// Copyright 2011 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Various stubs for the unit tests for the open-source version of Snappy. #ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_ #define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_ #include <iostream> #include <string> #include "snappy-stubs-internal.h" #include <stdio.h> #include <stdarg.h> #ifdef HAVE_SYS_MMAN_H #include <sys/mman.h> #endif #ifdef HAVE_SYS_RESOURCE_H #include <sys/resource.h> #endif #ifdef HAVE_SYS_TIME_H #include <sys/time.h> #endif #ifdef HAVE_WINDOWS_H #include <windows.h> #endif #include <string> #ifdef HAVE_GTEST #include <gtest/gtest.h> #undef TYPED_TEST #define TYPED_TEST TEST #define INIT_GTEST(argc, argv) ::testing::InitGoogleTest(argc, *argv) #else // Stubs for if the user doesn't have Google Test installed. #define TEST(test_case, test_subcase) \ void Test_ ## test_case ## _ ## test_subcase() #define INIT_GTEST(argc, argv) #define TYPED_TEST TEST #define EXPECT_EQ CHECK_EQ #define EXPECT_NE CHECK_NE #define EXPECT_FALSE(cond) CHECK(!(cond)) #endif #ifdef HAVE_GFLAGS #include <gflags/gflags.h> // This is tricky; both gflags and Google Test want to look at the command line // arguments. Google Test seems to be the most happy with unknown arguments, // though, so we call it first and hope for the best. #define InitGoogle(argv0, argc, argv, remove_flags) \ INIT_GTEST(argc, argv); \ google::ParseCommandLineFlags(argc, argv, remove_flags); #else // If we don't have the gflags package installed, these can only be // changed at compile time. #define DEFINE_int32(flag_name, default_value, description) \ static int FLAGS_ ## flag_name = default_value; #define InitGoogle(argv0, argc, argv, remove_flags) \ INIT_GTEST(argc, argv) #endif #ifdef HAVE_LIBZ #include "zlib.h" #endif #ifdef HAVE_LIBLZO2 #include "lzo/lzo1x.h" #endif #ifdef HAVE_LIBLZF extern "C" { #include "lzf.h" } #endif #ifdef HAVE_LIBFASTLZ #include "fastlz.h" #endif #ifdef HAVE_LIBQUICKLZ #include "quicklz.h" #endif namespace { namespace File { void Init() { } } // namespace File namespace file { int Defaults() { return 0; } class DummyStatus { public: void CheckSuccess() { } }; DummyStatus GetContents(const string& filename, string* data, int unused) { FILE* fp = fopen(filename.c_str(), "rb"); if (fp == NULL) { perror(filename.c_str()); exit(1); } data->clear(); while (!feof(fp)) { char buf[4096]; size_t ret = fread(buf, 1, 4096, fp); if (ret == 0 && ferror(fp)) { perror("fread"); exit(1); } data->append(string(buf, ret)); } fclose(fp); return DummyStatus(); } DummyStatus SetContents(const string& filename, const string& str, int unused) { FILE* fp = fopen(filename.c_str(), "wb"); if (fp == NULL) { perror(filename.c_str()); exit(1); } int ret = fwrite(str.data(), str.size(), 1, fp); if (ret != 1) { perror("fwrite"); exit(1); } fclose(fp); return DummyStatus(); } } // namespace file } // namespace namespace snappy { #define FLAGS_test_random_seed 301 typedef string TypeParam; void Test_CorruptedTest_VerifyCorrupted(); void Test_Snappy_SimpleTests(); void Test_Snappy_MaxBlowup(); void Test_Snappy_RandomData(); void Test_Snappy_FourByteOffset(); void Test_SnappyCorruption_TruncatedVarint(); void Test_SnappyCorruption_UnterminatedVarint(); void Test_SnappyCorruption_OverflowingVarint(); void Test_Snappy_ReadPastEndOfBuffer(); void Test_Snappy_FindMatchLength(); void Test_Snappy_FindMatchLengthRandom(); string ReadTestDataFile(const string& base, size_t size_limit); string ReadTestDataFile(const string& base); // A sprintf() variant that returns a std::string. // Not safe for general use due to truncation issues. string StringPrintf(const char* format, ...); // A simple, non-cryptographically-secure random generator. class ACMRandom { public: explicit ACMRandom(uint32 seed) : seed_(seed) {} int32 Next(); int32 Uniform(int32 n) { return Next() % n; } uint8 Rand8() { return static_cast<uint8>((Next() >> 1) & 0x000000ff); } bool OneIn(int X) { return Uniform(X) == 0; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with bias towards smaller numbers. int32 Skewed(int max_log); private: static const uint32 M = 2147483647L; // 2^31-1 uint32 seed_; }; inline int32 ACMRandom::Next() { static const uint64 A = 16807; // bits 14, 8, 7, 5, 2, 1, 0 // We are computing // seed_ = (seed_ * A) % M, where M = 2^31-1 // // seed_ must not be zero or M, or else all subsequent computed values // will be zero or M respectively. For all other values, seed_ will end // up cycling through every number in [1,M-1] uint64 product = seed_ * A; // Compute (product % M) using the fact that ((x << 31) % M) == x. seed_ = (product >> 31) + (product & M); // The first reduction may overflow by 1 bit, so we may need to repeat. // mod == M is not possible; using > allows the faster sign-bit-based test. if (seed_ > M) { seed_ -= M; } return seed_; } inline int32 ACMRandom::Skewed(int max_log) { const int32 base = (Next() - 1) % (max_log+1); return (Next() - 1) & ((1u << base)-1); } // A wall-time clock. This stub is not super-accurate, nor resistant to the // system time changing. class CycleTimer { public: CycleTimer() : real_time_us_(0) {} void Start() { #ifdef WIN32 QueryPerformanceCounter(&start_); #else gettimeofday(&start_, NULL); #endif } void Stop() { #ifdef WIN32 LARGE_INTEGER stop; LARGE_INTEGER frequency; QueryPerformanceCounter(&stop); QueryPerformanceFrequency(&frequency); double elapsed = static_cast<double>(stop.QuadPart - start_.QuadPart) / frequency.QuadPart; real_time_us_ += elapsed * 1e6 + 0.5; #else struct timeval stop; gettimeofday(&stop, NULL); real_time_us_ += 1000000 * (stop.tv_sec - start_.tv_sec); real_time_us_ += (stop.tv_usec - start_.tv_usec); #endif } double Get() { return real_time_us_ * 1e-6; } private: int64 real_time_us_; #ifdef WIN32 LARGE_INTEGER start_; #else struct timeval start_; #endif }; // Minimalistic microbenchmark framework. typedef void (*BenchmarkFunction)(int, int); class Benchmark { public: Benchmark(const string& name, BenchmarkFunction function) : name_(name), function_(function) {} Benchmark* DenseRange(int start, int stop) { start_ = start; stop_ = stop; return this; } void Run(); private: const string name_; const BenchmarkFunction function_; int start_, stop_; }; #define BENCHMARK(benchmark_name) \ Benchmark* Benchmark_ ## benchmark_name = \ (new Benchmark(#benchmark_name, benchmark_name)) extern Benchmark* Benchmark_BM_UFlat; extern Benchmark* Benchmark_BM_UIOVec; extern Benchmark* Benchmark_BM_UValidate; extern Benchmark* Benchmark_BM_ZFlat; void ResetBenchmarkTiming(); void StartBenchmarkTiming(); void StopBenchmarkTiming(); void SetBenchmarkLabel(const string& str); void SetBenchmarkBytesProcessed(int64 bytes); #ifdef HAVE_LIBZ // Object-oriented wrapper around zlib. class ZLib { public: ZLib(); ~ZLib(); // Wipe a ZLib object to a virgin state. This differs from Reset() // in that it also breaks any state. void Reinit(); // Call this to make a zlib buffer as good as new. Here's the only // case where they differ: // CompressChunk(a); CompressChunk(b); CompressChunkDone(); vs // CompressChunk(a); Reset(); CompressChunk(b); CompressChunkDone(); // You'll want to use Reset(), then, when you interrupt a compress // (or uncompress) in the middle of a chunk and want to start over. void Reset(); // According to the zlib manual, when you Compress, the destination // buffer must have size at least src + .1%*src + 12. This function // helps you calculate that. Augment this to account for a potential // gzip header and footer, plus a few bytes of slack. static int MinCompressbufSize(int uncompress_size) { return uncompress_size + uncompress_size/1000 + 40; } // Compresses the source buffer into the destination buffer. // sourceLen is the byte length of the source buffer. // Upon entry, destLen is the total size of the destination buffer, // which must be of size at least MinCompressbufSize(sourceLen). // Upon exit, destLen is the actual size of the compressed buffer. // // This function can be used to compress a whole file at once if the // input file is mmap'ed. // // Returns Z_OK if success, Z_MEM_ERROR if there was not // enough memory, Z_BUF_ERROR if there was not enough room in the // output buffer. Note that if the output buffer is exactly the same // size as the compressed result, we still return Z_BUF_ERROR. // (check CL#1936076) int Compress(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen); // Uncompresses the source buffer into the destination buffer. // The destination buffer must be long enough to hold the entire // decompressed contents. // // Returns Z_OK on success, otherwise, it returns a zlib error code. int Uncompress(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen); // Uncompress data one chunk at a time -- ie you can call this // more than once. To get this to work you need to call per-chunk // and "done" routines. // // Returns Z_OK if success, Z_MEM_ERROR if there was not // enough memory, Z_BUF_ERROR if there was not enough room in the // output buffer. int UncompressAtMost(Bytef *dest, uLongf *destLen, const Bytef *source, uLong *sourceLen); // Checks gzip footer information, as needed. Mostly this just // makes sure the checksums match. Whenever you call this, it // will assume the last 8 bytes from the previous UncompressChunk // call are the footer. Returns true iff everything looks ok. bool UncompressChunkDone(); private: int InflateInit(); // sets up the zlib inflate structure int DeflateInit(); // sets up the zlib deflate structure // These init the zlib data structures for compressing/uncompressing int CompressInit(Bytef *dest, uLongf *destLen, const Bytef *source, uLong *sourceLen); int UncompressInit(Bytef *dest, uLongf *destLen, const Bytef *source, uLong *sourceLen); // Initialization method to be called if we hit an error while // uncompressing. On hitting an error, call this method before // returning the error. void UncompressErrorInit(); // Helper function for Compress int CompressChunkOrAll(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int flush_mode); int CompressAtMostOrAll(Bytef *dest, uLongf *destLen, const Bytef *source, uLong *sourceLen, int flush_mode); // Likewise for UncompressAndUncompressChunk int UncompressChunkOrAll(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int flush_mode); int UncompressAtMostOrAll(Bytef *dest, uLongf *destLen, const Bytef *source, uLong *sourceLen, int flush_mode); // Initialization method to be called if we hit an error while // compressing. On hitting an error, call this method before // returning the error. void CompressErrorInit(); int compression_level_; // compression level int window_bits_; // log base 2 of the window size used in compression int mem_level_; // specifies the amount of memory to be used by // compressor (1-9) z_stream comp_stream_; // Zlib stream data structure bool comp_init_; // True if we have initialized comp_stream_ z_stream uncomp_stream_; // Zlib stream data structure bool uncomp_init_; // True if we have initialized uncomp_stream_ // These are used only with chunked compression. bool first_chunk_; // true if we need to emit headers with this chunk }; #endif // HAVE_LIBZ } // namespace snappy DECLARE_bool(run_microbenchmarks); static void RunSpecifiedBenchmarks() { if (!FLAGS_run_microbenchmarks) { return; } fprintf(stderr, "Running microbenchmarks.\n"); #ifndef NDEBUG fprintf(stderr, "WARNING: Compiled with assertions enabled, will be slow.\n"); #endif #ifndef __OPTIMIZE__ fprintf(stderr, "WARNING: Compiled without optimization, will be slow.\n"); #endif fprintf(stderr, "Benchmark Time(ns) CPU(ns) Iterations\n"); fprintf(stderr, "---------------------------------------------------\n"); snappy::Benchmark_BM_UFlat->Run(); snappy::Benchmark_BM_UIOVec->Run(); snappy::Benchmark_BM_UValidate->Run(); snappy::Benchmark_BM_ZFlat->Run(); fprintf(stderr, "\n"); } #ifndef HAVE_GTEST static inline int RUN_ALL_TESTS() { fprintf(stderr, "Running correctness tests.\n"); snappy::Test_CorruptedTest_VerifyCorrupted(); snappy::Test_Snappy_SimpleTests(); snappy::Test_Snappy_MaxBlowup(); snappy::Test_Snappy_RandomData(); snappy::Test_Snappy_FourByteOffset(); snappy::Test_SnappyCorruption_TruncatedVarint(); snappy::Test_SnappyCorruption_UnterminatedVarint(); snappy::Test_SnappyCorruption_OverflowingVarint(); snappy::Test_Snappy_ReadPastEndOfBuffer(); snappy::Test_Snappy_FindMatchLength(); snappy::Test_Snappy_FindMatchLengthRandom(); fprintf(stderr, "All tests passed.\n"); return 0; } #endif // HAVE_GTEST // For main(). namespace snappy { static void CompressFile(const char* fname); static void UncompressFile(const char* fname); static void MeasureFile(const char* fname); // Logging. #define LOG(level) LogMessage() #define VLOG(level) true ? (void)0 : \ snappy::LogMessageVoidify() & snappy::LogMessage() class LogMessage { public: LogMessage() { } ~LogMessage() { cerr << endl; } LogMessage& operator<<(const std::string& msg) { cerr << msg; return *this; } LogMessage& operator<<(int x) { cerr << x; return *this; } }; // Asserts, both versions activated in debug mode only, // and ones that are always active. #define CRASH_UNLESS(condition) \ PREDICT_TRUE(condition) ? (void)0 : \ snappy::LogMessageVoidify() & snappy::LogMessageCrash() #ifdef _MSC_VER // ~LogMessageCrash calls abort() and therefore never exits. This is by design // so temporarily disable warning C4722. #pragma warning(push) #pragma warning(disable:4722) #endif class LogMessageCrash : public LogMessage { public: LogMessageCrash() { } ~LogMessageCrash() { cerr << endl; abort(); } }; #ifdef _MSC_VER #pragma warning(pop) #endif // This class is used to explicitly ignore values in the conditional // logging macros. This avoids compiler warnings like "value computed // is not used" and "statement has no effect". class LogMessageVoidify { public: LogMessageVoidify() { } // This has to be an operator with a precedence lower than << but // higher than ?: void operator&(const LogMessage&) { } }; #define CHECK(cond) CRASH_UNLESS(cond) #define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b)) #define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b)) #define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b)) #define CHECK_NE(a, b) CRASH_UNLESS((a) != (b)) #define CHECK_LT(a, b) CRASH_UNLESS((a) < (b)) #define CHECK_GT(a, b) CRASH_UNLESS((a) > (b)) #define CHECK_OK(cond) (cond).CheckSuccess() } // namespace using snappy::CompressFile; using snappy::UncompressFile; using snappy::MeasureFile; #endif // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_