memcpy(origx, x, 5 * sizeof(felem)); fsum(x, z); fdifference_backwards(z, origx); // does x - z memcpy(origxprime, xprime, sizeof(felem) * 5); fsum(xprime, zprime); fdifference_backwards(zprime, origxprime); fmul(xxprime, xprime, z); fmul(zzprime, x, zprime); memcpy(origxprime, xxprime, sizeof(felem) * 5); fsum(xxprime, zzprime); fdifference_backwards(zzprime, origxprime); fsquare(x3, xxprime); fsquare(zzzprime, zzprime); fmul(z3, zzzprime, qmqp); fsquare(xx, x); fsquare(zz, z); fmul(x2, xx, zz); fdifference_backwards(zz, xx); // does zz = xx - zz fscalar_product(zzz, zz, 121665); fsum(zzz, xx); fmul(z2, zz, zzz); } // ----------------------------------------------------------------------------- // Maybe swap the contents of two felem arrays (@a and @b), each @len elements // long. Perform the swap iff @swap is non-zero. // // This function performs the swap without leaking any side-channel // information. // ----------------------------------------------------------------------------- static void swap_conditional(felem *a, felem *b, unsigned len, felem iswap) { unsigned i; const felem swap = 1 + ~iswap; for (i = 0; i < len; ++i) { const felem x = swap & (a[i] ^ b[i]); a[i] ^= x; b[i] ^= x; } } /* Calculates nQ where Q is the x-coordinate of a point on the curve * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a 32-byte number * q: a point of the curve (short form) */ static void cmult(felem *resultx, felem *resultz, const u8 *n, const felem *q) { felem a[5] = { 0 }, b[5] = { 1 }, c[5] = { 1 }, d[5] = { 0 }; felem *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; felem e[5] = { 0 }, f[5] = { 1 }, g[5] = { 0 }, h[5] = { 1 }; felem *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; unsigned i, j; memcpy(nqpqx, q, sizeof(felem) * 5); for (i = 0; i < 32; ++i) { u8 byte = n[31 - i]; for (j = 0; j < 8; ++j) { const felem bit = byte >> 7; swap_conditional(nqx, nqpqx, 5, bit); swap_conditional(nqz, nqpqz, 5, bit); fmonty(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q); swap_conditional(nqx2, nqpqx2, 5, bit); swap_conditional(nqz2, nqpqz2, 5, bit); t = nqx; nqx = nqx2; nqx2 = t; t = nqz; nqz = nqz2; nqz2 = t; t = nqpqx; nqpqx = nqpqx2; nqpqx2 = t; t = nqpqz; nqpqz = nqpqz2; nqpqz2 = t; byte <<= 1; } } memcpy(resultx, nqx, sizeof(felem) * 5); memcpy(resultz, nqz, sizeof(felem) * 5); } // ----------------------------------------------------------------------------- // Shamelessly copied from djb's code // ----------------------------------------------------------------------------- static void crecip(felem *out, const felem *z) { felem z2[5]; felem z9[5]; felem z11[5]; felem z2_5_0[5]; felem z2_10_0[5]; felem z2_20_0[5]; felem z2_50_0[5]; felem z2_100_0[5]; felem t0[5]; felem t1[5]; int i; /* 2 */ fsquare(z2, z); /* 4 */ fsquare(t1, z2); /* 8 */ fsquare(t0, t1); /* 9 */ fmul(z9, t0, z); /* 11 */ fmul(z11, z9, z2); /* 22 */ fsquare(t0, z11); /* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9); /* 2^6 - 2^1 */ fsquare(t0, z2_5_0); /* 2^7 - 2^2 */ fsquare(t1, t0); /* 2^8 - 2^3 */ fsquare(t0, t1); /* 2^9 - 2^4 */ fsquare(t1, t0); /* 2^10 - 2^5 */ fsquare(t0, t1); /* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0); /* 2^11 - 2^1 */ fsquare(t0, z2_10_0); /* 2^12 - 2^2 */ fsquare(t1, t0); /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } /* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0); /* 2^21 - 2^1 */ fsquare(t0, z2_20_0); /* 2^22 - 2^2 */ fsquare(t1, t0); /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } /* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0); /* 2^41 - 2^1 */ fsquare(t1, t0); /* 2^42 - 2^2 */ fsquare(t0, t1); /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1, t0); fsquare(t0, t1); } /* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0); /* 2^51 - 2^1 */ fsquare(t0, z2_50_0); /* 2^52 - 2^2 */ fsquare(t1, t0); /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } /* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0); /* 2^101 - 2^1 */ fsquare(t1, z2_100_0); /* 2^102 - 2^2 */ fsquare(t0, t1); /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1, t0); fsquare(t0, t1); } /* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0); /* 2^201 - 2^1 */ fsquare(t0, t1); /* 2^202 - 2^2 */ fsquare(t1, t0); /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } /* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0); /* 2^251 - 2^1 */ fsquare(t1, t0); /* 2^252 - 2^2 */ fsquare(t0, t1); /* 2^253 - 2^3 */ fsquare(t1, t0); /* 2^254 - 2^4 */ fsquare(t0, t1); /* 2^255 - 2^5 */ fsquare(t1, t0); /* 2^255 - 21 */ fmul(out, t1, z11); } SECStatus ec_Curve25519_mul(uint8_t *mypublic, const uint8_t *secret, const uint8_t *basepoint) { felem bp[5], x[5], z[5], zmone[5]; uint8_t e[32]; int i; for (i = 0; i < 32; ++i) { e[i] = secret[i]; } e[0] &= 248; e[31] &= 127; e[31] |= 64; fexpand(bp, basepoint); cmult(x, z, e, bp); crecip(zmone, z); fmul(z, x, zmone); fcontract(mypublic, z); return 0; }