# # Elliptic Curve Digital Signature Algorithm (ECDSA) # # COPYRIGHT (c) 2010 by Toni Mattis <solaris@live.de> # from elliptic import inv, mulf, mulp, muladdp, element from curves import get_curve, implemented_keys from os import urandom import hashlib def randkey(bits, n): '''Generate a random number (mod n) having the specified bit length''' rb = urandom(bits / 8 + 8) # + 64 bits as recommended in FIPS 186-3 c = 0 for r in rb: c = (c << 8) | ord(r) return (c % (n - 1)) + 1 def keypair(bits): '''Generate a new keypair (qk, dk) with dk = private and qk = public key''' try: bits, cn, n, cp, cq, g = get_curve(bits) except KeyError: raise ValueError, "Key size %s not implemented" % bits if n > 0: d = randkey(bits, n) q = mulp(cp, cq, cn, g, d) return (bits, q), (bits, d) else: raise ValueError, "Key size %s not suitable for signing" % bits def supported_keys(): '''Return a list of all key sizes implemented for signing''' return implemented_keys(True) def validate_public_key(qk): '''Check whether public key qk is valid''' bits, q = qk x, y = q bits, cn, n, cp, cq, g = get_curve(bits) return q and 0 < x < cn and 0 < y < cn and \ element(q, cp, cq, cn) and (mulp(cp, cq, cn, q, n) == None) def validate_private_key(dk): '''Check whether private key dk is valid''' bits, d = dk bits, cn, n, cp, cq, g = get_curve(bits) return 0 < d < cn def match_keys(qk, dk): '''Check whether dk is the private key belonging to qk''' bits, d = dk bitz, q = qk if bits == bitz: bits, cn, n, cp, cq, g = get_curve(bits) return mulp(cp, cq, cn, g, d) == q else: return False def truncate(h, hmax): '''Truncate a hash to the bit size of hmax''' while h > hmax: h >>= 1 return h def sign(h, dk): '''Sign the numeric value h using private key dk''' bits, d = dk bits, cn, n, cp, cq, g = get_curve(bits) h = truncate(h, cn) r = s = 0 while r == 0 or s == 0: k = randkey(bits, cn) kinv = inv(k, n) kg = mulp(cp, cq, cn, g, k) r = kg[0] % n if r == 0: continue s = (kinv * (h + r * d)) % n return r, s def verify(h, sig, qk): '''Verify that 'sig' is a valid signature of h using public key qk''' bits, q = qk try: bits, cn, n, cp, cq, g = get_curve(bits) except KeyError: return False h = truncate(h, cn) r, s = sig if 0 < r < n and 0 < s < n: w = inv(s, n) u1 = (h * w) % n u2 = (r * w) % n x, y = muladdp(cp, cq, cn, g, u1, q, u2) return r % n == x % n return False def hash_sign(s, dk, hashfunc = 'sha256'): h = int(hashlib.new(hashfunc, s).hexdigest(), 16) return (hashfunc,) + sign(h, dk) def hash_verify(s, sig, qk): h = int(hashlib.new(sig[0], s).hexdigest(), 16) return verify(h, sig[1:], qk) if __name__ == "__main__": import time testh1 = 0x0123456789ABCDEF testh2 = 0x0123456789ABCDEE for k in supported_keys(): qk, dk = keypair(k) s1 = sign(testh1, dk) s2 = sign(testh1, (dk[0], dk[1] ^ 1)) s3 = (s1[0], s1[1] ^ 1) qk2 = (qk[0], (qk[1][0] ^ 1, qk[1][1])) assert verify(testh1, s1, qk) # everything ok -> must succeed assert not verify(testh2, s1, qk) # modified hash -> must fail assert not verify(testh1, s2, qk) # different priv. key -> must fail assert not verify(testh1, s3, qk) # modified signature -> must fail assert not verify(testh1, s1, qk2) # different publ. key -> must fail def test_perf(bits, rounds = 50): '''-> (key generations, signatures, verifications) / second''' h = 0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF d = get_curve(bits) t = time.time() for i in xrange(rounds): qk, dk = keypair(bits) tgen = time.time() - t t = time.time() for i in xrange(rounds): s = sign(0, dk) tsign = time.time() - t t = time.time() for i in xrange(rounds): verify(0, s, qk) tver = time.time() - t return rounds / tgen, rounds / tsign, rounds / tver