// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // The Google C++ Testing Framework (Google Test) #include "gtest/gtest.h" #include "gtest/gtest-spi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NOLINT #include #include #if GTEST_OS_LINUX // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # include // NOLINT # include // NOLINT // Declares vsnprintf(). This header is not available on Windows. # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # include #elif GTEST_OS_SYMBIAN # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT #elif GTEST_OS_ZOS # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT // On z/OS we additionally need strings.h for strcasecmp. # include // NOLINT #elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE. # include // NOLINT # undef min #elif GTEST_OS_WINDOWS // We are on Windows proper. # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # if GTEST_OS_WINDOWS_MINGW // MinGW has gettimeofday() but not _ftime64(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). // TODO(kenton@google.com): There are other ways to get the time on // Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW // supports these. consider using them instead. # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # endif // GTEST_OS_WINDOWS_MINGW // cpplint thinks that the header is already included, so we want to // silence it. # include // NOLINT # undef min #else // Assume other platforms have gettimeofday(). // TODO(kenton@google.com): Use autoconf to detect availability of // gettimeofday(). # define GTEST_HAS_GETTIMEOFDAY_ 1 // cpplint thinks that the header is already included, so we want to // silence it. # include // NOLINT # include // NOLINT #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include #endif #if GTEST_CAN_STREAM_RESULTS_ # include // NOLINT # include // NOLINT #endif // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 #include "src/gtest-internal-inl.h" #undef GTEST_IMPLEMENTATION_ #if GTEST_OS_WINDOWS # define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS namespace testing { using internal::CountIf; using internal::ForEach; using internal::GetElementOr; using internal::Shuffle; // Constants. // A test whose test case name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test case whose name matches this filter is considered a death // test case and will be run before test cases whose name doesn't // match this filter. static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output file for XML output. static const char kDefaultOutputFile[] = "test_detail.xml"; // The environment variable name for the test shard index. static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; // The environment variable name for the total number of test shards. static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard status file. static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; // g_help_flag is true iff the --help flag or an equivalent form is // specified on the command line. bool g_help_flag = false; } // namespace internal static const char* GetDefaultFilter() { return kUniversalFilter; } GTEST_DEFINE_bool_( also_run_disabled_tests, internal::BoolFromGTestEnv("also_run_disabled_tests", false), "Run disabled tests too, in addition to the tests normally being run."); GTEST_DEFINE_bool_( break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false), "True iff a failed assertion should be a debugger break-point."); GTEST_DEFINE_bool_( catch_exceptions, internal::BoolFromGTestEnv("catch_exceptions", true), "True iff " GTEST_NAME_ " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to a terminal type that supports colors."); GTEST_DEFINE_string_( filter, internal::StringFromGTestEnv("filter", GetDefaultFilter()), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); GTEST_DEFINE_string_( output, internal::StringFromGTestEnv("output", ""), "A format (currently must be \"xml\"), optionally followed " "by a colon and an output file name or directory. A directory " "is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_( print_time, internal::BoolFromGTestEnv("print_time", true), "True iff " GTEST_NAME_ " should display elapsed time in text output."); GTEST_DEFINE_int32_( random_seed, internal::Int32FromGTestEnv("random_seed", 0), "Random number seed to use when shuffling test orders. Must be in range " "[1, 99999], or 0 to use a seed based on the current time."); GTEST_DEFINE_int32_( repeat, internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_bool_( show_internal_stack_frames, false, "True iff " GTEST_NAME_ " should include internal stack frames when " "printing test failure stack traces."); GTEST_DEFINE_bool_( shuffle, internal::BoolFromGTestEnv("shuffle", false), "True iff " GTEST_NAME_ " should randomize tests' order on every run."); GTEST_DEFINE_int32_( stack_trace_depth, internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_string_( stream_result_to, internal::StringFromGTestEnv("stream_result_to", ""), "This flag specifies the host name and the port number on which to stream " "test results. Example: \"localhost:555\". The flag is effective only on " "Linux."); GTEST_DEFINE_bool_( throw_on_failure, internal::BoolFromGTestEnv("throw_on_failure", false), "When this flag is specified, a failed assertion will throw an exception " "if exceptions are enabled or exit the program with a non-zero code " "otherwise."); namespace internal { // Generates a random number from [0, range), using a Linear // Congruential Generator (LCG). Crashes if 'range' is 0 or greater // than kMaxRange. UInt32 Random::Generate(UInt32 range) { // These constants are the same as are used in glibc's rand(3). state_ = (1103515245U*state_ + 12345U) % kMaxRange; GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0)."; GTEST_CHECK_(range <= kMaxRange) << "Generation of a number in [0, " << range << ") was requested, " << "but this can only generate numbers in [0, " << kMaxRange << ")."; // Converting via modulus introduces a bit of downward bias, but // it's simple, and a linear congruential generator isn't too good // to begin with. return state_ % range; } // GTestIsInitialized() returns true iff the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). // // A user must call testing::InitGoogleTest() to initialize Google // Test. g_init_gtest_count is set to the number of times // InitGoogleTest() has been called. We don't protect this variable // under a mutex as it is only accessed in the main thread. GTEST_API_ int g_init_gtest_count = 0; static bool GTestIsInitialized() { return g_init_gtest_count != 0; } // Iterates over a vector of TestCases, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestCaseList(const std::vector& case_list, int (TestCase::*method)() const) { int sum = 0; for (size_t i = 0; i < case_list.size(); i++) { sum += (case_list[i]->*method)(); } return sum; } // Returns true iff the test case passed. static bool TestCasePassed(const TestCase* test_case) { return test_case->should_run() && test_case->Passed(); } // Returns true iff the test case failed. static bool TestCaseFailed(const TestCase* test_case) { return test_case->should_run() && test_case->Failed(); } // Returns true iff test_case contains at least one test that should // run. static bool ShouldRunTestCase(const TestCase* test_case) { return test_case->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message) : data_(new AssertHelperData(type, file, line, message)) { } AssertHelper::~AssertHelper() { delete data_; } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()-> AddTestPartResult(data_->type, data_->file, data_->line, AppendUserMessage(data_->message, message), UnitTest::GetInstance()->impl() ->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } // Mutex for linked pointers. GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_linked_ptr_mutex); // Application pathname gotten in InitGoogleTest. std::string g_executable_path; // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if GTEST_OS_WINDOWS result.Set(FilePath(g_executable_path).RemoveExtension("exe")); #else result.Set(FilePath(g_executable_path)); #endif // GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. std::string UnitTestOptions::GetOutputFormat() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return std::string(""); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == NULL) ? std::string(gtest_output_flag) : std::string(gtest_output_flag, colon - gtest_output_flag); } // Returns the name of the requested output file, or the default if none // was explicitly specified. std::string UnitTestOptions::GetAbsolutePathToOutputFile() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); if (gtest_output_flag == NULL) return ""; const char* const colon = strchr(gtest_output_flag, ':'); if (colon == NULL) return internal::FilePath::ConcatPaths( internal::FilePath( UnitTest::GetInstance()->original_working_dir()), internal::FilePath(kDefaultOutputFile)).string(); internal::FilePath output_name(colon + 1); if (!output_name.IsAbsolutePath()) // TODO(wan@google.com): on Windows \some\path is not an absolute // path (as its meaning depends on the current drive), yet the // following logic for turning it into an absolute path is wrong. // Fix it. output_name = internal::FilePath::ConcatPaths( internal::FilePath(UnitTest::GetInstance()->original_working_dir()), internal::FilePath(colon + 1)); if (!output_name.IsDirectory()) return output_name.string(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.string(); } // Returns true iff the wildcard pattern matches the string. The // first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. bool UnitTestOptions::PatternMatchesString(const char *pattern, const char *str) { switch (*pattern) { case '\0': case ':': // Either ':' or '\0' marks the end of the pattern. return *str == '\0'; case '?': // Matches any single character. return *str != '\0' && PatternMatchesString(pattern + 1, str + 1); case '*': // Matches any string (possibly empty) of characters. return (*str != '\0' && PatternMatchesString(pattern, str + 1)) || PatternMatchesString(pattern + 1, str); default: // Non-special character. Matches itself. return *pattern == *str && PatternMatchesString(pattern + 1, str + 1); } } bool UnitTestOptions::MatchesFilter( const std::string& name, const char* filter) { const char *cur_pattern = filter; for (;;) { if (PatternMatchesString(cur_pattern, name.c_str())) { return true; } // Finds the next pattern in the filter. cur_pattern = strchr(cur_pattern, ':'); // Returns if no more pattern can be found. if (cur_pattern == NULL) { return false; } // Skips the pattern separater (the ':' character). cur_pattern++; } } // Returns true iff the user-specified filter matches the test case // name and the test name. bool UnitTestOptions::FilterMatchesTest(const std::string &test_case_name, const std::string &test_name) { const std::string& full_name = test_case_name + "." + test_name.c_str(); // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions const char* const p = GTEST_FLAG(filter).c_str(); const char* const dash = strchr(p, '-'); std::string positive; std::string negative; if (dash == NULL) { positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter negative = ""; } else { positive = std::string(p, dash); // Everything up to the dash negative = std::string(dash + 1); // Everything after the dash if (positive.empty()) { // Treat '-test1' as the same as '*-test1' positive = kUniversalFilter; } } // A filter is a colon-separated list of patterns. It matches a // test if any pattern in it matches the test. return (MatchesFilter(full_name, positive.c_str()) && !MatchesFilter(full_name, negative.c_str())); } #if GTEST_HAS_SEH // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { // Google Test should handle a SEH exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception, AND // 3. this is not a C++ exception (VC++ implements them via SEH, // apparently). // // SEH exception code for C++ exceptions. // (see http://support.microsoft.com/kb/185294 for more information). const DWORD kCxxExceptionCode = 0xe06d7363; bool should_handle = true; if (!GTEST_FLAG(catch_exceptions)) should_handle = false; else if (exception_code == EXCEPTION_BREAKPOINT) should_handle = false; else if (exception_code == kCxxExceptionCode) should_handle = false; return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; } #endif // GTEST_HAS_SEH } // namespace internal // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResult::Type type, const string& substr) { const std::string expected(type == TestPartResult::kFatalFailure ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure() << msg; } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { return AssertionFailure() << "Expected: " << expected << "\n" << " Actual:\n" << r; } if (strstr(r.message(), substr.c_str()) == NULL) { return AssertionFailure() << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker:: SingleFailureChecker( const TestPartResultArray* results, TestPartResult::Type type, const string& substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->listeners()->repeater()->OnTestPartResult(result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_repoter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_repoter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test cases. int UnitTestImpl::successful_test_case_count() const { return CountIf(test_cases_, TestCasePassed); } // Gets the number of failed test cases. int UnitTestImpl::failed_test_case_count() const { return CountIf(test_cases_, TestCaseFailed); } // Gets the number of all test cases. int UnitTestImpl::total_test_case_count() const { return static_cast(test_cases_.size()); } // Gets the number of all test cases that contain at least one test // that should run. int UnitTestImpl::test_case_to_run_count() const { return CountIf(test_cases_, ShouldRunTestCase); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTestImpl::reportable_disabled_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::reportable_disabled_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count); } // Gets the number of tests to be printed in the XML report. int UnitTestImpl::reportable_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::reportable_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestCaseList(test_cases_, &TestCase::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count); } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { (void)skip_count; return ""; } // Returns the current time in milliseconds. TimeInMillis GetTimeInMillis() { #if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__) // Difference between 1970-01-01 and 1601-01-01 in milliseconds. // http://analogous.blogspot.com/2005/04/epoch.html const TimeInMillis kJavaEpochToWinFileTimeDelta = static_cast(116444736UL) * 100000UL; const DWORD kTenthMicrosInMilliSecond = 10000; SYSTEMTIME now_systime; FILETIME now_filetime; ULARGE_INTEGER now_int64; // TODO(kenton@google.com): Shouldn't this just use // GetSystemTimeAsFileTime()? GetSystemTime(&now_systime); if (SystemTimeToFileTime(&now_systime, &now_filetime)) { now_int64.LowPart = now_filetime.dwLowDateTime; now_int64.HighPart = now_filetime.dwHighDateTime; now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) - kJavaEpochToWinFileTimeDelta; return now_int64.QuadPart; } return 0; #elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_ __timeb64 now; // MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996 // (deprecated function) there. // TODO(kenton@google.com): Use GetTickCount()? Or use // SystemTimeToFileTime() GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996) _ftime64(&now); GTEST_DISABLE_MSC_WARNINGS_POP_() return static_cast(now.time) * 1000 + now.millitm; #elif GTEST_HAS_GETTIMEOFDAY_ struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000 + now.tv_usec / 1000; #else # error "Don't know how to get the current time on your system." #endif } // Utilities // class String. #if GTEST_OS_WINDOWS_MOBILE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return NULL; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, NULL, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return NULL; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, NULL, 0, NULL, NULL); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, NULL, NULL); ansi[ansi_length] = 0; return ansi; } #endif // GTEST_OS_WINDOWS_MOBILE // Compares two C strings. Returns true iff they have the same content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char * lhs, const char * rhs) { if ( lhs == NULL ) return rhs == NULL; if ( rhs == NULL ) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, Message* msg) { for (size_t i = 0; i != length; ) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast(length - i)); while (i != length && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING } // namespace internal // Constructs an empty Message. // We allocate the stringstream separately because otherwise each use of // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's // stack frame leading to huge stack frames in some cases; gcc does not reuse // the stack space. Message::Message() : ss_(new ::std::stringstream) { // By default, we want there to be enough precision when printing // a double to a Message. *ss_ << std::setprecision(std::numeric_limits::digits10 + 2); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& Message::operator <<(const wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } Message& Message::operator <<(wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_GLOBAL_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". std::string Message::GetString() const { return internal::StringStreamToString(ss_.get()); } // AssertionResult constructors. // Used in EXPECT_TRUE/FALSE(assertion_result). AssertionResult::AssertionResult(const AssertionResult& other) : success_(other.success_), message_(other.message_.get() != NULL ? new ::std::string(*other.message_) : static_cast< ::std::string*>(NULL)) { } // Swaps two AssertionResults. void AssertionResult::swap(AssertionResult& other) { using std::swap; swap(success_, other.success_); swap(message_, other.message_); } // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. AssertionResult AssertionResult::operator!() const { AssertionResult negation(!success_); if (message_.get() != NULL) negation << *message_; return negation; } // Makes a successful assertion result. AssertionResult AssertionSuccess() { return AssertionResult(true); } // Makes a failed assertion result. AssertionResult AssertionFailure() { return AssertionResult(false); } // Makes a failed assertion result with the given failure message. // Deprecated; use AssertionFailure() << message. AssertionResult AssertionFailure(const Message& message) { return AssertionFailure() << message; } namespace internal { namespace edit_distance { std::vector CalculateOptimalEdits(const std::vector& left, const std::vector& right) { std::vector > costs( left.size() + 1, std::vector(right.size() + 1)); std::vector > best_move( left.size() + 1, std::vector(right.size() + 1)); // Populate for empty right. for (size_t l_i = 0; l_i < costs.size(); ++l_i) { costs[l_i][0] = static_cast(l_i); best_move[l_i][0] = kRemove; } // Populate for empty left. for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) { costs[0][r_i] = static_cast(r_i); best_move[0][r_i] = kAdd; } for (size_t l_i = 0; l_i < left.size(); ++l_i) { for (size_t r_i = 0; r_i < right.size(); ++r_i) { if (left[l_i] == right[r_i]) { // Found a match. Consume it. costs[l_i + 1][r_i + 1] = costs[l_i][r_i]; best_move[l_i + 1][r_i + 1] = kMatch; continue; } const double add = costs[l_i + 1][r_i]; const double remove = costs[l_i][r_i + 1]; const double replace = costs[l_i][r_i]; if (add < remove && add < replace) { costs[l_i + 1][r_i + 1] = add + 1; best_move[l_i + 1][r_i + 1] = kAdd; } else if (remove < add && remove < replace) { costs[l_i + 1][r_i + 1] = remove + 1; best_move[l_i + 1][r_i + 1] = kRemove; } else { // We make replace a little more expensive than add/remove to lower // their priority. costs[l_i + 1][r_i + 1] = replace + 1.00001; best_move[l_i + 1][r_i + 1] = kReplace; } } } // Reconstruct the best path. We do it in reverse order. std::vector best_path; for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) { EditType move = best_move[l_i][r_i]; best_path.push_back(move); l_i -= move != kAdd; r_i -= move != kRemove; } std::reverse(best_path.begin(), best_path.end()); return best_path; } namespace { // Helper class to convert string into ids with deduplication. class InternalStrings { public: size_t GetId(const std::string& str) { IdMap::iterator it = ids_.find(str); if (it != ids_.end()) return it->second; size_t id = ids_.size(); return ids_[str] = id; } private: typedef std::map IdMap; IdMap ids_; }; } // namespace std::vector CalculateOptimalEdits( const std::vector& left, const std::vector& right) { std::vector left_ids, right_ids; { InternalStrings intern_table; for (size_t i = 0; i < left.size(); ++i) { left_ids.push_back(intern_table.GetId(left[i])); } for (size_t i = 0; i < right.size(); ++i) { right_ids.push_back(intern_table.GetId(right[i])); } } return CalculateOptimalEdits(left_ids, right_ids); } namespace { // Helper class that holds the state for one hunk and prints it out to the // stream. // It reorders adds/removes when possible to group all removes before all // adds. It also adds the hunk header before printint into the stream. class Hunk { public: Hunk(size_t left_start, size_t right_start) : left_start_(left_start), right_start_(right_start), adds_(), removes_(), common_() {} void PushLine(char edit, const char* line) { switch (edit) { case ' ': ++common_; FlushEdits(); hunk_.push_back(std::make_pair(' ', line)); break; case '-': ++removes_; hunk_removes_.push_back(std::make_pair('-', line)); break; case '+': ++adds_; hunk_adds_.push_back(std::make_pair('+', line)); break; } } void PrintTo(std::ostream* os) { PrintHeader(os); FlushEdits(); for (std::list >::const_iterator it = hunk_.begin(); it != hunk_.end(); ++it) { *os << it->first << it->second << "\n"; } } bool has_edits() const { return adds_ || removes_; } private: void FlushEdits() { hunk_.splice(hunk_.end(), hunk_removes_); hunk_.splice(hunk_.end(), hunk_adds_); } // Print a unified diff header for one hunk. // The format is // "@@ -, +, @@" // where the left/right parts are ommitted if unnecessary. void PrintHeader(std::ostream* ss) const { *ss << "@@ "; if (removes_) { *ss << "-" << left_start_ << "," << (removes_ + common_); } if (removes_ && adds_) { *ss << " "; } if (adds_) { *ss << "+" << right_start_ << "," << (adds_ + common_); } *ss << " @@\n"; } size_t left_start_, right_start_; size_t adds_, removes_, common_; std::list > hunk_, hunk_adds_, hunk_removes_; }; } // namespace // Create a list of diff hunks in Unified diff format. // Each hunk has a header generated by PrintHeader above plus a body with // lines prefixed with ' ' for no change, '-' for deletion and '+' for // addition. // 'context' represents the desired unchanged prefix/suffix around the diff. // If two hunks are close enough that their contexts overlap, then they are // joined into one hunk. std::string CreateUnifiedDiff(const std::vector& left, const std::vector& right, size_t context) { const std::vector edits = CalculateOptimalEdits(left, right); size_t l_i = 0, r_i = 0, edit_i = 0; std::stringstream ss; while (edit_i < edits.size()) { // Find first edit. while (edit_i < edits.size() && edits[edit_i] == kMatch) { ++l_i; ++r_i; ++edit_i; } // Find the first line to include in the hunk. const size_t prefix_context = std::min(l_i, context); Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1); for (size_t i = prefix_context; i > 0; --i) { hunk.PushLine(' ', left[l_i - i].c_str()); } // Iterate the edits until we found enough suffix for the hunk or the input // is over. size_t n_suffix = 0; for (; edit_i < edits.size(); ++edit_i) { if (n_suffix >= context) { // Continue only if the next hunk is very close. std::vector::const_iterator it = edits.begin() + edit_i; while (it != edits.end() && *it == kMatch) ++it; if (it == edits.end() || (it - edits.begin()) - edit_i >= context) { // There is no next edit or it is too far away. break; } } EditType edit = edits[edit_i]; // Reset count when a non match is found. n_suffix = edit == kMatch ? n_suffix + 1 : 0; if (edit == kMatch || edit == kRemove || edit == kReplace) { hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str()); } if (edit == kAdd || edit == kReplace) { hunk.PushLine('+', right[r_i].c_str()); } // Advance indices, depending on edit type. l_i += edit != kAdd; r_i += edit != kRemove; } if (!hunk.has_edits()) { // We are done. We don't want this hunk. break; } hunk.PrintTo(&ss); } return ss.str(); } } // namespace edit_distance namespace { // The string representation of the values received in EqFailure() are already // escaped. Split them on escaped '\n' boundaries. Leave all other escaped // characters the same. std::vector SplitEscapedString(const std::string& str) { std::vector lines; size_t start = 0, end = str.size(); if (end > 2 && str[0] == '"' && str[end - 1] == '"') { ++start; --end; } bool escaped = false; for (size_t i = start; i + 1 < end; ++i) { if (escaped) { escaped = false; if (str[i] == 'n') { lines.push_back(str.substr(start, i - start - 1)); start = i + 1; } } else { escaped = str[i] == '\\'; } } lines.push_back(str.substr(start, end - start)); return lines; } } // namespace // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const std::string& expected_value, const std::string& actual_value, bool ignoring_case) { Message msg; msg << "Value of: " << actual_expression; if (actual_value != actual_expression) { msg << "\n Actual: " << actual_value; } msg << "\nExpected: " << expected_expression; if (ignoring_case) { msg << " (ignoring case)"; } if (expected_value != expected_expression) { msg << "\nWhich is: " << expected_value; } if (!expected_value.empty() && !actual_value.empty()) { const std::vector expected_lines = SplitEscapedString(expected_value); const std::vector actual_lines = SplitEscapedString(actual_value); if (expected_lines.size() > 1 || actual_lines.size() > 1) { msg << "\nWith diff:\n" << edit_distance::CreateUnifiedDiff(expected_lines, actual_lines); } } return AssertionFailure() << msg; } // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value) { const char* actual_message = assertion_result.message(); Message msg; msg << "Value of: " << expression_text << "\n Actual: " << actual_predicate_value; if (actual_message[0] != '\0') msg << " (" << actual_message << ")"; msg << "\nExpected: " << expected_predicate_value; return msg.GetString(); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); // TODO(wan): do not print the value of an expression if it's // already a literal. return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; } // Helper template for implementing FloatLE() and DoubleLE(). template AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. ::std::stringstream val1_ss; val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val1; ::std::stringstream val2_ss; val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val2; return AssertionFailure() << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StringStreamToString(&val1_ss) << " vs " << StringStreamToString(&val2_ss); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_EQ with int or enum // arguments. AssertionResult CmpHelperEQ(const char* expected_expression, const char* actual_expression, BiggestInt expected, BiggestInt actual) { if (expected == actual) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, FormatForComparisonFailureMessage(expected, actual), FormatForComparisonFailureMessage(actual, expected), false); } // A macro for implementing the helper functions needed to implement // ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here // just to avoid copy-and-paste of similar code. #define GTEST_IMPL_CMP_HELPER_(op_name, op)\ AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ BiggestInt val1, BiggestInt val2) {\ if (val1 op val2) {\ return AssertionSuccess();\ } else {\ return AssertionFailure() \ << "Expected: (" << expr1 << ") " #op " (" << expr2\ << "), actual: " << FormatForComparisonFailureMessage(val1, val2)\ << " vs " << FormatForComparisonFailureMessage(val2, val1);\ }\ } // Implements the helper function for {ASSERT|EXPECT}_NE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(NE, !=) // Implements the helper function for {ASSERT|EXPECT}_LE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LE, <=) // Implements the helper function for {ASSERT|EXPECT}_LT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LT, < ) // Implements the helper function for {ASSERT|EXPECT}_GE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GE, >=) // Implements the helper function for {ASSERT|EXPECT}_GT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GT, > ) #undef GTEST_IMPL_CMP_HELPER_ // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* expected_expression, const char* actual_expression, const char* expected, const char* actual) { if (String::CaseInsensitiveCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true iff needle is a // substring of haystack. NULL is considered a substring of itself // only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return strstr(haystack, needle) != NULL; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == NULL || haystack == NULL) return needle == haystack; return wcsstr(haystack, needle) != NULL; } // StringType here can be either ::std::string or ::std::wstring. template bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template AssertionResult IsSubstringImpl( bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""; } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #if GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT # if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't support FormatMessage. const char error_text[] = ""; # else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = { '\0' }; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system hr, // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size NULL); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing CR-LF) for (; message_length && IsSpace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } # endif // GTEST_OS_WINDOWS_MOBILE const std::string error_hex("0x" + String::FormatHexInt(hr)); return ::testing::AssertionFailure() << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << " " << error_text << "\n"; } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have upto 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint1 = (static_cast(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint3 = (static_cast(1) << (4 + 2*6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint4 = (static_cast(1) << (3 + 3*6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline UInt32 ChopLowBits(UInt32* bits, int n) { const UInt32 low_bits = *bits & ((static_cast(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". std::string CodePointToUtf8(UInt32 code_point) { if (code_point > kMaxCodePoint4) { return "(Invalid Unicode 0x" + String::FormatHexInt(code_point) + ")"; } char str[5]; // Big enough for the largest valid code point. if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xE0 | code_point); // 1110xxxx } else { // code_point <= kMaxCodePoint4 str[4] = '\0'; str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xF0 | code_point); // 11110xxx } return str; } // The following two functions only make sense if the the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; } // Creates a Unicode code point from UTF16 surrogate pair. inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { const UInt32 mask = (1 << 10) - 1; return (sizeof(wchar_t) == 2) ? (((first & mask) << 10) | (second & mask)) + 0x10000 : // This function should not be called when the condition is // false, but we provide a sensible default in case it is. static_cast(first); } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. std::string WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast(wcslen(str)); ::std::stringstream stream; for (int i = 0; i < num_chars; ++i) { UInt32 unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast(str[i]); } stream << CodePointToUtf8(unicode_code_point); } return StringStreamToString(&stream); } // Converts a wide C string to an std::string using the UTF-8 encoding. // NULL will be converted to "(null)". std::string String::ShowWideCString(const wchar_t * wide_c_str) { if (wide_c_str == NULL) return "(null)"; return internal::WideStringToUtf8(wide_c_str, -1); } // Compares two wide C strings. Returns true iff they have the same // content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* expected_expression, const char* actual_expression, const wchar_t* expected, const wchar_t* actual) { if (String::WideCStringEquals(expected, actual)) { return AssertionSuccess(); } return EqFailure(expected_expression, actual_expression, PrintToString(expected), PrintToString(actual), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2); } // Compares two C strings, ignoring case. Returns true iff they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; return posix::StrCaseCmp(lhs, rhs) == 0; } // Compares two wide C strings, ignoring case. Returns true iff they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == NULL) return rhs == NULL; if (rhs == NULL) return false; #if GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID return wcscasecmp(lhs, rhs) == 0; #else // Android, Mac OS X and Cygwin don't define wcscasecmp. // Other unknown OSes may not define it either. wint_t left, right; do { left = towlower(*lhs++); right = towlower(*rhs++); } while (left && left == right); return left == right; #endif // OS selector } // Returns true iff str ends with the given suffix, ignoring case. // Any string is considered to end with an empty suffix. bool String::EndsWithCaseInsensitive( const std::string& str, const std::string& suffix) { const size_t str_len = str.length(); const size_t suffix_len = suffix.length(); return (str_len >= suffix_len) && CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, suffix.c_str()); } // Formats an int value as "%02d". std::string String::FormatIntWidth2(int value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexInt(int value) { std::stringstream ss; ss << std::hex << std::uppercase << value; return ss.str(); } // Formats a byte as "%02X". std::string String::FormatByte(unsigned char value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << static_cast(value); return ss.str(); } // Converts the buffer in a stringstream to an std::string, converting NUL // bytes to "\\0" along the way. std::string StringStreamToString(::std::stringstream* ss) { const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); std::string result; result.reserve(2 * (end - start)); for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { result += "\\0"; // Replaces NUL with "\\0"; } else { result += *ch; } } return result; } // Appends the user-supplied message to the Google-Test-generated message. std::string AppendUserMessage(const std::string& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const std::string user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } return gtest_msg + "\n" + user_msg_string; } } // namespace internal // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), elapsed_time_(0) { } // D'tor. TestResult::~TestResult() { } // Returns the i-th test part result among all the results. i can // range from 0 to total_part_count() - 1. If i is not in that range, // aborts the program. const TestPartResult& TestResult::GetTestPartResult(int i) const { if (i < 0 || i >= total_part_count()) internal::posix::Abort(); return test_part_results_.at(i); } // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& TestResult::GetTestProperty(int i) const { if (i < 0 || i >= test_property_count()) internal::posix::Abort(); return test_properties_.at(i); } // Clears the test part results. void TestResult::ClearTestPartResults() { test_part_results_.clear(); } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.push_back(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const std::string& xml_element, const TestProperty& test_property) { if (!ValidateTestProperty(xml_element, test_property)) { return; } internal::MutexLock lock(&test_properites_mutex_); const std::vector::iterator property_with_matching_key = std::find_if(test_properties_.begin(), test_properties_.end(), internal::TestPropertyKeyIs(test_property.key())); if (property_with_matching_key == test_properties_.end()) { test_properties_.push_back(test_property); return; } property_with_matching_key->SetValue(test_property.value()); } // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuitesAttributes[] = { "disabled", "errors", "failures", "name", "random_seed", "tests", "time", "timestamp" }; // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuiteAttributes[] = { "disabled", "errors", "failures", "name", "tests", "time" }; // The list of reserved attributes used in the element of XML output. static const char* const kReservedTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param" }; template std::vector ArrayAsVector(const char* const (&array)[kSize]) { return std::vector(array, array + kSize); } static std::vector GetReservedAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } static std::string FormatWordList(const std::vector& words) { Message word_list; for (size_t i = 0; i < words.size(); ++i) { if (i > 0 && words.size() > 2) { word_list << ", "; } if (i == words.size() - 1) { word_list << "and "; } word_list << "'" << words[i] << "'"; } return word_list.GetString(); } bool ValidateTestPropertyName(const std::string& property_name, const std::vector& reserved_names) { if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != reserved_names.end()) { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name << " (" << FormatWordList(reserved_names) << " are reserved by " << GTEST_NAME_ << ")"; return false; } return true; } // Adds a failure if the key is a reserved attribute of the element named // xml_element. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property) { return ValidateTestPropertyName(test_property.key(), GetReservedAttributesForElement(xml_element)); } // Clears the object. void TestResult::Clear() { test_part_results_.clear(); test_properties_.clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true iff the test failed. bool TestResult::Failed() const { for (int i = 0; i < total_part_count(); ++i) { if (GetTestPartResult(i).failed()) return true; } return false; } // Returns true iff the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult& result) { return result.fatally_failed(); } // Returns true iff the test fatally failed. bool TestResult::HasFatalFailure() const { return CountIf(test_part_results_, TestPartFatallyFailed) > 0; } // Returns true iff the test part non-fatally failed. static bool TestPartNonfatallyFailed(const TestPartResult& result) { return result.nonfatally_failed(); } // Returns true iff the test has a non-fatal failure. bool TestResult::HasNonfatalFailure() const { return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return static_cast(test_part_results_.size()); } // Returns the number of the test properties. int TestResult::test_property_count() const { return static_cast(test_properties_.size()); } // class Test // Creates a Test object. // The c'tor saves the values of all Google Test flags. Test::Test() : gtest_flag_saver_(new internal::GTestFlagSaver) { } // The d'tor restores the values of all Google Test flags. Test::~Test() { delete gtest_flag_saver_; } // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() { } // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() { } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, const std::string& value) { UnitTest::GetInstance()->RecordProperty(key, value); } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, int value) { Message value_message; value_message << value; RecordProperty(key, value_message.GetString().c_str()); } namespace internal { void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message) { // This function is a friend of UnitTest and as such has access to // AddTestPartResult. UnitTest::GetInstance()->AddTestPartResult( result_type, NULL, // No info about the source file where the exception occurred. -1, // We have no info on which line caused the exception. message, ""); // No stack trace, either. } } // namespace internal // Google Test requires all tests in the same test case to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test case. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestCase* const test_case = impl->current_test_case(); // Info about the first test in the current test case. const TestInfo* const first_test_info = test_case->test_info_list()[0]; const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; const char* const first_test_name = first_test_info->name(); // Info about the current test. const TestInfo* const this_test_info = impl->current_test_info(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // Both TEST and TEST_F appear in same test case, which is incorrect. // Tell the user how to fix this. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test case is\n" << "illegal. In test case " << this_test_info->test_case_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // Two fixture classes with the same name appear in two different // namespaces, which is not allowed. Tell the user how to fix this. ADD_FAILURE() << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << this_test_info->test_case_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test cases."; } return false; } return true; } #if GTEST_HAS_SEH // Adds an "exception thrown" fatal failure to the current test. This // function returns its result via an output parameter pointer because VC++ // prohibits creation of objects with destructors on stack in functions // using __try (see error C2712). static std::string* FormatSehExceptionMessage(DWORD exception_code, const char* location) { Message message; message << "SEH exception with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " thrown in " << location << "."; return new std::string(message.GetString()); } #endif // GTEST_HAS_SEH namespace internal { #if GTEST_HAS_EXCEPTIONS // Adds an "exception thrown" fatal failure to the current test. static std::string FormatCxxExceptionMessage(const char* description, const char* location) { Message message; if (description != NULL) { message << "C++ exception with description \"" << description << "\""; } else { message << "Unknown C++ exception"; } message << " thrown in " << location << "."; return message.GetString(); } static std::string PrintTestPartResultToString( const TestPartResult& test_part_result); GoogleTestFailureException::GoogleTestFailureException( const TestPartResult& failure) : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} #endif // GTEST_HAS_EXCEPTIONS // We put these helper functions in the internal namespace as IBM's xlC // compiler rejects the code if they were declared static. // Runs the given method and handles SEH exceptions it throws, when // SEH is supported; returns the 0-value for type Result in case of an // SEH exception. (Microsoft compilers cannot handle SEH and C++ // exceptions in the same function. Therefore, we provide a separate // wrapper function for handling SEH exceptions.) template Result HandleSehExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { #if GTEST_HAS_SEH __try { return (object->*method)(); } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT GetExceptionCode())) { // We create the exception message on the heap because VC++ prohibits // creation of objects with destructors on stack in functions using __try // (see error C2712). std::string* exception_message = FormatSehExceptionMessage( GetExceptionCode(), location); internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure, *exception_message); delete exception_message; return static_cast(0); } #else (void)location; return (object->*method)(); #endif // GTEST_HAS_SEH } // Runs the given method and catches and reports C++ and/or SEH-style // exceptions, if they are supported; returns the 0-value for type // Result in case of an SEH exception. template Result HandleExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { // NOTE: The user code can affect the way in which Google Test handles // exceptions by setting GTEST_FLAG(catch_exceptions), but only before // RUN_ALL_TESTS() starts. It is technically possible to check the flag // after the exception is caught and either report or re-throw the // exception based on the flag's value: // // try { // // Perform the test method. // } catch (...) { // if (GTEST_FLAG(catch_exceptions)) // // Report the exception as failure. // else // throw; // Re-throws the original exception. // } // // However, the purpose of this flag is to allow the program to drop into // the debugger when the exception is thrown. On most platforms, once the // control enters the catch block, the exception origin information is // lost and the debugger will stop the program at the point of the // re-throw in this function -- instead of at the point of the original // throw statement in the code under test. For this reason, we perform // the check early, sacrificing the ability to affect Google Test's // exception handling in the method where the exception is thrown. if (internal::GetUnitTestImpl()->catch_exceptions()) { #if GTEST_HAS_EXCEPTIONS try { return HandleSehExceptionsInMethodIfSupported(object, method, location); } catch (const internal::GoogleTestFailureException&) { // NOLINT // This exception type can only be thrown by a failed Google // Test assertion with the intention of letting another testing // framework catch it. Therefore we just re-throw it. throw; } catch (const std::exception& e) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(e.what(), location)); } catch (...) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(NULL, location)); } return static_cast(0); #else return HandleSehExceptionsInMethodIfSupported(object, method, location); #endif // GTEST_HAS_EXCEPTIONS } else { return (object->*method)(); } } } // namespace internal // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); // We will run the test only if SetUp() was successful. if (!HasFatalFailure()) { impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TestBody, "the test body"); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TearDown, "TearDown()"); } // Returns true iff the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // Returns true iff the current test has a non-fatal failure. bool Test::HasNonfatalFailure() { return internal::GetUnitTestImpl()->current_test_result()-> HasNonfatalFailure(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object. TestInfo::TestInfo(const std::string& a_test_case_name, const std::string& a_name, const char* a_type_param, const char* a_value_param, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) : test_case_name_(a_test_case_name), name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : NULL), value_param_(a_value_param ? new std::string(a_value_param) : NULL), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), matches_filter_(false), factory_(factory), result_() {} // Destructs a TestInfo object. TestInfo::~TestInfo() { delete factory_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_case_name: name of the test case // name: name of the test // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param: text representation of the test's value parameter, // or NULL if this is not a value-parameterized test. // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_case_name, const char* name, const char* type_param, const char* value_param, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_case_name, name, type_param, value_param, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } #if GTEST_HAS_PARAM_TEST void ReportInvalidTestCaseType(const char* test_case_name, const char* file, int line) { Message errors; errors << "Attempted redefinition of test case " << test_case_name << ".\n" << "All tests in the same test case must use the same test fixture\n" << "class. However, in test case " << test_case_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test cases."; fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors.GetString().c_str()); } #endif // GTEST_HAS_PARAM_TEST } // namespace internal namespace { // A predicate that checks the test name of a TestInfo against a known // value. // // This is used for implementation of the TestCase class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestNameIs is copyable. class TestNameIs { public: // Constructor. // // TestNameIs has NO default constructor. explicit TestNameIs(const char* name) : name_(name) {} // Returns true iff the test name of test_info matches name_. bool operator()(const TestInfo * test_info) const { return test_info && test_info->name() == name_; } private: std::string name_; }; } // namespace namespace internal { // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_CASE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { #if GTEST_HAS_PARAM_TEST if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); parameterized_tests_registered_ = true; } #endif } } // namespace internal // Creates the test object, runs it, records its result, and then // deletes it. void TestInfo::Run() { if (!should_run_) return; // Tells UnitTest where to store test result. internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); const TimeInMillis start = internal::GetTimeInMillis(); impl->os_stack_trace_getter()->UponLeavingGTest(); // Creates the test object. Test* const test = internal::HandleExceptionsInMethodIfSupported( factory_, &internal::TestFactoryBase::CreateTest, "the test fixture's constructor"); // Runs the test only if the test object was created and its // constructor didn't generate a fatal failure. if ((test != NULL) && !Test::HasFatalFailure()) { // This doesn't throw as all user code that can throw are wrapped into // exception handling code. test->Run(); } // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( test, &Test::DeleteSelf_, "the test fixture's destructor"); result_.set_elapsed_time(internal::GetTimeInMillis() - start); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(NULL); } // class TestCase // Gets the number of successful tests in this test case. int TestCase::successful_test_count() const { return CountIf(test_info_list_, TestPassed); } // Gets the number of failed tests in this test case. int TestCase::failed_test_count() const { return CountIf(test_info_list_, TestFailed); } // Gets the number of disabled tests that will be reported in the XML report. int TestCase::reportable_disabled_test_count() const { return CountIf(test_info_list_, TestReportableDisabled); } // Gets the number of disabled tests in this test case. int TestCase::disabled_test_count() const { return CountIf(test_info_list_, TestDisabled); } // Gets the number of tests to be printed in the XML report. int TestCase::reportable_test_count() const { return CountIf(test_info_list_, TestReportable); } // Get the number of tests in this test case that should run. int TestCase::test_to_run_count() const { return CountIf(test_info_list_, ShouldRunTest); } // Gets the number of all tests. int TestCase::total_test_count() const { return static_cast(test_info_list_.size()); } // Creates a TestCase with the given name. // // Arguments: // // name: name of the test case // a_type_param: the name of the test case's type parameter, or NULL if // this is not a typed or a type-parameterized test case. // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase::TestCase(const char* a_name, const char* a_type_param, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) : name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : NULL), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), elapsed_time_(0) { } // Destructor of TestCase. TestCase::~TestCase() { // Deletes every Test in the collection. ForEach(test_info_list_, internal::Delete); } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* TestCase::GetTestInfo(int i) const { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? NULL : test_info_list_[index]; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* TestCase::GetMutableTestInfo(int i) { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? NULL : test_info_list_[index]; } // Adds a test to this test case. Will delete the test upon // destruction of the TestCase object. void TestCase::AddTestInfo(TestInfo * test_info) { test_info_list_.push_back(test_info); test_indices_.push_back(static_cast(test_indices_.size())); } // Runs every test in this TestCase. void TestCase::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_case(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); repeater->OnTestCaseStart(*this); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestCase::RunSetUpTestCase, "SetUpTestCase()"); const internal::TimeInMillis start = internal::GetTimeInMillis(); for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Run(); } elapsed_time_ = internal::GetTimeInMillis() - start; impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestCase::RunTearDownTestCase, "TearDownTestCase()"); repeater->OnTestCaseEnd(*this); impl->set_current_test_case(NULL); } // Clears the results of all tests in this test case. void TestCase::ClearResult() { ad_hoc_test_result_.Clear(); ForEach(test_info_list_, TestInfo::ClearTestResult); } // Shuffles the tests in this test case. void TestCase::ShuffleTests(internal::Random* random) { Shuffle(random, &test_indices_); } // Restores the test order to before the first shuffle. void TestCase::UnshuffleTests() { for (size_t i = 0; i < test_indices_.size(); i++) { test_indices_[i] = static_cast(i); } } // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static std::string FormatCountableNoun(int count, const char * singular_form, const char * plural_form) { return internal::StreamableToString(count) + " " + (count == 1 ? singular_form : plural_form); } // Formats the count of tests. static std::string FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test cases. static std::string FormatTestCaseCount(int test_case_count) { return FormatCountableNoun(test_case_count, "test case", "test cases"); } // Converts a TestPartResult::Type enum to human-friendly string // representation. Both kNonFatalFailure and kFatalFailure are translated // to "Failure", as the user usually doesn't care about the difference // between the two when viewing the test result. static const char * TestPartResultTypeToString(TestPartResult::Type type) { switch (type) { case TestPartResult::kSuccess: return "Success"; case TestPartResult::kNonFatalFailure: case TestPartResult::kFatalFailure: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif default: return "Unknown result type"; } } namespace internal { // Prints a TestPartResult to an std::string. static std::string PrintTestPartResultToString( const TestPartResult& test_part_result) { return (Message() << internal::FormatFileLocation(test_part_result.file_name(), test_part_result.line_number()) << " " << TestPartResultTypeToString(test_part_result.type()) << test_part_result.message()).GetString(); } // Prints a TestPartResult. static void PrintTestPartResult(const TestPartResult& test_part_result) { const std::string& result = PrintTestPartResultToString(test_part_result); printf("%s\n", result.c_str()); fflush(stdout); // If the test program runs in Visual Studio or a debugger, the // following statements add the test part result message to the Output // window such that the user can double-click on it to jump to the // corresponding source code location; otherwise they do nothing. #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // We don't call OutputDebugString*() on Windows Mobile, as printing // to stdout is done by OutputDebugString() there already - we don't // want the same message printed twice. ::OutputDebugStringA(result.c_str()); ::OutputDebugStringA("\n"); #endif } // class PrettyUnitTestResultPrinter enum GTestColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // Returns the character attribute for the given color. WORD GetColorAttribute(GTestColor color) { switch (color) { case COLOR_RED: return FOREGROUND_RED; case COLOR_GREEN: return FOREGROUND_GREEN; case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; default: return 0; } } #else // Returns the ANSI color code for the given color. COLOR_DEFAULT is // an invalid input. const char* GetAnsiColorCode(GTestColor color) { switch (color) { case COLOR_RED: return "1"; case COLOR_GREEN: return "2"; case COLOR_YELLOW: return "3"; default: return NULL; }; } #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns true iff Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { const char* const gtest_color = GTEST_FLAG(color).c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #if GTEST_OS_WINDOWS // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = posix::GetEnv("TERM"); const bool term_supports_color = String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "xterm-256color") || String::CStringEquals(term, "screen") || String::CStringEquals(term, "screen-256color") || String::CStringEquals(term, "linux") || String::CStringEquals(term, "cygwin"); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. void ColoredPrintf(GTestColor color, const char* fmt, ...) { va_list args; va_start(args, fmt); #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS || \ GTEST_OS_IOS || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT const bool use_color = false; #else static const bool in_color_mode = ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); const bool use_color = in_color_mode && (color != COLOR_DEFAULT); #endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS // The '!= 0' comparison is necessary to satisfy MSVC 7.1. if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; // We need to flush the stream buffers into the console before each // SetConsoleTextAttribute call lest it affect the text that is already // printed but has not yet reached the console. fflush(stdout); SetConsoleTextAttribute(stdout_handle, GetColorAttribute(color) | FOREGROUND_INTENSITY); vprintf(fmt, args); fflush(stdout); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE va_end(args); } // Text printed in Google Test's text output and --gunit_list_tests // output to label the type parameter and value parameter for a test. static const char kTypeParamLabel[] = "TypeParam"; static const char kValueParamLabel[] = "GetParam()"; void PrintFullTestCommentIfPresent(const TestInfo& test_info) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != NULL || value_param != NULL) { printf(", where "); if (type_param != NULL) { printf("%s = %s", kTypeParamLabel, type_param); if (value_param != NULL) printf(" and "); } if (value_param != NULL) { printf("%s = %s", kValueParamLabel, value_param); } } } // This class implements the TestEventListener interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public TestEventListener { public: PrettyUnitTestResultPrinter() {} static void PrintTestName(const char * test_case, const char * test) { printf("%s.%s", test_case, test); } // The following methods override what's in the TestEventListener class. virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {} virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {} virtual void OnTestCaseStart(const TestCase& test_case); virtual void OnTestStart(const TestInfo& test_info); virtual void OnTestPartResult(const TestPartResult& result); virtual void OnTestEnd(const TestInfo& test_info); virtual void OnTestCaseEnd(const TestCase& test_case); virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {} virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {} private: static void PrintFailedTests(const UnitTest& unit_test); }; // Fired before each iteration of tests starts. void PrettyUnitTestResultPrinter::OnTestIterationStart( const UnitTest& unit_test, int iteration) { if (GTEST_FLAG(repeat) != 1) printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); const char* const filter = GTEST_FLAG(filter).c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(COLOR_YELLOW, "Note: %s filter = %s\n", GTEST_NAME_, filter); } if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); ColoredPrintf(COLOR_YELLOW, "Note: This is test shard %d of %s.\n", static_cast(shard_index) + 1, internal::posix::GetEnv(kTestTotalShards)); } if (GTEST_FLAG(shuffle)) { ColoredPrintf(COLOR_YELLOW, "Note: Randomizing tests' orders with a seed of %d .\n", unit_test.random_seed()); } ColoredPrintf(COLOR_GREEN, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s", counts.c_str(), test_case.name()); if (test_case.type_param() == NULL) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { ColoredPrintf(COLOR_GREEN, "[ RUN ] "); PrintTestName(test_info.test_case_name(), test_info.name()); printf("\n"); fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { // If the test part succeeded, we don't need to do anything. if (result.type() == TestPartResult::kSuccess) return; // Print failure message from the assertion (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } PrintTestName(test_info.test_case_name(), test_info.name()); if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString( test_info.result()->elapsed_time()).c_str()); } else { printf("\n"); } fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(), internal::StreamableToString(test_case.elapsed_time()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } // Internal helper for printing the list of failed tests. void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { const int failed_test_count = unit_test.failed_test_count(); if (failed_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_case_count(); ++i) { const TestCase& test_case = *unit_test.GetTestCase(i); if (!test_case.should_run() || (test_case.failed_test_count() == 0)) { continue; } for (int j = 0; j < test_case.total_test_count(); ++j) { const TestInfo& test_info = *test_case.GetTestInfo(j); if (!test_info.should_run() || test_info.result()->Passed()) { continue; } ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s.%s", test_case.name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); printf("\n"); } } } void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); int num_failures = unit_test.failed_test_count(); if (!unit_test.Passed()) { const int failed_test_count = unit_test.failed_test_count(); ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); PrintFailedTests(unit_test); printf("\n%2d FAILED %s\n", num_failures, num_failures == 1 ? "TEST" : "TESTS"); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { if (!num_failures) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(COLOR_YELLOW, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // class TestEventRepeater // // This class forwards events to other event listeners. class TestEventRepeater : public TestEventListener { public: TestEventRepeater() : forwarding_enabled_(true) {} virtual ~TestEventRepeater(); void Append(TestEventListener *listener); TestEventListener* Release(TestEventListener* listener); // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled() const { return forwarding_enabled_; } void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } virtual void OnTestProgramStart(const UnitTest& unit_test); virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test); virtual void OnTestCaseStart(const TestCase& test_case); virtual void OnTestStart(const TestInfo& test_info); virtual void OnTestPartResult(const TestPartResult& result); virtual void OnTestEnd(const TestInfo& test_info); virtual void OnTestCaseEnd(const TestCase& test_case); virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test); virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); virtual void OnTestProgramEnd(const UnitTest& unit_test); private: // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled_; // The list of listeners that receive events. std::vector listeners_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater); }; TestEventRepeater::~TestEventRepeater() { ForEach(listeners_, Delete); } void TestEventRepeater::Append(TestEventListener *listener) { listeners_.push_back(listener); } // TODO(vladl@google.com): Factor the search functionality into Vector::Find. TestEventListener* TestEventRepeater::Release(TestEventListener *listener) { for (size_t i = 0; i < listeners_.size(); ++i) { if (listeners_[i] == listener) { listeners_.erase(listeners_.begin() + i); return listener; } } return NULL; } // Since most methods are very similar, use macros to reduce boilerplate. // This defines a member that forwards the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = 0; i < listeners_.size(); i++) { \ listeners_[i]->Name(parameter); \ } \ } \ } // This defines a member that forwards the call to all listeners in reverse // order. #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { \ listeners_[i]->Name(parameter); \ } \ } \ } GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestCase) GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) #undef GTEST_REPEATER_METHOD_ #undef GTEST_REVERSE_REPEATER_METHOD_ void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = 0; i < listeners_.size(); i++) { listeners_[i]->OnTestIterationStart(unit_test, iteration); } } } void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { listeners_[i]->OnTestIterationEnd(unit_test, iteration); } } } // End TestEventRepeater // This class generates an XML output file. class XmlUnitTestResultPrinter : public EmptyTestEventListener { public: explicit XmlUnitTestResultPrinter(const char* output_file); virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(char c) { return c == 0x9 || c == 0xA || c == 0xD; } // May c appear in a well-formed XML document? static bool IsValidXmlCharacter(char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static std::string EscapeXml(const std::string& str, bool is_attribute); // Returns the given string with all characters invalid in XML removed. static std::string RemoveInvalidXmlCharacters(const std::string& str); // Convenience wrapper around EscapeXml when str is an attribute value. static std::string EscapeXmlAttribute(const std::string& str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static std::string EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Verifies that the given attribute belongs to the given element and // streams the attribute as XML. static void OutputXmlAttribute(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value); // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. static void OutputXmlCDataSection(::std::ostream* stream, const char* data); // Streams an XML representation of a TestInfo object. static void OutputXmlTestInfo(::std::ostream* stream, const char* test_case_name, const TestInfo& test_info); // Prints an XML representation of a TestCase object static void PrintXmlTestCase(::std::ostream* stream, const TestCase& test_case); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the std::string is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static std::string TestPropertiesAsXmlAttributes(const TestResult& result); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.c_str() == NULL || output_file_.empty()) { fprintf(stderr, "XML output file may not be null\n"); fflush(stderr); exit(EXIT_FAILURE); } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* xmlout = NULL; FilePath output_file(output_file_); FilePath output_dir(output_file.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { xmlout = posix::FOpen(output_file_.c_str(), "w"); } if (xmlout == NULL) { // TODO(wan): report the reason of the failure. // // We don't do it for now as: // // 1. There is no urgent need for it. // 2. It's a bit involved to make the errno variable thread-safe on // all three operating systems (Linux, Windows, and Mac OS). // 3. To interpret the meaning of errno in a thread-safe way, // we need the strerror_r() function, which is not available on // Windows. fprintf(stderr, "Unable to open file \"%s\"\n", output_file_.c_str()); fflush(stderr); exit(EXIT_FAILURE); } std::stringstream stream; PrintXmlUnitTest(&stream, unit_test); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. // TODO(wan): It might be nice to have a minimally invasive, human-readable // escaping scheme for invalid characters, rather than dropping them. std::string XmlUnitTestResultPrinter::EscapeXml( const std::string& str, bool is_attribute) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(ch)) { if (is_attribute && IsNormalizableWhitespace(ch)) m << "&#x" << String::FormatByte(static_cast(ch)) << ";"; else m << ch; } break; } } return m.GetString(); } // Returns the given string with all characters invalid in XML removed. // Currently invalid characters are dropped from the string. An // alternative is to replace them with certain characters such as . or ?. std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( const std::string& str) { std::string output; output.reserve(str.size()); for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) if (IsValidXmlCharacter(*it)) output.push_back(*it); return output; } // The following routines generate an XML representation of a UnitTest // object. // // This is how Google Test concepts map to the DTD: // // <-- corresponds to a UnitTest object // <-- corresponds to a TestCase object // <-- corresponds to a TestInfo object // ... // ... // ... // <-- individual assertion failures // // // // Formats the given time in milliseconds as seconds. std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { ::std::stringstream ss; ss << ms/1000.0; return ss.str(); } // Converts the given epoch time in milliseconds to a date string in the ISO // 8601 format, without the timezone information. std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { time_t seconds = static_cast(ms / 1000); struct tm time_struct; #ifdef _MSC_VER if (localtime_s(&time_struct, &seconds) != 0) return ""; // Invalid ms value #else if (localtime_r(&seconds, &time_struct) == NULL) return ""; // Invalid ms value #endif // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec); } // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, const char* data) { const char* segment = data; *stream << ""); if (next_segment != NULL) { stream->write( segment, static_cast(next_segment - segment)); *stream << "]]>]]>"); } else { *stream << segment; break; } } *stream << "]]>"; } void XmlUnitTestResultPrinter::OutputXmlAttribute( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value) { const std::vector& allowed_names = GetReservedAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Attribute " << name << " is not allowed for element <" << element_name << ">."; *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; } // Prints an XML representation of a TestInfo object. // TODO(wan): There is also value in printing properties with the plain printer. void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, const char* test_case_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestcase = "testcase"; *stream << " \n"; } const string location = internal::FormatCompilerIndependentFileLocation( part.file_name(), part.line_number()); const string summary = location + "\n" + part.summary(); *stream << " "; const string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "\n"; } } if (failures == 0) *stream << " />\n"; else *stream << " \n"; } // Prints an XML representation of a TestCase object void XmlUnitTestResultPrinter::PrintXmlTestCase(std::ostream* stream, const TestCase& test_case) { const std::string kTestsuite = "testsuite"; *stream << " <" << kTestsuite; OutputXmlAttribute(stream, kTestsuite, "name", test_case.name()); OutputXmlAttribute(stream, kTestsuite, "tests", StreamableToString(test_case.reportable_test_count())); OutputXmlAttribute(stream, kTestsuite, "failures", StreamableToString(test_case.failed_test_count())); OutputXmlAttribute( stream, kTestsuite, "disabled", StreamableToString(test_case.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuite, "errors", "0"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(test_case.elapsed_time())); *stream << TestPropertiesAsXmlAttributes(test_case.ad_hoc_test_result()) << ">\n"; for (int i = 0; i < test_case.total_test_count(); ++i) { if (test_case.GetTestInfo(i)->is_reportable()) OutputXmlTestInfo(stream, test_case.name(), *test_case.GetTestInfo(i)); } *stream << " \n"; } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(unit_test.reportable_test_count())); OutputXmlAttribute(stream, kTestsuites, "failures", StreamableToString(unit_test.failed_test_count())); OutputXmlAttribute( stream, kTestsuites, "disabled", StreamableToString(unit_test.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuites, "errors", "0"); OutputXmlAttribute( stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); OutputXmlAttribute(stream, kTestsuites, "time", FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); if (GTEST_FLAG(shuffle)) { OutputXmlAttribute(stream, kTestsuites, "random_seed", StreamableToString(unit_test.random_seed())); } *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (int i = 0; i < unit_test.total_test_case_count(); ++i) { if (unit_test.GetTestCase(i)->reportable_test_count() > 0) PrintXmlTestCase(stream, *unit_test.GetTestCase(i)); } *stream << "\n"; } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const TestResult& result) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } // End XmlUnitTestResultPrinter #if GTEST_CAN_STREAM_RESULTS_ // Checks if str contains '=', '&', '%' or '\n' characters. If yes, // replaces them by "%xx" where xx is their hexadecimal value. For // example, replaces "=" with "%3D". This algorithm is O(strlen(str)) // in both time and space -- important as the input str may contain an // arbitrarily long test failure message and stack trace. string StreamingListener::UrlEncode(const char* str) { string result; result.reserve(strlen(str) + 1); for (char ch = *str; ch != '\0'; ch = *++str) { switch (ch) { case '%': case '=': case '&': case '\n': result.append("%" + String::FormatByte(static_cast(ch))); break; default: result.push_back(ch); break; } } return result; } void StreamingListener::SocketWriter::MakeConnection() { GTEST_CHECK_(sockfd_ == -1) << "MakeConnection() can't be called when there is already a connection."; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. hints.ai_socktype = SOCK_STREAM; addrinfo* servinfo = NULL; // Use the getaddrinfo() to get a linked list of IP addresses for // the given host name. const int error_num = getaddrinfo( host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); if (error_num != 0) { GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " << gai_strerror(error_num); } // Loop through all the results and connect to the first we can. for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != NULL; cur_addr = cur_addr->ai_next) { sockfd_ = socket( cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); if (sockfd_ != -1) { // Connect the client socket to the server socket. if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { close(sockfd_); sockfd_ = -1; } } } freeaddrinfo(servinfo); // all done with this structure if (sockfd_ == -1) { GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " << host_name_ << ":" << port_num_; } } // End of class Streaming Listener #endif // GTEST_CAN_STREAM_RESULTS__ // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. ScopedTrace::ScopedTrace(const char* file, int line, const Message& message) GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { TraceInfo trace; trace.file = file; trace.line = line; trace.message = message.GetString(); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { UnitTest::GetInstance()->PopGTestTrace(); } // class OsStackTraceGetter // Returns the current OS stack trace as an std::string. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. // string OsStackTraceGetter::CurrentStackTrace(int /* max_depth */, int /* skip_count */) GTEST_LOCK_EXCLUDED_(mutex_) { return ""; } void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) { } const char* const OsStackTraceGetter::kElidedFramesMarker = "... " GTEST_NAME_ " internal frames ..."; // A helper class that creates the premature-exit file in its // constructor and deletes the file in its destructor. class ScopedPrematureExitFile { public: explicit ScopedPrematureExitFile(const char* premature_exit_filepath) : premature_exit_filepath_(premature_exit_filepath) { // If a path to the premature-exit file is specified... if (premature_exit_filepath != NULL && *premature_exit_filepath != '\0') { // create the file with a single "0" character in it. I/O // errors are ignored as there's nothing better we can do and we // don't want to fail the test because of this. FILE* pfile = posix::FOpen(premature_exit_filepath, "w"); fwrite("0", 1, 1, pfile); fclose(pfile); } } ~ScopedPrematureExitFile() { if (premature_exit_filepath_ != NULL && *premature_exit_filepath_ != '\0') { remove(premature_exit_filepath_); } } private: const char* const premature_exit_filepath_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile); }; } // namespace internal // class TestEventListeners TestEventListeners::TestEventListeners() : repeater_(new internal::TestEventRepeater()), default_result_printer_(NULL), default_xml_generator_(NULL) { } TestEventListeners::~TestEventListeners() { delete repeater_; } // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the user. void TestEventListeners::Append(TestEventListener* listener) { repeater_->Append(listener); } // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* TestEventListeners::Release(TestEventListener* listener) { if (listener == default_result_printer_) default_result_printer_ = NULL; else if (listener == default_xml_generator_) default_xml_generator_ = NULL; return repeater_->Release(listener); } // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* TestEventListeners::repeater() { return repeater_; } // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { if (default_result_printer_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_result_printer_); default_result_printer_ = listener; if (listener != NULL) Append(listener); } } // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { if (default_xml_generator_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_xml_generator_); default_xml_generator_ = listener; if (listener != NULL) Append(listener); } } // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool TestEventListeners::EventForwardingEnabled() const { return repeater_->forwarding_enabled(); } void TestEventListeners::SuppressEventForwarding() { repeater_->set_forwarding_enabled(false); } // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest* UnitTest::GetInstance() { // When compiled with MSVC 7.1 in optimized mode, destroying the // UnitTest object upon exiting the program messes up the exit code, // causing successful tests to appear failed. We have to use a // different implementation in this case to bypass the compiler bug. // This implementation makes the compiler happy, at the cost of // leaking the UnitTest object. // CodeGear C++Builder insists on a public destructor for the // default implementation. Use this implementation to keep good OO // design with private destructor. #if (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) } // Gets the number of successful test cases. int UnitTest::successful_test_case_count() const { return impl()->successful_test_case_count(); } // Gets the number of failed test cases. int UnitTest::failed_test_case_count() const { return impl()->failed_test_case_count(); } // Gets the number of all test cases. int UnitTest::total_test_case_count() const { return impl()->total_test_case_count(); } // Gets the number of all test cases that contain at least one test // that should run. int UnitTest::test_case_to_run_count() const { return impl()->test_case_to_run_count(); } // Gets the number of successful tests. int UnitTest::successful_test_count() const { return impl()->successful_test_count(); } // Gets the number of failed tests. int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTest::reportable_disabled_test_count() const { return impl()->reportable_disabled_test_count(); } // Gets the number of disabled tests. int UnitTest::disabled_test_count() const { return impl()->disabled_test_count(); } // Gets the number of tests to be printed in the XML report. int UnitTest::reportable_test_count() const { return impl()->reportable_test_count(); } // Gets the number of all tests. int UnitTest::total_test_count() const { return impl()->total_test_count(); } // Gets the number of tests that should run. int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } // Gets the time of the test program start, in ms from the start of the // UNIX epoch. internal::TimeInMillis UnitTest::start_timestamp() const { return impl()->start_timestamp(); } // Gets the elapsed time, in milliseconds. internal::TimeInMillis UnitTest::elapsed_time() const { return impl()->elapsed_time(); } // Returns true iff the unit test passed (i.e. all test cases passed). bool UnitTest::Passed() const { return impl()->Passed(); } // Returns true iff the unit test failed (i.e. some test case failed // or something outside of all tests failed). bool UnitTest::Failed() const { return impl()->Failed(); } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. const TestCase* UnitTest::GetTestCase(int i) const { return impl()->GetTestCase(i); } // Returns the TestResult containing information on test failures and // properties logged outside of individual test cases. const TestResult& UnitTest::ad_hoc_test_result() const { return *impl()->ad_hoc_test_result(); } // Gets the i-th test case among all the test cases. i can range from 0 to // total_test_case_count() - 1. If i is not in that range, returns NULL. TestCase* UnitTest::GetMutableTestCase(int i) { return impl()->GetMutableTestCase(i); } // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == NULL) { return NULL; } impl_->environments().push_back(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. void UnitTest::AddTestPartResult( TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (impl_->gtest_trace_stack().size() > 0) { msg << "\n" << GTEST_NAME_ << " trace:"; for (int i = static_cast(impl_->gtest_trace_stack().size()); i > 0; --i) { const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) << " " << trace.message; } } if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } const TestPartResult result = TestPartResult(result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()-> ReportTestPartResult(result); if (result_type != TestPartResult::kSuccess) { // gtest_break_on_failure takes precedence over // gtest_throw_on_failure. This allows a user to set the latter // in the code (perhaps in order to use Google Test assertions // with another testing framework) and specify the former on the // command line for debugging. if (GTEST_FLAG(break_on_failure)) { #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // Using DebugBreak on Windows allows gtest to still break into a debugger // when a failure happens and both the --gtest_break_on_failure and // the --gtest_catch_exceptions flags are specified. DebugBreak(); #else // Dereference NULL through a volatile pointer to prevent the compiler // from removing. We use this rather than abort() or __builtin_trap() for // portability: Symbian doesn't implement abort() well, and some debuggers // don't correctly trap abort(). *static_cast(NULL) = 1; #endif // GTEST_OS_WINDOWS } else if (GTEST_FLAG(throw_on_failure)) { #if GTEST_HAS_EXCEPTIONS throw internal::GoogleTestFailureException(result); #else // We cannot call abort() as it generates a pop-up in debug mode // that cannot be suppressed in VC 7.1 or below. exit(1); #endif } } } // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestCase's ad_hoc_test_result_ when invoked // from SetUpTestCase or TearDownTestCase, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void UnitTest::RecordProperty(const std::string& key, const std::string& value) { impl_->RecordProperty(TestProperty(key, value)); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { const bool in_death_test_child_process = internal::GTEST_FLAG(internal_run_death_test).length() > 0; // Google Test implements this protocol for catching that a test // program exits before returning control to Google Test: // // 1. Upon start, Google Test creates a file whose absolute path // is specified by the environment variable // TEST_PREMATURE_EXIT_FILE. // 2. When Google Test has finished its work, it deletes the file. // // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before // running a Google-Test-based test program and check the existence // of the file at the end of the test execution to see if it has // exited prematurely. // If we are in the child process of a death test, don't // create/delete the premature exit file, as doing so is unnecessary // and will confuse the parent process. Otherwise, create/delete // the file upon entering/leaving this function. If the program // somehow exits before this function has a chance to return, the // premature-exit file will be left undeleted, causing a test runner // that understands the premature-exit-file protocol to report the // test as having failed. const internal::ScopedPrematureExitFile premature_exit_file( in_death_test_child_process ? NULL : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); // Captures the value of GTEST_FLAG(catch_exceptions). This value will be // used for the duration of the program. impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions)); #if GTEST_HAS_SEH // Either the user wants Google Test to catch exceptions thrown by the // tests or this is executing in the context of death test child // process. In either case the user does not want to see pop-up dialogs // about crashes - they are expected. if (impl()->catch_exceptions() || in_death_test_child_process) { # if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // SetErrorMode doesn't exist on CE. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); # endif // !GTEST_OS_WINDOWS_MOBILE # if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE // Death test children can be terminated with _abort(). On Windows, // _abort() can show a dialog with a warning message. This forces the // abort message to go to stderr instead. _set_error_mode(_OUT_TO_STDERR); # endif # if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE // In the debug version, Visual Studio pops up a separate dialog // offering a choice to debug the aborted program. We need to suppress // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement // executed. Google Test will notify the user of any unexpected // failure via stderr. // // VC++ doesn't define _set_abort_behavior() prior to the version 8.0. // Users of prior VC versions shall suffer the agony and pain of // clicking through the countless debug dialogs. // TODO(vladl@google.com): find a way to suppress the abort dialog() in the // debug mode when compiled with VC 7.1 or lower. if (!GTEST_FLAG(break_on_failure)) _set_abort_behavior( 0x0, // Clear the following flags: _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. # endif } #endif // GTEST_HAS_SEH return internal::HandleExceptionsInMethodIfSupported( impl(), &internal::UnitTestImpl::RunAllTests, "auxiliary test code (environments or event listeners)") ? 0 : 1; } // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } // Returns the TestCase object for the test that's currently running, // or NULL if no test is running. const TestCase* UnitTest::current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_case(); } // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* UnitTest::current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } // Returns the random seed used at the start of the current test run. int UnitTest::random_seed() const { return impl_->random_seed(); } #if GTEST_HAS_PARAM_TEST // Returns ParameterizedTestCaseRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestCaseRegistry& UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) { return impl_->parameterized_test_registry(); } #endif // GTEST_HAS_PARAM_TEST // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().push_back(trace); } // Pops a trace from the per-thread Google Test trace stack. void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().pop_back(); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */) default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_repoter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), #if GTEST_HAS_PARAM_TEST parameterized_test_registry_(), parameterized_tests_registered_(false), #endif // GTEST_HAS_PARAM_TEST last_death_test_case_(-1), current_test_case_(NULL), current_test_info_(NULL), ad_hoc_test_result_(), os_stack_trace_getter_(NULL), post_flag_parse_init_performed_(false), random_seed_(0), // Will be overridden by the flag before first use. random_(0), // Will be reseeded before first use. start_timestamp_(0), elapsed_time_(0), #if GTEST_HAS_DEATH_TEST death_test_factory_(new DefaultDeathTestFactory), #endif // Will be overridden by the flag before first use. catch_exceptions_(false) { listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); } UnitTestImpl::~UnitTestImpl() { // Deletes every TestCase. ForEach(test_cases_, internal::Delete); // Deletes every Environment. ForEach(environments_, internal::Delete); delete os_stack_trace_getter_; } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test, to current test case's ad_hoc_test_result when invoke // from SetUpTestCase/TearDownTestCase, or to the global property set // otherwise. If the result already contains a property with the same key, // the value will be updated. void UnitTestImpl::RecordProperty(const TestProperty& test_property) { std::string xml_element; TestResult* test_result; // TestResult appropriate for property recording. if (current_test_info_ != NULL) { xml_element = "testcase"; test_result = &(current_test_info_->result_); } else if (current_test_case_ != NULL) { xml_element = "testsuite"; test_result = &(current_test_case_->ad_hoc_test_result_); } else { xml_element = "testsuites"; test_result = &ad_hoc_test_result_; } test_result->RecordProperty(xml_element, test_property); } #if GTEST_HAS_DEATH_TEST // Disables event forwarding if the control is currently in a death test // subprocess. Must not be called before InitGoogleTest. void UnitTestImpl::SuppressTestEventsIfInSubprocess() { if (internal_run_death_test_flag_.get() != NULL) listeners()->SuppressEventForwarding(); } #endif // GTEST_HAS_DEATH_TEST // Initializes event listeners performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureXmlOutput() { const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml") { listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format != "") { printf("WARNING: unrecognized output format \"%s\" ignored.\n", output_format.c_str()); fflush(stdout); } } #if GTEST_CAN_STREAM_RESULTS_ // Initializes event listeners for streaming test results in string form. // Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureStreamingOutput() { const std::string& target = GTEST_FLAG(stream_result_to); if (!target.empty()) { const size_t pos = target.find(':'); if (pos != std::string::npos) { listeners()->Append(new StreamingListener(target.substr(0, pos), target.substr(pos+1))); } else { printf("WARNING: unrecognized streaming target \"%s\" ignored.\n", target.c_str()); fflush(stdout); } } } #endif // GTEST_CAN_STREAM_RESULTS_ // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void UnitTestImpl::PostFlagParsingInit() { // Ensures that this function does not execute more than once. if (!post_flag_parse_init_performed_) { post_flag_parse_init_performed_ = true; #if GTEST_HAS_DEATH_TEST InitDeathTestSubprocessControlInfo(); SuppressTestEventsIfInSubprocess(); #endif // GTEST_HAS_DEATH_TEST // Registers parameterized tests. This makes parameterized tests // available to the UnitTest reflection API without running // RUN_ALL_TESTS. RegisterParameterizedTests(); // Configures listeners for XML output. This makes it possible for users // to shut down the default XML output before invoking RUN_ALL_TESTS. ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Configures listeners for streaming test results to the specified server. ConfigureStreamingOutput(); #endif // GTEST_CAN_STREAM_RESULTS_ } } // A predicate that checks the name of a TestCase against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestCaseNameIs is copyable. class TestCaseNameIs { public: // Constructor. explicit TestCaseNameIs(const std::string& name) : name_(name) {} // Returns true iff the name of test_case matches name_. bool operator()(const TestCase* test_case) const { return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0; } private: std::string name_; }; // Finds and returns a TestCase with the given name. If one doesn't // exist, creates one and returns it. It's the CALLER'S // RESPONSIBILITY to ensure that this function is only called WHEN THE // TESTS ARE NOT SHUFFLED. // // Arguments: // // test_case_name: name of the test case // type_param: the name of the test case's type parameter, or NULL if // this is not a typed or a type-parameterized test case. // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case TestCase* UnitTestImpl::GetTestCase(const char* test_case_name, const char* type_param, Test::SetUpTestCaseFunc set_up_tc, Test::TearDownTestCaseFunc tear_down_tc) { // Can we find a TestCase with the given name? const std::vector::const_iterator test_case = std::find_if(test_cases_.begin(), test_cases_.end(), TestCaseNameIs(test_case_name)); if (test_case != test_cases_.end()) return *test_case; // No. Let's create one. TestCase* const new_test_case = new TestCase(test_case_name, type_param, set_up_tc, tear_down_tc); // Is this a death test case? if (internal::UnitTestOptions::MatchesFilter(test_case_name, kDeathTestCaseFilter)) { // Yes. Inserts the test case after the last death test case // defined so far. This only works when the test cases haven't // been shuffled. Otherwise we may end up running a death test // after a non-death test. ++last_death_test_case_; test_cases_.insert(test_cases_.begin() + last_death_test_case_, new_test_case); } else { // No. Appends to the end of the list. test_cases_.push_back(new_test_case); } test_case_indices_.push_back(static_cast(test_case_indices_.size())); return new_test_case; } // Helpers for setting up / tearing down the given environment. They // are for use in the ForEach() function. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, the test is considered to be failed, but the // rest of the tests will still be run. // // When parameterized tests are enabled, it expands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. bool UnitTestImpl::RunAllTests() { // Makes sure InitGoogleTest() was called. if (!GTestIsInitialized()) { printf("%s", "\nThis test program did NOT call ::testing::InitGoogleTest " "before calling RUN_ALL_TESTS(). Please fix it.\n"); return false; } // Do not run any test if the --help flag was specified. if (g_help_flag) return true; // Repeats the call to the post-flag parsing initialization in case the // user didn't call InitGoogleTest. PostFlagParsingInit(); // Even if sharding is not on, test runners may want to use the // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding // protocol. internal::WriteToShardStatusFileIfNeeded(); // True iff we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #if GTEST_HAS_DEATH_TEST in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL); #endif // GTEST_HAS_DEATH_TEST const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, in_subprocess_for_death_test); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL : IGNORE_SHARDING_PROTOCOL) > 0; // Lists the tests and exits if the --gtest_list_tests flag was specified. if (GTEST_FLAG(list_tests)) { // This must be called *after* FilterTests() has been called. ListTestsMatchingFilter(); return true; } random_seed_ = GTEST_FLAG(shuffle) ? GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0; // True iff at least one test has failed. bool failed = false; TestEventListener* repeater = listeners()->repeater(); start_timestamp_ = GetTimeInMillis(); repeater->OnTestProgramStart(*parent_); // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); // Repeats forever if the repeat count is negative. const bool forever = repeat < 0; for (int i = 0; forever || i != repeat; i++) { // We want to preserve failures generated by ad-hoc test // assertions executed before RUN_ALL_TESTS(). ClearNonAdHocTestResult(); const TimeInMillis start = GetTimeInMillis(); // Shuffles test cases and tests if requested. if (has_tests_to_run && GTEST_FLAG(shuffle)) { random()->Reseed(random_seed_); // This should be done before calling OnTestIterationStart(), // such that a test event listener can see the actual test order // in the event. ShuffleTests(); } // Tells the unit test event listeners that the tests are about to start. repeater->OnTestIterationStart(*parent_, i); // Runs each test case if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. repeater->OnEnvironmentsSetUpStart(*parent_); ForEach(environments_, SetUpEnvironment); repeater->OnEnvironmentsSetUpEnd(*parent_); // Runs the tests only if there was no fatal failure during global // set-up. if (!Test::HasFatalFailure()) { for (int test_index = 0; test_index < total_test_case_count(); test_index++) { GetMutableTestCase(test_index)->Run(); } } // Tears down all environments in reverse order afterwards. repeater->OnEnvironmentsTearDownStart(*parent_); std::for_each(environments_.rbegin(), environments_.rend(), TearDownEnvironment); repeater->OnEnvironmentsTearDownEnd(*parent_); } elapsed_time_ = GetTimeInMillis() - start; // Tells the unit test event listener that the tests have just finished. repeater->OnTestIterationEnd(*parent_, i); // Gets the result and clears it. if (!Passed()) { failed = true; } // Restores the original test order after the iteration. This // allows the user to quickly repro a failure that happens in the // N-th iteration without repeating the first (N - 1) iterations. // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in // case the user somehow changes the value of the flag somewhere // (it's always safe to unshuffle the tests). UnshuffleTests(); if (GTEST_FLAG(shuffle)) { // Picks a new random seed for each iteration. random_seed_ = GetNextRandomSeed(random_seed_); } } repeater->OnTestProgramEnd(*parent_); return !failed; } // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded() { const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); if (test_shard_file != NULL) { FILE* const file = posix::FOpen(test_shard_file, "w"); if (file == NULL) { ColoredPrintf(COLOR_RED, "Could not write to the test shard status file \"%s\" " "specified by the %s environment variable.\n", test_shard_file, kTestShardStatusFile); fflush(stdout); exit(EXIT_FAILURE); } fclose(file); } } // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (i.e., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. bool ShouldShard(const char* total_shards_env, const char* shard_index_env, bool in_subprocess_for_death_test) { if (in_subprocess_for_death_test) { return false; } const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1); const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1); if (total_shards == -1 && shard_index == -1) { return false; } else if (total_shards == -1 && shard_index != -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestShardIndex << " = " << shard_index << ", but have left " << kTestTotalShards << " unset.\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (total_shards != -1 && shard_index == -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestTotalShards << " = " << total_shards << ", but have left " << kTestShardIndex << " unset.\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (shard_index < 0 || shard_index >= total_shards) { const Message msg = Message() << "Invalid environment variables: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index << ", " << kTestTotalShards << "=" << total_shards << ".\n"; ColoredPrintf(COLOR_RED, msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } return total_shards > 1; } // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error // and aborts. Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) { const char* str_val = posix::GetEnv(var); if (str_val == NULL) { return default_val; } Int32 result; if (!ParseInt32(Message() << "The value of environment variable " << var, str_val, &result)) { exit(EXIT_FAILURE); } return result; } // Given the total number of shards, the shard index, and the test id, // returns true iff the test should be run on this shard. The test id is // some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { return (test_id % total_shards) == shard_index; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestCase and TestInfo object. // If shard_tests == true, further filters tests based on sharding // variables in the environment - see // http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide. // Returns the number of tests that should run. int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestTotalShards, -1) : -1; const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestShardIndex, -1) : -1; // num_runnable_tests are the number of tests that will // run across all shards (i.e., match filter and are not disabled). // num_selected_tests are the number of tests to be run on // this shard. int num_runnable_tests = 0; int num_selected_tests = 0; for (size_t i = 0; i < test_cases_.size(); i++) { TestCase* const test_case = test_cases_[i]; const std::string &test_case_name = test_case->name(); test_case->set_should_run(false); for (size_t j = 0; j < test_case->test_info_list().size(); j++) { TestInfo* const test_info = test_case->test_info_list()[j]; const std::string test_name(test_info->name()); // A test is disabled if test case name or test name matches // kDisableTestFilter. const bool is_disabled = internal::UnitTestOptions::MatchesFilter(test_case_name, kDisableTestFilter) || internal::UnitTestOptions::MatchesFilter(test_name, kDisableTestFilter); test_info->is_disabled_ = is_disabled; const bool matches_filter = internal::UnitTestOptions::FilterMatchesTest(test_case_name, test_name); test_info->matches_filter_ = matches_filter; const bool is_runnable = (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) && matches_filter; const bool is_selected = is_runnable && (shard_tests == IGNORE_SHARDING_PROTOCOL || ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests)); num_runnable_tests += is_runnable; num_selected_tests += is_selected; test_info->should_run_ = is_selected; test_case->set_should_run(test_case->should_run() || is_selected); } } return num_selected_tests; } // Prints the given C-string on a single line by replacing all '\n' // characters with string "\\n". If the output takes more than // max_length characters, only prints the first max_length characters // and "...". static void PrintOnOneLine(const char* str, int max_length) { if (str != NULL) { for (int i = 0; *str != '\0'; ++str) { if (i >= max_length) { printf("..."); break; } if (*str == '\n') { printf("\\n"); i += 2; } else { printf("%c", *str); ++i; } } } } // Prints the names of the tests matching the user-specified filter flag. void UnitTestImpl::ListTestsMatchingFilter() { // Print at most this many characters for each type/value parameter. const int kMaxParamLength = 250; for (size_t i = 0; i < test_cases_.size(); i++) { const TestCase* const test_case = test_cases_[i]; bool printed_test_case_name = false; for (size_t j = 0; j < test_case->test_info_list().size(); j++) { const TestInfo* const test_info = test_case->test_info_list()[j]; if (test_info->matches_filter_) { if (!printed_test_case_name) { printed_test_case_name = true; printf("%s.", test_case->name()); if (test_case->type_param() != NULL) { printf(" # %s = ", kTypeParamLabel); // We print the type parameter on a single line to make // the output easy to parse by a program. PrintOnOneLine(test_case->type_param(), kMaxParamLength); } printf("\n"); } printf(" %s", test_info->name()); if (test_info->value_param() != NULL) { printf(" # %s = ", kValueParamLabel); // We print the value parameter on a single line to make the // output easy to parse by a program. PrintOnOneLine(test_info->value_param(), kMaxParamLength); } printf("\n"); } } } fflush(stdout); } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == NULL) { os_stack_trace_getter_ = new OsStackTraceGetter; } return os_stack_trace_getter_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. TestResult* UnitTestImpl::current_test_result() { return current_test_info_ ? &(current_test_info_->result_) : &ad_hoc_test_result_; } // Shuffles all test cases, and the tests within each test case, // making sure that death tests are still run first. void UnitTestImpl::ShuffleTests() { // Shuffles the death test cases. ShuffleRange(random(), 0, last_death_test_case_ + 1, &test_case_indices_); // Shuffles the non-death test cases. ShuffleRange(random(), last_death_test_case_ + 1, static_cast(test_cases_.size()), &test_case_indices_); // Shuffles the tests inside each test case. for (size_t i = 0; i < test_cases_.size(); i++) { test_cases_[i]->ShuffleTests(random()); } } // Restores the test cases and tests to their order before the first shuffle. void UnitTestImpl::UnshuffleTests() { for (size_t i = 0; i < test_cases_.size(); i++) { // Unshuffles the tests in each test case. test_cases_[i]->UnshuffleTests(); // Resets the index of each test case. test_case_indices_[i] = static_cast(i); } } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to // suppress unreachable code warnings. namespace { class ClassUniqueToAlwaysTrue {}; } bool IsTrue(bool condition) { return condition; } bool AlwaysTrue() { #if GTEST_HAS_EXCEPTIONS // This condition is always false so AlwaysTrue() never actually throws, // but it makes the compiler think that it may throw. if (IsTrue(false)) throw ClassUniqueToAlwaysTrue(); #endif // GTEST_HAS_EXCEPTIONS return true; } // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. bool SkipPrefix(const char* prefix, const char** pstr) { const size_t prefix_len = strlen(prefix); if (strncmp(*pstr, prefix, prefix_len) == 0) { *pstr += prefix_len; return true; } return false; } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. const char* ParseFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == NULL || flag == NULL) return NULL; // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return NULL; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == NULL) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an Int32 flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseInt32Flag(const char* str, const char* flag, Int32* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // Parses a string for a string flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseStringFlag(const char* str, const char* flag, std::string* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == NULL) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Determines whether a string has a prefix that Google Test uses for its // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. // If Google Test detects that a command line flag has its prefix but is not // recognized, it will print its help message. Flags starting with // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test // internal flags and do not trigger the help message. static bool HasGoogleTestFlagPrefix(const char* str) { return (SkipPrefix("--", &str) || SkipPrefix("-", &str) || SkipPrefix("/", &str)) && !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); } // Prints a string containing code-encoded text. The following escape // sequences can be used in the string to control the text color: // // @@ prints a single '@' character. // @R changes the color to red. // @G changes the color to green. // @Y changes the color to yellow. // @D changes to the default terminal text color. // // TODO(wan@google.com): Write tests for this once we add stdout // capturing to Google Test. static void PrintColorEncoded(const char* str) { GTestColor color = COLOR_DEFAULT; // The current color. // Conceptually, we split the string into segments divided by escape // sequences. Then we print one segment at a time. At the end of // each iteration, the str pointer advances to the beginning of the // next segment. for (;;) { const char* p = strchr(str, '@'); if (p == NULL) { ColoredPrintf(color, "%s", str); return; } ColoredPrintf(color, "%s", std::string(str, p).c_str()); const char ch = p[1]; str = p + 2; if (ch == '@') { ColoredPrintf(color, "@"); } else if (ch == 'D') { color = COLOR_DEFAULT; } else if (ch == 'R') { color = COLOR_RED; } else if (ch == 'G') { color = COLOR_GREEN; } else if (ch == 'Y') { color = COLOR_YELLOW; } else { --str; } } } static const char kColorEncodedHelpMessage[] = "This program contains tests written using " GTEST_NAME_ ". You can use the\n" "following command line flags to control its behavior:\n" "\n" "Test Selection:\n" " @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" " List the names of all tests instead of running them. The name of\n" " TEST(Foo, Bar) is \"Foo.Bar\".\n" " @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS" "[@G-@YNEGATIVE_PATTERNS]@D\n" " Run only the tests whose name matches one of the positive patterns but\n" " none of the negative patterns. '?' matches any single character; '*'\n" " matches any substring; ':' separates two patterns.\n" " @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" " Run all disabled tests too.\n" "\n" "Test Execution:\n" " @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" " Run the tests repeatedly; use a negative count to repeat forever.\n" " @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" " Randomize tests' orders on every iteration.\n" " @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" " Random number seed to use for shuffling test orders (between 1 and\n" " 99999, or 0 to use a seed based on the current time).\n" "\n" "Test Output:\n" " @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" " Enable/disable colored output. The default is @Gauto@D.\n" " -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n" " Don't print the elapsed time of each test.\n" " @G--" GTEST_FLAG_PREFIX_ "output=xml@Y[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" " Generate an XML report in the given directory or with the given file\n" " name. @YFILE_PATH@D defaults to @Gtest_details.xml@D.\n" #if GTEST_CAN_STREAM_RESULTS_ " @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" " Stream test results to the given server.\n" #endif // GTEST_CAN_STREAM_RESULTS_ "\n" "Assertion Behavior:\n" #if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" " Set the default death test style.\n" #endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" " Turn assertion failures into debugger break-points.\n" " @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" " Turn assertion failures into C++ exceptions.\n" " @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" " Do not report exceptions as test failures. Instead, allow them\n" " to crash the program or throw a pop-up (on Windows).\n" "\n" "Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " "the corresponding\n" "environment variable of a flag (all letters in upper-case). For example, to\n" "disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_ "color=no@D or set\n" "the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" "\n" "For more information, please read the " GTEST_NAME_ " documentation at\n" "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" "(not one in your own code or tests), please report it to\n" "@G<" GTEST_DEV_EMAIL_ ">@D.\n"; // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { for (int i = 1; i < *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseBoolFlag; using internal::ParseInt32Flag; using internal::ParseStringFlag; // Do we see a Google Test flag? if (ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag, >EST_FLAG(also_run_disabled_tests)) || ParseBoolFlag(arg, kBreakOnFailureFlag, >EST_FLAG(break_on_failure)) || ParseBoolFlag(arg, kCatchExceptionsFlag, >EST_FLAG(catch_exceptions)) || ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || ParseStringFlag(arg, kDeathTestStyleFlag, >EST_FLAG(death_test_style)) || ParseBoolFlag(arg, kDeathTestUseFork, >EST_FLAG(death_test_use_fork)) || ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || ParseStringFlag(arg, kInternalRunDeathTestFlag, >EST_FLAG(internal_run_death_test)) || ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || ParseInt32Flag(arg, kRandomSeedFlag, >EST_FLAG(random_seed)) || ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) || ParseBoolFlag(arg, kShuffleFlag, >EST_FLAG(shuffle)) || ParseInt32Flag(arg, kStackTraceDepthFlag, >EST_FLAG(stack_trace_depth)) || ParseStringFlag(arg, kStreamResultToFlag, >EST_FLAG(stream_result_to)) || ParseBoolFlag(arg, kThrowOnFailureFlag, >EST_FLAG(throw_on_failure)) ) { // Yes. Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } else if (arg_string == "--help" || arg_string == "-h" || arg_string == "-?" || arg_string == "/?" || HasGoogleTestFlagPrefix(arg)) { // Both help flag and unrecognized Google Test flags (excluding // internal ones) trigger help display. g_help_flag = true; } } if (g_help_flag) { // We print the help here instead of in RUN_ALL_TESTS(), as the // latter may not be called at all if the user is using Google // Test with another testing framework. PrintColorEncoded(kColorEncodedHelpMessage); } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleTestImpl(int* argc, CharType** argv) { g_init_gtest_count++; // We don't want to run the initialization code twice. if (g_init_gtest_count != 1) return; if (*argc <= 0) return; internal::g_executable_path = internal::StreamableToString(argv[0]); #if GTEST_HAS_DEATH_TEST g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #endif // GTEST_HAS_DEATH_TEST ParseGoogleTestFlagsOnly(argc, argv); GetUnitTestImpl()->PostFlagParsingInit(); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { internal::InitGoogleTestImpl(argc, argv); } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { internal::InitGoogleTestImpl(argc, argv); } } // namespace testing