/*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2008 Robert N. M. Watson * Copyright (c) 2009-2010 Brad Penoff * Copyright (c) 2009-2010 Humaira Kamal * Copyright (c) 2011-2012 Irene Ruengeler * Copyright (c) 2011-2012 Michael Tuexen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include <netinet/sctp_os.h> #include <netinet/sctp_pcb.h> #include <netinet/sctputil.h> #include <netinet/sctp_var.h> #include <netinet/sctp_sysctl.h> #include <netinet/sctp_input.h> #include <netinet/sctp_peeloff.h> #ifdef INET6 #include <netinet6/sctp6_var.h> #endif #if defined(__Userspace_os_Linux) #define __FAVOR_BSD /* (on Ubuntu at least) enables UDP header field names like BSD in RFC 768 */ #endif #if !defined (__Userspace_os_Windows) #if defined INET || defined INET6 #include <netinet/udp.h> #endif #include <arpa/inet.h> #else #include <user_socketvar.h> #endif userland_mutex_t accept_mtx; userland_cond_t accept_cond; #ifdef _WIN32 #include <time.h> #include <sys/timeb.h> #endif MALLOC_DEFINE(M_PCB, "sctp_pcb", "sctp pcb"); MALLOC_DEFINE(M_SONAME, "sctp_soname", "sctp soname"); #define MAXLEN_MBUF_CHAIN 32 /* Prototypes */ extern int sctp_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, /* proc is a dummy in __Userspace__ and will not be passed to sctp_lower_sosend */ struct proc *p); extern int sctp_attach(struct socket *so, int proto, uint32_t vrf_id); extern int sctpconn_attach(struct socket *so, int proto, uint32_t vrf_id); void usrsctp_init(uint16_t port, int (*conn_output)(void *addr, void *buffer, size_t length, uint8_t tos, uint8_t set_df), void (*debug_printf)(const char *format, ...)) { sctp_init(port, conn_output, debug_printf); } /* Taken from usr/src/sys/kern/uipc_sockbuf.c and modified for __Userspace__*/ /* * Socantsendmore indicates that no more data will be sent on the socket; it * would normally be applied to a socket when the user informs the system * that no more data is to be sent, by the protocol code (in case * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be * received, and will normally be applied to the socket by a protocol when it * detects that the peer will send no more data. Data queued for reading in * the socket may yet be read. */ void socantrcvmore_locked(struct socket *so) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); so->so_rcv.sb_state |= SBS_CANTRCVMORE; sorwakeup_locked(so); } void socantrcvmore(struct socket *so) { SOCKBUF_LOCK(&so->so_rcv); socantrcvmore_locked(so); } void socantsendmore_locked(struct socket *so) { SOCKBUF_LOCK_ASSERT(&so->so_snd); so->so_snd.sb_state |= SBS_CANTSENDMORE; sowwakeup_locked(so); } void socantsendmore(struct socket *so) { SOCKBUF_LOCK(&so->so_snd); socantsendmore_locked(so); } /* Taken from usr/src/sys/kern/uipc_sockbuf.c and called within sctp_lower_sosend. */ int sbwait(struct sockbuf *sb) { #if defined(__Userspace__) /* __Userspace__ */ SOCKBUF_LOCK_ASSERT(sb); sb->sb_flags |= SB_WAIT; #if defined (__Userspace_os_Windows) if (SleepConditionVariableCS(&(sb->sb_cond), &(sb->sb_mtx), INFINITE)) return 0; else return -1; #else return (pthread_cond_wait(&(sb->sb_cond), &(sb->sb_mtx))); #endif #else SOCKBUF_LOCK_ASSERT(sb); sb->sb_flags |= SB_WAIT; return (msleep(&sb->sb_cc, &sb->sb_mtx, (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", sb->sb_timeo)); #endif } /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ */ static struct socket * soalloc(void) { struct socket *so; /* * soalloc() sets of socket layer state for a socket, * called only by socreate() and sonewconn(). * * sodealloc() tears down socket layer state for a socket, * called only by sofree() and sonewconn(). * __Userspace__ TODO : Make sure so is properly deallocated * when tearing down the connection. */ so = (struct socket *)malloc(sizeof(struct socket)); if (so == NULL) { return (NULL); } memset(so, 0, sizeof(struct socket)); /* __Userspace__ Initializing the socket locks here */ SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); SOCKBUF_COND_INIT(&so->so_snd); SOCKBUF_COND_INIT(&so->so_rcv); SOCK_COND_INIT(so); /* timeo_cond */ /* __Userspace__ Any ref counting required here? Will we have any use for aiojobq? What about gencnt and numopensockets?*/ TAILQ_INIT(&so->so_aiojobq); return (so); } static void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); SOCKBUF_COND_DESTROY(&so->so_snd); SOCKBUF_COND_DESTROY(&so->so_rcv); SOCK_COND_DESTROY(so); SOCKBUF_LOCK_DESTROY(&so->so_snd); SOCKBUF_LOCK_DESTROY(&so->so_rcv); free(so); } /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ */ void sofree(struct socket *so) { struct socket *head; ACCEPT_LOCK_ASSERT(); SOCK_LOCK_ASSERT(so); /* SS_NOFDREF unset in accept call. this condition seems irrelevent * for __Userspace__... */ if (so->so_count != 0 || (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { SOCK_UNLOCK(so); ACCEPT_UNLOCK(); return; } head = so->so_head; if (head != NULL) { KASSERT((so->so_qstate & SQ_COMP) != 0 || (so->so_qstate & SQ_INCOMP) != 0, ("sofree: so_head != NULL, but neither SQ_COMP nor " "SQ_INCOMP")); KASSERT((so->so_qstate & SQ_COMP) == 0 || (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_qstate &= ~SQ_INCOMP; so->so_head = NULL; } KASSERT((so->so_qstate & SQ_COMP) == 0 && (so->so_qstate & SQ_INCOMP) == 0, ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); if (so->so_options & SCTP_SO_ACCEPTCONN) { KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); } SOCK_UNLOCK(so); ACCEPT_UNLOCK(); sctp_close(so); /* was... sctp_detach(so); */ /* * From this point on, we assume that no other references to this * socket exist anywhere else in the stack. Therefore, no locks need * to be acquired or held. * * We used to do a lot of socket buffer and socket locking here, as * well as invoke sorflush() and perform wakeups. The direct call to * dom_dispose() and sbrelease_internal() are an inlining of what was * necessary from sorflush(). * * Notice that the socket buffer and kqueue state are torn down * before calling pru_detach. This means that protocols shold not * assume they can perform socket wakeups, etc, in their detach code. */ sodealloc(so); } /* Taken from /src/sys/kern/uipc_socket.c */ int soabort(so) struct socket *so; { int error; #if defined(INET6) struct sctp_inpcb *inp; #endif #if defined(INET6) inp = (struct sctp_inpcb *)so->so_pcb; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { error = sctp6_abort(so); } else { #if defined(INET) error = sctp_abort(so); #else error = EAFNOSUPPORT; #endif } #elif defined(INET) error = sctp_abort(so); #else error = EAFNOSUPPORT; #endif if (error) { sofree(so); return error; } return (0); } /* Taken from usr/src/sys/kern/uipc_socket.c and called within sctp_connect (sctp_usrreq.c). * We use sctp_connect for send_one_init_real in ms1. */ void soisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; SOCK_UNLOCK(so); } /* Taken from usr/src/sys/kern/uipc_socket.c and called within sctp_disconnect (sctp_usrreq.c). * TODO Do we use sctp_disconnect? */ void soisdisconnecting(struct socket *so) { /* * Note: This code assumes that SOCK_LOCK(so) and * SOCKBUF_LOCK(&so->so_rcv) are the same. */ SOCKBUF_LOCK(&so->so_rcv); so->so_state &= ~SS_ISCONNECTING; so->so_state |= SS_ISDISCONNECTING; so->so_rcv.sb_state |= SBS_CANTRCVMORE; sorwakeup_locked(so); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_state |= SBS_CANTSENDMORE; sowwakeup_locked(so); wakeup("dummy",so); /* requires 2 args but this was in orig */ /* wakeup(&so->so_timeo); */ } /* Taken from sys/kern/kern_synch.c and modified for __Userspace__ */ /* * Make all threads sleeping on the specified identifier runnable. * Associating wakeup with so_timeo identifier and timeo_cond * condition variable. TODO. If we use iterator thread then we need to * modify wakeup so it can distinguish between iterator identifier and * timeo identifier. */ void wakeup(ident, so) void *ident; struct socket *so; { SOCK_LOCK(so); #if defined (__Userspace_os_Windows) WakeAllConditionVariable(&(so)->timeo_cond); #else pthread_cond_broadcast(&(so)->timeo_cond); #endif SOCK_UNLOCK(so); } /* * Make a thread sleeping on the specified identifier runnable. * May wake more than one thread if a target thread is currently * swapped out. */ void wakeup_one(ident) void *ident; { /* __Userspace__ Check: We are using accept_cond for wakeup_one. It seems that wakeup_one is only called within soisconnected() and sonewconn() with ident &head->so_timeo head is so->so_head, which is back pointer to listen socket This seems to indicate that the use of accept_cond is correct since socket where accepts occur is so_head in all subsidiary sockets. */ ACCEPT_LOCK(); #if defined (__Userspace_os_Windows) WakeAllConditionVariable(&accept_cond); #else pthread_cond_broadcast(&accept_cond); #endif ACCEPT_UNLOCK(); } /* Called within sctp_process_cookie_[existing/new] */ void soisconnected(struct socket *so) { struct socket *head; ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; head = so->so_head; if (head != NULL && (so->so_qstate & SQ_INCOMP)) { SOCK_UNLOCK(so); TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_qstate &= ~SQ_INCOMP; TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); head->so_qlen++; so->so_qstate |= SQ_COMP; ACCEPT_UNLOCK(); sorwakeup(head); wakeup_one(&head->so_timeo); return; } SOCK_UNLOCK(so); ACCEPT_UNLOCK(); wakeup(&so->so_timeo, so); sorwakeup(so); sowwakeup(so); } /* called within sctp_handle_cookie_echo */ struct socket * sonewconn(struct socket *head, int connstatus) { struct socket *so; int over; ACCEPT_LOCK(); over = (head->so_qlen > 3 * head->so_qlimit / 2); ACCEPT_UNLOCK(); #ifdef REGRESSION if (regression_sonewconn_earlytest && over) #else if (over) #endif return (NULL); so = soalloc(); if (so == NULL) return (NULL); so->so_head = head; so->so_type = head->so_type; so->so_options = head->so_options &~ SCTP_SO_ACCEPTCONN; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_dom = head->so_dom; #ifdef MAC SOCK_LOCK(head); mac_create_socket_from_socket(head, so); SOCK_UNLOCK(head); #endif if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { sodealloc(so); return (NULL); } switch (head->so_dom) { #ifdef INET case AF_INET: if (sctp_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) { sodealloc(so); return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (sctp6_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) { sodealloc(so); return (NULL); } break; #endif case AF_CONN: if (sctpconn_attach(so, IPPROTO_SCTP, SCTP_DEFAULT_VRFID)) { sodealloc(so); return (NULL); } break; default: sodealloc(so); return (NULL); break; } so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; so->so_snd.sb_lowat = head->so_snd.sb_lowat; so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; so->so_snd.sb_timeo = head->so_snd.sb_timeo; so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; so->so_state |= connstatus; ACCEPT_LOCK(); if (connstatus) { TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); so->so_qstate |= SQ_COMP; head->so_qlen++; } else { /* * Keep removing sockets from the head until there's room for * us to insert on the tail. In pre-locking revisions, this * was a simple if(), but as we could be racing with other * threads and soabort() requires dropping locks, we must * loop waiting for the condition to be true. */ while (head->so_incqlen > head->so_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->so_incomp); TAILQ_REMOVE(&head->so_incomp, sp, so_list); head->so_incqlen--; sp->so_qstate &= ~SQ_INCOMP; sp->so_head = NULL; ACCEPT_UNLOCK(); soabort(sp); ACCEPT_LOCK(); } TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); so->so_qstate |= SQ_INCOMP; head->so_incqlen++; } ACCEPT_UNLOCK(); if (connstatus) { sorwakeup(head); wakeup_one(&head->so_timeo); } return (so); } /* From /src/sys/sys/sysproto.h */ struct sctp_generic_sendmsg_args { int sd; caddr_t msg; int mlen; caddr_t to; socklen_t tolen; /* was __socklen_t */ struct sctp_sndrcvinfo * sinfo; int flags; }; struct sctp_generic_recvmsg_args { int sd; struct iovec *iov; int iovlen; struct sockaddr *from; socklen_t *fromlenaddr; /* was __socklen_t */ struct sctp_sndrcvinfo *sinfo; int *msg_flags; }; /* Source: /src/sys/gnu/fs/xfs/FreeBSD/xfs_ioctl.c */ static __inline__ int copy_to_user(void *dst, void *src, int len) { memcpy(dst, src, len); return 0; } static __inline__ int copy_from_user(void *dst, void *src, int len) { memcpy(dst, src, len); return 0; } /* References: src/sys/dev/lmc/if_lmc.h: src/sys/powerpc/powerpc/copyinout.c src/sys/sys/systm.h */ # define copyin(u, k, len) copy_from_user(k, u, len) /* References: src/sys/powerpc/powerpc/copyinout.c src/sys/sys/systm.h */ # define copyout(k, u, len) copy_to_user(u, k, len) /* copyiniov definition copied/modified from src/sys/kern/kern_subr.c */ int copyiniov(struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error) { u_int iovlen; *iov = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof (struct iovec); *iov = malloc(iovlen); /*, M_IOV, M_WAITOK); */ error = copyin(iovp, *iov, iovlen); if (error) { free(*iov); /*, M_IOV); */ *iov = NULL; } return (error); } /* (__Userspace__) version of uiomove */ int uiomove(void *cp, int n, struct uio *uio) { struct iovec *iov; int cnt; int error = 0; if ((uio->uio_rw != UIO_READ) && (uio->uio_rw != UIO_WRITE)) { return (EINVAL); } while (n > 0 && uio->uio_resid) { iov = uio->uio_iov; cnt = iov->iov_len; if (cnt == 0) { uio->uio_iov++; uio->uio_iovcnt--; continue; } if (cnt > n) cnt = n; switch (uio->uio_segflg) { case UIO_USERSPACE: if (uio->uio_rw == UIO_READ) error = copyout(cp, iov->iov_base, cnt); else error = copyin(iov->iov_base, cp, cnt); if (error) goto out; break; case UIO_SYSSPACE: if (uio->uio_rw == UIO_READ) bcopy(cp, iov->iov_base, cnt); else bcopy(iov->iov_base, cp, cnt); break; } iov->iov_base = (char *)iov->iov_base + cnt; iov->iov_len -= cnt; uio->uio_resid -= cnt; uio->uio_offset += cnt; cp = (char *)cp + cnt; n -= cnt; } out: return (error); } /* Source: src/sys/kern/uipc_syscalls.c */ int getsockaddr(namp, uaddr, len) struct sockaddr **namp; caddr_t uaddr; size_t len; { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data)) return (EINVAL); MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error) { FREE(sa, M_SONAME); } else { #ifdef HAVE_SA_LEN sa->sa_len = len; #endif *namp = sa; } return (error); } /* Taken from /src/lib/libc/net/sctp_sys_calls.c * and modified for __Userspace__ * calling sctp_generic_sendmsg from this function */ ssize_t userspace_sctp_sendmsg(struct socket *so, const void *data, size_t len, struct sockaddr *to, socklen_t tolen, u_int32_t ppid, u_int32_t flags, u_int16_t stream_no, u_int32_t timetolive, u_int32_t context) { struct sctp_sndrcvinfo sndrcvinfo, *sinfo = &sndrcvinfo; struct uio auio; struct iovec iov[1]; memset(sinfo, 0, sizeof(struct sctp_sndrcvinfo)); sinfo->sinfo_ppid = ppid; sinfo->sinfo_flags = flags; sinfo->sinfo_stream = stream_no; sinfo->sinfo_timetolive = timetolive; sinfo->sinfo_context = context; sinfo->sinfo_assoc_id = 0; /* Perform error checks on destination (to) */ if (tolen > SOCK_MAXADDRLEN){ errno = ENAMETOOLONG; return (-1); } if ((tolen > 0) && ((to == NULL) || (tolen < (socklen_t)sizeof(struct sockaddr)))) { errno = EINVAL; return (-1); } /* Adding the following as part of defensive programming, in case the application does not do it when preparing the destination address.*/ #ifdef HAVE_SA_LEN if (to != NULL) { to->sa_len = tolen; } #endif iov[0].iov_base = (caddr_t)data; iov[0].iov_len = len; auio.uio_iov = iov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_offset = 0; /* XXX */ auio.uio_resid = len; errno = sctp_lower_sosend(so, to, &auio, NULL, NULL, 0, sinfo); if (errno == 0) { return (len - auio.uio_resid); } else { return (-1); } } ssize_t usrsctp_sendv(struct socket *so, const void *data, size_t len, struct sockaddr *to, int addrcnt, void *info, socklen_t infolen, unsigned int infotype, int flags) { struct sctp_sndrcvinfo sinfo; struct uio auio; struct iovec iov[1]; int use_sinfo; if (so == NULL) { errno = EBADF; return (-1); } memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo)); use_sinfo = 0; switch (infotype) { case SCTP_SENDV_NOINFO: if ((infolen != 0) || (info != NULL)) { errno = EINVAL; return (-1); } break; case SCTP_SENDV_SNDINFO: if ((info == NULL) || (infolen != sizeof(struct sctp_sndinfo))) { errno = EINVAL; return (-1); } sinfo.sinfo_stream = ((struct sctp_sndinfo *)info)->snd_sid; sinfo.sinfo_flags = ((struct sctp_sndinfo *)info)->snd_flags; sinfo.sinfo_ppid = ((struct sctp_sndinfo *)info)->snd_ppid; sinfo.sinfo_context = ((struct sctp_sndinfo *)info)->snd_context; sinfo.sinfo_assoc_id = ((struct sctp_sndinfo *)info)->snd_assoc_id; use_sinfo = 1; break; case SCTP_SENDV_PRINFO: if ((info == NULL) || (infolen != sizeof(struct sctp_prinfo))) { errno = EINVAL; return (-1); } sinfo.sinfo_stream = 0; sinfo.sinfo_flags = PR_SCTP_POLICY(((struct sctp_prinfo *)info)->pr_policy); sinfo.sinfo_timetolive = ((struct sctp_prinfo *)info)->pr_value; use_sinfo = 1; break; case SCTP_SENDV_AUTHINFO: errno = EINVAL; return (-1); case SCTP_SENDV_SPA: if ((info == NULL) || (infolen != sizeof(struct sctp_sendv_spa))) { errno = EINVAL; return (-1); } if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_SNDINFO_VALID) { sinfo.sinfo_stream = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_sid; sinfo.sinfo_flags = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_flags; sinfo.sinfo_ppid = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_ppid; sinfo.sinfo_context = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_context; sinfo.sinfo_assoc_id = ((struct sctp_sendv_spa *)info)->sendv_sndinfo.snd_assoc_id; } else { sinfo.sinfo_flags = 0; sinfo.sinfo_stream = 0; } if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_PRINFO_VALID) { sinfo.sinfo_flags |= PR_SCTP_POLICY(((struct sctp_sendv_spa *)info)->sendv_prinfo.pr_policy); sinfo.sinfo_timetolive = ((struct sctp_sendv_spa *)info)->sendv_prinfo.pr_value; } if (((struct sctp_sendv_spa *)info)->sendv_flags & SCTP_SEND_AUTHINFO_VALID) { errno = EINVAL; return (-1); } use_sinfo = 1; break; default: errno = EINVAL; return (-1); } /* Perform error checks on destination (to) */ if (addrcnt > 1) { errno = EINVAL; return (-1); } iov[0].iov_base = (caddr_t)data; iov[0].iov_len = len; auio.uio_iov = iov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_offset = 0; /* XXX */ auio.uio_resid = len; errno = sctp_lower_sosend(so, to, &auio, NULL, NULL, flags, use_sinfo ? &sinfo : NULL); if (errno == 0) { return (len - auio.uio_resid); } else { return (-1); } } ssize_t userspace_sctp_sendmbuf(struct socket *so, struct mbuf* mbufdata, size_t len, struct sockaddr *to, socklen_t tolen, u_int32_t ppid, u_int32_t flags, u_int16_t stream_no, u_int32_t timetolive, u_int32_t context) { struct sctp_sndrcvinfo sndrcvinfo, *sinfo = &sndrcvinfo; /* struct uio auio; struct iovec iov[1]; */ int error = 0; int uflags = 0; int retvalsendmsg; sinfo->sinfo_ppid = ppid; sinfo->sinfo_flags = flags; sinfo->sinfo_stream = stream_no; sinfo->sinfo_timetolive = timetolive; sinfo->sinfo_context = context; sinfo->sinfo_assoc_id = 0; /* Perform error checks on destination (to) */ if (tolen > SOCK_MAXADDRLEN){ error = (ENAMETOOLONG); goto sendmsg_return; } if (tolen < (socklen_t)offsetof(struct sockaddr, sa_data)){ error = (EINVAL); goto sendmsg_return; } /* Adding the following as part of defensive programming, in case the application does not do it when preparing the destination address.*/ #ifdef HAVE_SA_LEN to->sa_len = tolen; #endif error = sctp_lower_sosend(so, to, NULL/*uio*/, (struct mbuf *)mbufdata, (struct mbuf *)NULL, uflags, sinfo); sendmsg_return: /* TODO: Needs a condition for non-blocking when error is EWOULDBLOCK */ if (0 == error) retvalsendmsg = len; else if(error == EWOULDBLOCK) { errno = EWOULDBLOCK; retvalsendmsg = (-1); } else { SCTP_PRINTF("%s: error = %d\n", __func__, error); errno = error; retvalsendmsg = (-1); } return retvalsendmsg; } /* taken from usr.lib/sctp_sys_calls.c and needed here */ #define SCTP_SMALL_IOVEC_SIZE 2 /* Taken from /src/lib/libc/net/sctp_sys_calls.c * and modified for __Userspace__ * calling sctp_generic_recvmsg from this function */ ssize_t userspace_sctp_recvmsg(struct socket *so, void *dbuf, size_t len, struct sockaddr *from, socklen_t *fromlenp, struct sctp_sndrcvinfo *sinfo, int *msg_flags) { struct uio auio; struct iovec iov[SCTP_SMALL_IOVEC_SIZE]; struct iovec *tiov; int iovlen = 1; int error = 0; int ulen, i, retval; socklen_t fromlen; iov[0].iov_base = dbuf; iov[0].iov_len = len; auio.uio_iov = iov; auio.uio_iovcnt = iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i <iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { error = EINVAL; SCTP_PRINTF("%s: error = %d\n", __func__, error); return (-1); } } ulen = auio.uio_resid; if (fromlenp != NULL) { fromlen = *fromlenp; } else { fromlen = 0; } error = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL, from, fromlen, msg_flags, (struct sctp_sndrcvinfo *)sinfo, 1); if (error) { if (auio.uio_resid != (int)ulen && (error == EINTR || #if !defined(__Userspace_os_NetBSD) error == ERESTART || #endif error == EWOULDBLOCK)) { error = 0; } } if ((fromlenp != NULL) && (fromlen > 0) && (from != NULL)) { switch (from->sa_family) { #if defined(INET) case AF_INET: *fromlenp = sizeof(struct sockaddr_in); break; #endif #if defined(INET6) case AF_INET6: *fromlenp = sizeof(struct sockaddr_in6); break; #endif case AF_CONN: *fromlenp = sizeof(struct sockaddr_conn); break; default: *fromlenp = 0; break; } if (*fromlenp > fromlen) { *fromlenp = fromlen; } } if (error == 0){ /* ready return value */ retval = (int)ulen - auio.uio_resid; return (retval); } else { SCTP_PRINTF("%s: error = %d\n", __func__, error); return (-1); } } ssize_t usrsctp_recvv(struct socket *so, void *dbuf, size_t len, struct sockaddr *from, socklen_t *fromlenp, void *info, socklen_t *infolen, unsigned int *infotype, int *msg_flags) { struct uio auio; struct iovec iov[SCTP_SMALL_IOVEC_SIZE]; struct iovec *tiov; int iovlen = 1; int ulen, i; socklen_t fromlen; struct sctp_rcvinfo *rcv; struct sctp_recvv_rn *rn; struct sctp_extrcvinfo seinfo; if (so == NULL) { errno = EBADF; return (-1); } iov[0].iov_base = dbuf; iov[0].iov_len = len; auio.uio_iov = iov; auio.uio_iovcnt = iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i <iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { errno = EINVAL; return (-1); } } ulen = auio.uio_resid; if (fromlenp != NULL) { fromlen = *fromlenp; } else { fromlen = 0; } errno = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL, from, fromlen, msg_flags, (struct sctp_sndrcvinfo *)&seinfo, 1); if (errno) { if (auio.uio_resid != (int)ulen && (errno == EINTR || #if !defined(__Userspace_os_NetBSD) errno == ERESTART || #endif errno == EWOULDBLOCK)) { errno = 0; } } if ((*msg_flags & MSG_NOTIFICATION) == 0) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO) && sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO) && *infolen >= (socklen_t)sizeof(struct sctp_recvv_rn) && seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_AVAIL) { rn = (struct sctp_recvv_rn *)info; rn->recvv_rcvinfo.rcv_sid = seinfo.sinfo_stream; rn->recvv_rcvinfo.rcv_ssn = seinfo.sinfo_ssn; rn->recvv_rcvinfo.rcv_flags = seinfo.sinfo_flags; rn->recvv_rcvinfo.rcv_ppid = seinfo.sinfo_ppid; rn->recvv_rcvinfo.rcv_context = seinfo.sinfo_context; rn->recvv_rcvinfo.rcv_tsn = seinfo.sinfo_tsn; rn->recvv_rcvinfo.rcv_cumtsn = seinfo.sinfo_cumtsn; rn->recvv_rcvinfo.rcv_assoc_id = seinfo.sinfo_assoc_id; rn->recvv_nxtinfo.nxt_sid = seinfo.sreinfo_next_stream; rn->recvv_nxtinfo.nxt_flags = 0; if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_IS_UNORDERED) { rn->recvv_nxtinfo.nxt_flags |= SCTP_UNORDERED; } if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_IS_NOTIFICATION) { rn->recvv_nxtinfo.nxt_flags |= SCTP_NOTIFICATION; } if (seinfo.sreinfo_next_flags & SCTP_NEXT_MSG_ISCOMPLETE) { rn->recvv_nxtinfo.nxt_flags |= SCTP_COMPLETE; } rn->recvv_nxtinfo.nxt_ppid = seinfo.sreinfo_next_ppid; rn->recvv_nxtinfo.nxt_length = seinfo.sreinfo_next_length; rn->recvv_nxtinfo.nxt_assoc_id = seinfo.sreinfo_next_aid; *infolen = (socklen_t)sizeof(struct sctp_recvv_rn); *infotype = SCTP_RECVV_RN; } else if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVRCVINFO) && *infolen >= (socklen_t)sizeof(struct sctp_rcvinfo)) { rcv = (struct sctp_rcvinfo *)info; rcv->rcv_sid = seinfo.sinfo_stream; rcv->rcv_ssn = seinfo.sinfo_ssn; rcv->rcv_flags = seinfo.sinfo_flags; rcv->rcv_ppid = seinfo.sinfo_ppid; rcv->rcv_context = seinfo.sinfo_context; rcv->rcv_tsn = seinfo.sinfo_tsn; rcv->rcv_cumtsn = seinfo.sinfo_cumtsn; rcv->rcv_assoc_id = seinfo.sinfo_assoc_id; *infolen = (socklen_t)sizeof(struct sctp_rcvinfo); *infotype = SCTP_RECVV_RCVINFO; } else { *infotype = SCTP_RECVV_NOINFO; *infolen = 0; } } if ((fromlenp != NULL) && (fromlen > 0) && (from != NULL)) { switch (from->sa_family) { #if defined(INET) case AF_INET: *fromlenp = sizeof(struct sockaddr_in); break; #endif #if defined(INET6) case AF_INET6: *fromlenp = sizeof(struct sockaddr_in6); break; #endif case AF_CONN: *fromlenp = sizeof(struct sockaddr_conn); break; default: *fromlenp = 0; break; } if (*fromlenp > fromlen) { *fromlenp = fromlen; } } if (errno == 0) { /* ready return value */ return ((int)ulen - auio.uio_resid); } else { return (-1); } } #if defined(__Userspace__) /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ * socreate returns a socket. The socket should be * closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto) { struct socket *so; int error; if ((dom != AF_CONN) && (dom != AF_INET) && (dom != AF_INET6)) { return (EINVAL); } if ((type != SOCK_STREAM) && (type != SOCK_SEQPACKET)) { return (EINVAL); } if (proto != IPPROTO_SCTP) { return (EINVAL); } so = soalloc(); if (so == NULL) { return (ENOBUFS); } /* * so_incomp represents a queue of connections that * must be completed at protocol level before being * returned. so_comp field heads a list of sockets * that are ready to be returned to the listening process *__Userspace__ These queues are being used at a number of places like accept etc. */ TAILQ_INIT(&so->so_incomp); TAILQ_INIT(&so->so_comp); so->so_type = type; so->so_count = 1; so->so_dom = dom; /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. * For __Userspace__ The pru_attach function in this case is sctp_attach. */ switch (dom) { #if defined(INET) case AF_INET: error = sctp_attach(so, proto, SCTP_DEFAULT_VRFID); break; #endif #if defined(INET6) case AF_INET6: error = sctp6_attach(so, proto, SCTP_DEFAULT_VRFID); break; #endif case AF_CONN: error = sctpconn_attach(so, proto, SCTP_DEFAULT_VRFID); break; default: error = EAFNOSUPPORT; break; } if (error) { KASSERT(so->so_count == 1, ("socreate: so_count %d", so->so_count)); so->so_count = 0; sodealloc(so); return (error); } *aso = so; return (0); } #else /* The kernel version for reference is below. The #else should be removed once the __Userspace__ version is tested. * socreate returns a socket with a ref count of 1. The socket should be * closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td) { struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || prp->pr_usrreqs->pru_attach == pru_attach_notsupp) return (EPROTONOSUPPORT); if (jailed(cred) && jail_socket_unixiproute_only && prp->pr_domain->dom_family != PF_LOCAL && prp->pr_domain->dom_family != PF_INET && prp->pr_domain->dom_family != PF_ROUTE) { return (EPROTONOSUPPORT); } if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(); if (so == NULL) return (ENOBUFS); TAILQ_INIT(&so->so_incomp); TAILQ_INIT(&so->so_comp); so->so_type = type; so->so_cred = crhold(cred); so->so_proto = prp; #ifdef MAC mac_create_socket(cred, so); #endif knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), NULL, NULL, NULL); knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), NULL, NULL, NULL); so->so_count = 1; /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. */ error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); if (error) { KASSERT(so->so_count == 1, ("socreate: so_count %d", so->so_count)); so->so_count = 0; sodealloc(so); return (error); } *aso = so; return (0); } #endif /* Taken from /src/sys/kern/uipc_syscalls.c * and modified for __Userspace__ * Removing struct thread td. */ struct socket * userspace_socket(int domain, int type, int protocol) { struct socket *so = NULL; errno = socreate(domain, &so, type, protocol); if (errno) { return (NULL); } /* * The original socket call returns the file descriptor fd. * td->td_retval[0] = fd. * We are returning struct socket *so. */ return (so); } struct socket * usrsctp_socket(int domain, int type, int protocol, int (*receive_cb)(struct socket *sock, union sctp_sockstore addr, void *data, size_t datalen, struct sctp_rcvinfo, int flags, void *ulp_info), int (*send_cb)(struct socket *sock, uint32_t sb_free), uint32_t sb_threshold, void *ulp_info) { struct socket *so; if ((protocol = IPPROTO_SCTP) && (SCTP_BASE_VAR(sctp_pcb_initialized) == 0)) { errno = EPROTONOSUPPORT; return (NULL); } if ((receive_cb == NULL) && ((send_cb != NULL) || (sb_threshold != 0) || (ulp_info != NULL))) { errno = EINVAL; return (NULL); } if ((domain == AF_CONN) && (SCTP_BASE_VAR(conn_output) == NULL)) { errno = EAFNOSUPPORT; return (NULL); } errno = socreate(domain, &so, type, protocol); if (errno) { return (NULL); } /* * The original socket call returns the file descriptor fd. * td->td_retval[0] = fd. * We are returning struct socket *so. */ register_recv_cb(so, receive_cb); register_send_cb(so, sb_threshold, send_cb); register_ulp_info(so, ulp_info); return (so); } u_long sb_max = SB_MAX; u_long sb_max_adj = SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ static u_long sb_efficiency = 8; /* parameter for sbreserve() */ /* * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't * become limiting if buffering efficiency is near the normal case. */ int sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so) { SOCKBUF_LOCK_ASSERT(sb); sb->sb_mbmax = (u_int)min(cc * sb_efficiency, sb_max); sb->sb_hiwat = (u_int)cc; if (sb->sb_lowat > (int)sb->sb_hiwat) sb->sb_lowat = (int)sb->sb_hiwat; return (1); } static int sbreserve(struct sockbuf *sb, u_long cc, struct socket *so) { int error; SOCKBUF_LOCK(sb); error = sbreserve_locked(sb, cc, so); SOCKBUF_UNLOCK(sb); return (error); } #if defined(__Userspace__) int soreserve(struct socket *so, u_long sndcc, u_long rcvcc) { SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); so->so_snd.sb_hiwat = (uint32_t)sndcc; so->so_rcv.sb_hiwat = (uint32_t)rcvcc; if (sbreserve_locked(&so->so_snd, sndcc, so) == 0) { goto bad; } if (sbreserve_locked(&so->so_rcv, rcvcc, so) == 0) { goto bad; } if (so->so_rcv.sb_lowat == 0) so->so_rcv.sb_lowat = 1; if (so->so_snd.sb_lowat == 0) so->so_snd.sb_lowat = MCLBYTES; if (so->so_snd.sb_lowat > (int)so->so_snd.sb_hiwat) so->so_snd.sb_lowat = (int)so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (0); bad: SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (ENOBUFS); } #else /* kernel version for reference */ int soreserve(struct socket *so, u_long sndcc, u_long rcvcc) { struct thread *td = curthread; SOCKBUF_LOCK(&so->so_snd); SOCKBUF_LOCK(&so->so_rcv); if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) goto bad; if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) goto bad2; if (so->so_rcv.sb_lowat == 0) so->so_rcv.sb_lowat = 1; if (so->so_snd.sb_lowat == 0) so->so_snd.sb_lowat = MCLBYTES; if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) so->so_snd.sb_lowat = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (0); bad2: sbrelease_locked(&so->so_snd, so); bad: SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_snd); return (ENOBUFS); } #endif /* Taken from /src/sys/kern/uipc_sockbuf.c * and modified for __Userspace__ */ #if defined(__Userspace__) void sowakeup(struct socket *so, struct sockbuf *sb) { SOCKBUF_LOCK_ASSERT(sb); sb->sb_flags &= ~SB_SEL; if (sb->sb_flags & SB_WAIT) { sb->sb_flags &= ~SB_WAIT; #if defined (__Userspace_os_Windows) WakeAllConditionVariable(&(sb)->sb_cond); #else pthread_cond_broadcast(&(sb)->sb_cond); #endif } SOCKBUF_UNLOCK(sb); /*__Userspace__ what todo about so_upcall?*/ } #else /* kernel version for reference */ /* * Wakeup processes waiting on a socket buffer. Do asynchronous notification * via SIGIO if the socket has the SS_ASYNC flag set. * * Called with the socket buffer lock held; will release the lock by the end * of the function. This allows the caller to acquire the socket buffer lock * while testing for the need for various sorts of wakeup and hold it through * to the point where it's no longer required. We currently hold the lock * through calls out to other subsystems (with the exception of kqueue), and * then release it to avoid lock order issues. It's not clear that's * correct. */ void sowakeup(struct socket *so, struct sockbuf *sb) { SOCKBUF_LOCK_ASSERT(sb); selwakeuppri(&sb->sb_sel, PSOCK); sb->sb_flags &= ~SB_SEL; if (sb->sb_flags & SB_WAIT) { sb->sb_flags &= ~SB_WAIT; wakeup(&sb->sb_cc); } KNOTE_LOCKED(&sb->sb_sel.si_note, 0); SOCKBUF_UNLOCK(sb); if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGIO, 0); if (sb->sb_flags & SB_UPCALL) (*so->so_upcall)(so, so->so_upcallarg, M_NOWAIT); if (sb->sb_flags & SB_AIO) aio_swake(so, sb); mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); } #endif /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ */ int sobind(struct socket *so, struct sockaddr *nam) { switch (nam->sa_family) { #if defined(INET) case AF_INET: return (sctp_bind(so, nam)); #endif #if defined(INET6) case AF_INET6: return (sctp6_bind(so, nam, NULL)); #endif case AF_CONN: return (sctpconn_bind(so, nam)); default: return EAFNOSUPPORT; } } /* Taken from /src/sys/kern/uipc_syscalls.c * and modified for __Userspace__ */ int usrsctp_bind(struct socket *so, struct sockaddr *name, int namelen) { struct sockaddr *sa; if (so == NULL) { errno = EBADF; return (-1); } if ((errno = getsockaddr(&sa, (caddr_t)name, namelen)) != 0) return (-1); errno = sobind(so, sa); FREE(sa, M_SONAME); if (errno) { return (-1); } else { return (0); } } int userspace_bind(struct socket *so, struct sockaddr *name, int namelen) { return (usrsctp_bind(so, name, namelen)); } /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ */ int solisten(struct socket *so, int backlog) { if (so == NULL) { return (EBADF); } else { return (sctp_listen(so, backlog, NULL)); } } int solisten_proto_check(struct socket *so) { SOCK_LOCK_ASSERT(so); if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) return (EINVAL); return (0); } static int somaxconn = SOMAXCONN; void solisten_proto(struct socket *so, int backlog) { SOCK_LOCK_ASSERT(so); if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->so_qlimit = backlog; so->so_options |= SCTP_SO_ACCEPTCONN; } /* Taken from /src/sys/kern/uipc_syscalls.c * and modified for __Userspace__ */ int usrsctp_listen(struct socket *so, int backlog) { errno = solisten(so, backlog); if (errno) { return (-1); } else { return (0); } } int userspace_listen(struct socket *so, int backlog) { return (usrsctp_listen(so, backlog)); } /* Taken from /src/sys/kern/uipc_socket.c * and modified for __Userspace__ */ int soaccept(struct socket *so, struct sockaddr **nam) { int error; SOCK_LOCK(so); KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); so->so_state &= ~SS_NOFDREF; SOCK_UNLOCK(so); error = sctp_accept(so, nam); return (error); } /* Taken from /src/sys/kern/uipc_syscalls.c * kern_accept modified for __Userspace__ */ int user_accept(struct socket *head, struct sockaddr **name, socklen_t *namelen, struct socket **ptr_accept_ret_sock) { struct sockaddr *sa = NULL; int error; struct socket *so = NULL; if (name) { *name = NULL; } if ((head->so_options & SCTP_SO_ACCEPTCONN) == 0) { error = EINVAL; goto done; } ACCEPT_LOCK(); if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) { ACCEPT_UNLOCK(); error = EWOULDBLOCK; goto noconnection; } while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) { if (head->so_rcv.sb_state & SBS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } #if defined (__Userspace_os_Windows) if (SleepConditionVariableCS(&accept_cond, &accept_mtx, INFINITE)) error = 0; else error = GetLastError(); #else error = pthread_cond_wait(&accept_cond, &accept_mtx); #endif if (error) { ACCEPT_UNLOCK(); goto noconnection; } } if (head->so_error) { error = head->so_error; head->so_error = 0; ACCEPT_UNLOCK(); goto noconnection; } so = TAILQ_FIRST(&head->so_comp); KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); /* * The original accept returns fd value via td->td_retval[0] = fd; * we will return the socket for accepted connection. */ error = soaccept(so, &sa); if (error) { /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (name) *namelen = 0; goto noconnection; } if (sa == NULL) { if (name) *namelen = 0; goto done; } if (name) { #ifdef HAVE_SA_LEN /* check sa_len before it is destroyed */ if (*namelen > sa->sa_len) { *namelen = sa->sa_len; } #else socklen_t sa_len; switch (sa->sa_family) { #ifdef INET case AF_INET: sa_len = sizeof(struct sockaddr_in); break; #endif #ifdef INET6 case AF_INET6: sa_len = sizeof(struct sockaddr_in6); break; #endif case AF_CONN: sa_len = sizeof(struct sockaddr_conn); break; default: sa_len = 0; break; } if (*namelen > sa_len) { *namelen = sa_len; } #endif *name = sa; sa = NULL; } noconnection: if (sa) { FREE(sa, M_SONAME); } done: *ptr_accept_ret_sock = so; return (error); } /* Taken from /src/sys/kern/uipc_syscalls.c * and modified for __Userspace__ */ /* * accept1() */ static int accept1(struct socket *so, struct sockaddr *aname, socklen_t *anamelen, struct socket **ptr_accept_ret_sock) { struct sockaddr *name; socklen_t namelen; int error; if (so == NULL) { return (EBADF); } if (aname == NULL) { return (user_accept(so, NULL, NULL, ptr_accept_ret_sock)); } error = copyin(anamelen, &namelen, sizeof (namelen)); if (error) return (error); error = user_accept(so, &name, &namelen, ptr_accept_ret_sock); /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (error) { (void) copyout(&namelen, anamelen, sizeof(*anamelen)); return (error); } if (error == 0 && name != NULL) { error = copyout(name, aname, namelen); } if (error == 0) { error = copyout(&namelen, anamelen, sizeof(namelen)); } if (name) { FREE(name, M_SONAME); } return (error); } struct socket * usrsctp_accept(struct socket *so, struct sockaddr *aname, socklen_t *anamelen) { struct socket *accept_return_sock; errno = accept1(so, aname, anamelen, &accept_return_sock); if (errno) { return (NULL); } else { return (accept_return_sock); } } struct socket * userspace_accept(struct socket *so, struct sockaddr *aname, socklen_t *anamelen) { return (usrsctp_accept(so, aname, anamelen)); } struct socket * usrsctp_peeloff(struct socket *head, sctp_assoc_t id) { struct socket *so; if ((errno = sctp_can_peel_off(head, id)) != 0) { return (NULL); } if ((so = sonewconn(head, SS_ISCONNECTED)) == NULL) { return (NULL); } ACCEPT_LOCK(); SOCK_LOCK(so); soref(so); TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); if ((errno = sctp_do_peeloff(head, so, id)) != 0) { so->so_count = 0; sodealloc(so); return (NULL); } return (so); } int sodisconnect(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); error = sctp_disconnect(so); return (error); } int usrsctp_set_non_blocking(struct socket *so, int onoff) { if (so == NULL) { errno = EBADF; return (-1); } SOCK_LOCK(so); if (onoff != 0) { so->so_state |= SS_NBIO; } else { so->so_state &= ~SS_NBIO; } SOCK_UNLOCK(so); return (0); } int usrsctp_get_non_blocking(struct socket *so) { int result; if (so == NULL) { errno = EBADF; return (-1); } SOCK_LOCK(so); if (so->so_state & SS_NBIO) { result = 1; } else { result = 0; } SOCK_UNLOCK(so); return (result); } int soconnect(struct socket *so, struct sockaddr *nam) { int error; if (so->so_options & SCTP_SO_ACCEPTCONN) return (EOPNOTSUPP); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. This allows * user to disconnect by connecting to, e.g., a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && (error = sodisconnect(so))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection from * biting us. */ so->so_error = 0; switch (nam->sa_family) { #if defined(INET) case AF_INET: error = sctp_connect(so, nam); break; #endif #if defined(INET6) case AF_INET6: error = sctp6_connect(so, nam); break; #endif case AF_CONN: error = sctpconn_connect(so, nam); break; default: error = EAFNOSUPPORT; } } return (error); } int user_connect(struct socket *so, struct sockaddr *sa) { int error; int interrupted = 0; if (so == NULL) { error = EBADF; goto done1; } if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } error = soconnect(so, sa); if (error) { goto bad; } if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { #if defined (__Userspace_os_Windows) if (SleepConditionVariableCS(SOCK_COND(so), SOCK_MTX(so), INFINITE)) error = 0; else error = -1; #else error = pthread_cond_wait(SOCK_COND(so), SOCK_MTX(so)); #endif if (error) { #if defined(__Userspace_os_NetBSD) if (error == EINTR) { #else if (error == EINTR || error == ERESTART) { #endif interrupted = 1; } break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (!interrupted) { so->so_state &= ~SS_ISCONNECTING; } #if !defined(__Userspace_os_NetBSD) if (error == ERESTART) { error = EINTR; } #endif done1: return (error); } int usrsctp_connect(struct socket *so, struct sockaddr *name, int namelen) { struct sockaddr *sa; errno = getsockaddr(&sa, (caddr_t)name, namelen); if (errno) return (-1); errno = user_connect(so, sa); FREE(sa, M_SONAME); if (errno) { return (-1); } else { return (0); } } int userspace_connect(struct socket *so, struct sockaddr *name, int namelen) { return (usrsctp_connect(so, name, namelen)); } #define SCTP_STACK_BUF_SIZE 2048 void usrsctp_close(struct socket *so) { if (so != NULL) { if (so->so_options & SCTP_SO_ACCEPTCONN) { struct socket *sp; ACCEPT_LOCK(); while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { TAILQ_REMOVE(&so->so_comp, sp, so_list); so->so_qlen--; sp->so_qstate &= ~SQ_COMP; sp->so_head = NULL; ACCEPT_UNLOCK(); soabort(sp); ACCEPT_LOCK(); } ACCEPT_UNLOCK(); } ACCEPT_LOCK(); SOCK_LOCK(so); sorele(so); } } void userspace_close(struct socket *so) { usrsctp_close(so); } int usrsctp_shutdown(struct socket *so, int how) { if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) { errno = EINVAL; return (-1); } if (so == NULL) { errno = EBADF; return (-1); } sctp_flush(so, how); if (how != SHUT_WR) socantrcvmore(so); if (how != SHUT_RD) { errno = sctp_shutdown(so); if (errno) { return (-1); } else { return (0); } } return (0); } int userspace_shutdown(struct socket *so, int how) { return (usrsctp_shutdown(so, how)); } int usrsctp_finish(void) { if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { return (0); } if (SCTP_INP_INFO_TRYLOCK()) { if (!LIST_EMPTY(&SCTP_BASE_INFO(listhead))) { SCTP_INP_INFO_RUNLOCK(); return (-1); } SCTP_INP_INFO_RUNLOCK(); } else { return (-1); } sctp_finish(); return (0); } int userspace_finish(void) { return (usrsctp_finish()); } /* needed from sctp_usrreq.c */ int sctp_setopt(struct socket *so, int optname, void *optval, size_t optsize, void *p); int usrsctp_setsockopt(struct socket *so, int level, int option_name, const void *option_value, socklen_t option_len) { if (so == NULL) { errno = EBADF; return (-1); } switch (level) { case SOL_SOCKET: { switch (option_name) { case SO_RCVBUF: if (option_len < (socklen_t)sizeof(int)) { errno = EINVAL; return (-1); } else { int *buf_size; buf_size = (int *)option_value; if (*buf_size < 1) { errno = EINVAL; return (-1); } sbreserve(&so->so_rcv, (u_long)*buf_size, so); return (0); } break; case SO_SNDBUF: if (option_len < (socklen_t)sizeof(int)) { errno = EINVAL; return (-1); } else { int *buf_size; buf_size = (int *)option_value; if (*buf_size < 1) { errno = EINVAL; return (-1); } sbreserve(&so->so_snd, (u_long)*buf_size, so); return (0); } break; case SO_LINGER: if (option_len < (socklen_t)sizeof(struct linger)) { errno = EINVAL; return (-1); } else { struct linger *l; l = (struct linger *)option_value; so->so_linger = l->l_linger; if (l->l_onoff) { so->so_options |= SCTP_SO_LINGER; } else { so->so_options &= ~SCTP_SO_LINGER; } return (0); } default: errno = EINVAL; return (-1); } } case IPPROTO_SCTP: errno = sctp_setopt(so, option_name, (void *) option_value, (size_t)option_len, NULL); if (errno) { return (-1); } else { return (0); } default: errno = ENOPROTOOPT; return (-1); } } int userspace_setsockopt(struct socket *so, int level, int option_name, const void *option_value, socklen_t option_len) { return (usrsctp_setsockopt(so, level, option_name, option_value, option_len)); } /* needed from sctp_usrreq.c */ int sctp_getopt(struct socket *so, int optname, void *optval, size_t *optsize, void *p); int usrsctp_getsockopt(struct socket *so, int level, int option_name, void *option_value, socklen_t *option_len) { if (so == NULL) { errno = EBADF; return (-1); } if (option_len == NULL) { errno = EFAULT; return (-1); } switch (level) { case SOL_SOCKET: switch (option_name) { case SO_RCVBUF: if (*option_len < (socklen_t)sizeof(int)) { errno = EINVAL; return (-1); } else { int *buf_size; buf_size = (int *)option_value; *buf_size = so->so_rcv.sb_hiwat;; *option_len = (socklen_t)sizeof(int); return (0); } break; case SO_SNDBUF: if (*option_len < (socklen_t)sizeof(int)) { errno = EINVAL; return (-1); } else { int *buf_size; buf_size = (int *)option_value; *buf_size = so->so_snd.sb_hiwat; *option_len = (socklen_t)sizeof(int); return (0); } break; case SO_LINGER: if (*option_len < (socklen_t)sizeof(struct linger)) { errno = EINVAL; return (-1); } else { struct linger *l; l = (struct linger *)option_value; l->l_linger = so->so_linger; if (so->so_options & SCTP_SO_LINGER) { l->l_onoff = 1; } else { l->l_onoff = 0; } *option_len = (socklen_t)sizeof(struct linger); return (0); } default: errno = EINVAL; return (-1); } case IPPROTO_SCTP: { size_t len; len = (size_t)*option_len; errno = sctp_getopt(so, option_name, option_value, &len, NULL); *option_len = (socklen_t)len; if (errno) { return (-1); } else { return (0); } } default: errno = ENOPROTOOPT; return (-1); } } int userspace_getsockopt(struct socket *so, int level, int option_name, void *option_value, socklen_t *option_len) { return (usrsctp_getsockopt(so, level, option_name, option_value, option_len)); } int usrsctp_set_ulpinfo(struct socket *so, void *ulp_info) { return (register_ulp_info(so, ulp_info)); } int usrsctp_bindx(struct socket *so, struct sockaddr *addrs, int addrcnt, int flags) { struct sctp_getaddresses *gaddrs; struct sockaddr *sa; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif int i; size_t argsz; #if defined(INET) || defined(INET6) uint16_t sport = 0; #endif /* validate the flags */ if ((flags != SCTP_BINDX_ADD_ADDR) && (flags != SCTP_BINDX_REM_ADDR)) { errno = EFAULT; return (-1); } /* validate the address count and list */ if ((addrcnt <= 0) || (addrs == NULL)) { errno = EINVAL; return (-1); } /* First pre-screen the addresses */ sa = addrs; for (i = 0; i < addrcnt; i++) { switch (sa->sa_family) { #ifdef INET case AF_INET: #ifdef HAVE_SA_LEN if (sa->sa_len != sizeof(struct sockaddr_in)) { errno = EINVAL; return (-1); } #endif sin = (struct sockaddr_in *)sa; if (sin->sin_port) { /* non-zero port, check or save */ if (sport) { /* Check against our port */ if (sport != sin->sin_port) { errno = EINVAL; return (-1); } } else { /* save off the port */ sport = sin->sin_port; } } #ifndef HAVE_SA_LEN sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in)); #endif break; #endif #ifdef INET6 case AF_INET6: #ifdef HAVE_SA_LEN if (sa->sa_len != sizeof(struct sockaddr_in6)) { errno = EINVAL; return (-1); } #endif sin6 = (struct sockaddr_in6 *)sa; if (sin6->sin6_port) { /* non-zero port, check or save */ if (sport) { /* Check against our port */ if (sport != sin6->sin6_port) { errno = EINVAL; return (-1); } } else { /* save off the port */ sport = sin6->sin6_port; } } #ifndef HAVE_SA_LEN sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6)); #endif break; #endif default: /* Invalid address family specified. */ errno = EAFNOSUPPORT; return (-1); } #ifdef HAVE_SA_LEN sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len); #endif } argsz = sizeof(struct sctp_getaddresses) + sizeof(struct sockaddr_storage); if ((gaddrs = (struct sctp_getaddresses *)malloc(argsz)) == NULL) { errno = ENOMEM; return (-1); } sa = addrs; for (i = 0; i < addrcnt; i++) { #ifndef HAVE_SA_LEN size_t sa_len; #endif memset(gaddrs, 0, argsz); gaddrs->sget_assoc_id = 0; #ifdef HAVE_SA_LEN memcpy(gaddrs->addr, sa, sa->sa_len); if (usrsctp_setsockopt(so, IPPROTO_SCTP, flags, gaddrs, (socklen_t)argsz) != 0) { free(gaddrs); return (-1); } sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len); #else switch (sa->sa_family) { #ifdef INET case AF_INET: sa_len = sizeof(struct sockaddr_in); break; #endif #ifdef INET6 case AF_INET6: sa_len = sizeof(struct sockaddr_in6); break; #endif default: sa_len = 0; break; } memcpy(gaddrs->addr, sa, sa_len); /* * Now, if there was a port mentioned, assure that the * first address has that port to make sure it fails or * succeeds correctly. */ #if defined(INET) || defined(INET6) if ((i == 0) && (sport != 0)) { switch (gaddrs->addr->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)gaddrs->addr; sin->sin_port = sport; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)gaddrs->addr; sin6->sin6_port = sport; break; #endif } } #endif if (usrsctp_setsockopt(so, IPPROTO_SCTP, flags, gaddrs, (socklen_t)argsz) != 0) { free(gaddrs); return (-1); } sa = (struct sockaddr *)((caddr_t)sa + sa_len); #endif } free(gaddrs); return (0); } int usrsctp_connectx(struct socket *so, const struct sockaddr *addrs, int addrcnt, sctp_assoc_t *id) { #if defined(INET) || defined(INET6) char buf[SCTP_STACK_BUF_SIZE]; int i, ret, cnt, *aa; char *cpto; const struct sockaddr *at; sctp_assoc_t *p_id; size_t len = sizeof(int); /* validate the address count and list */ if ((addrs == NULL) || (addrcnt <= 0)) { errno = EINVAL; return (-1); } at = addrs; cnt = 0; cpto = ((caddr_t)buf + sizeof(int)); /* validate all the addresses and get the size */ for (i = 0; i < addrcnt; i++) { switch (at->sa_family) { #ifdef INET case AF_INET: #ifdef HAVE_SA_LEN if (at->sa_len != sizeof(struct sockaddr_in)) { errno = EINVAL; return (-1); } #endif memcpy(cpto, at, sizeof(struct sockaddr_in)); cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in)); len += sizeof(struct sockaddr_in); at = (struct sockaddr *)((caddr_t)at + sizeof(struct sockaddr_in)); break; #endif #ifdef INET6 case AF_INET6: #ifdef HAVE_SA_LEN if (at->sa_len != sizeof(struct sockaddr_in6)) { errno = EINVAL; return (-1); } #endif #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)at)->sin6_addr)) { in6_sin6_2_sin((struct sockaddr_in *)cpto, (struct sockaddr_in6 *)at); cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in)); len += sizeof(struct sockaddr_in); } else { memcpy(cpto, at, sizeof(struct sockaddr_in6)); cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in6)); len += sizeof(struct sockaddr_in6); } #else memcpy(cpto, at, sizeof(struct sockaddr_in6)); cpto = ((caddr_t)cpto + sizeof(struct sockaddr_in6)); len += sizeof(struct sockaddr_in6); #endif at = (struct sockaddr *)((caddr_t)at + sizeof(struct sockaddr_in6)); break; #endif default: errno = EINVAL; return (-1); } if (len > (sizeof(buf) - sizeof(int))) { /* Never enough memory */ errno = E2BIG; return (-1); } cnt++; } /* do we have any? */ if (cnt == 0) { errno = EINVAL; return (-1); } aa = (int *)buf; *aa = cnt; ret = usrsctp_setsockopt(so, IPPROTO_SCTP, SCTP_CONNECT_X, (void *)buf, (socklen_t)len); if ((ret == 0) && id) { p_id = (sctp_assoc_t *)buf; *id = *p_id; } return (ret); #else errno = EINVAL; return (-1); #endif } int usrsctp_getpaddrs(struct socket *so, sctp_assoc_t id, struct sockaddr **raddrs) { struct sctp_getaddresses *addrs; struct sockaddr *sa; sctp_assoc_t asoc; caddr_t lim; socklen_t opt_len; int cnt; if (raddrs == NULL) { errno = EFAULT; return (-1); } asoc = id; opt_len = (socklen_t)sizeof(sctp_assoc_t); if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_REMOTE_ADDR_SIZE, &asoc, &opt_len) != 0) { return (-1); } /* size required is returned in 'asoc' */ opt_len = (socklen_t)((size_t)asoc + sizeof(struct sctp_getaddresses)); addrs = calloc(1, (size_t)opt_len); if (addrs == NULL) { errno = ENOMEM; return (-1); } addrs->sget_assoc_id = id; /* Now lets get the array of addresses */ if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_PEER_ADDRESSES, addrs, &opt_len) != 0) { free(addrs); return (-1); } *raddrs = (struct sockaddr *)&addrs->addr[0]; cnt = 0; sa = (struct sockaddr *)&addrs->addr[0]; lim = (caddr_t)addrs + opt_len; #ifdef HAVE_SA_LEN while (((caddr_t)sa < lim) && (sa->sa_len > 0)) { sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len); #else while ((caddr_t)sa < lim) { switch (sa->sa_family) { #ifdef INET case AF_INET: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in)); break; #endif #ifdef INET6 case AF_INET6: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6)); break; #endif case AF_CONN: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_conn)); break; default: return (cnt); break; } #endif cnt++; } return (cnt); } void usrsctp_freepaddrs(struct sockaddr *addrs) { /* Take away the hidden association id */ void *fr_addr; fr_addr = (void *)((caddr_t)addrs - sizeof(sctp_assoc_t)); /* Now free it */ free(fr_addr); } int usrsctp_getladdrs(struct socket *so, sctp_assoc_t id, struct sockaddr **raddrs) { struct sctp_getaddresses *addrs; caddr_t lim; struct sockaddr *sa; size_t size_of_addresses; socklen_t opt_len; int cnt; if (raddrs == NULL) { errno = EFAULT; return (-1); } size_of_addresses = 0; opt_len = (socklen_t)sizeof(int); if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_LOCAL_ADDR_SIZE, &size_of_addresses, &opt_len) != 0) { errno = ENOMEM; return (-1); } if (size_of_addresses == 0) { errno = ENOTCONN; return (-1); } opt_len = (socklen_t)(size_of_addresses + sizeof(struct sockaddr_storage) + sizeof(struct sctp_getaddresses)); addrs = calloc(1, (size_t)opt_len); if (addrs == NULL) { errno = ENOMEM; return (-1); } addrs->sget_assoc_id = id; /* Now lets get the array of addresses */ if (usrsctp_getsockopt(so, IPPROTO_SCTP, SCTP_GET_LOCAL_ADDRESSES, addrs, &opt_len) != 0) { free(addrs); errno = ENOMEM; return (-1); } *raddrs = (struct sockaddr *)&addrs->addr[0]; cnt = 0; sa = (struct sockaddr *)&addrs->addr[0]; lim = (caddr_t)addrs + opt_len; #ifdef HAVE_SA_LEN while (((caddr_t)sa < lim) && (sa->sa_len > 0)) { sa = (struct sockaddr *)((caddr_t)sa + sa->sa_len); #else while ((caddr_t)sa < lim) { switch (sa->sa_family) { #ifdef INET case AF_INET: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in)); break; #endif #ifdef INET6 case AF_INET6: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_in6)); break; #endif case AF_CONN: sa = (struct sockaddr *)((caddr_t)sa + sizeof(struct sockaddr_conn)); break; default: return (cnt); break; } #endif cnt++; } return (cnt); } void usrsctp_freeladdrs(struct sockaddr *addrs) { /* Take away the hidden association id */ void *fr_addr; fr_addr = (void *)((caddr_t)addrs - sizeof(sctp_assoc_t)); /* Now free it */ free(fr_addr); } #ifdef INET void sctp_userspace_ip_output(int *result, struct mbuf *o_pak, sctp_route_t *ro, void *stcb, uint32_t vrf_id) { struct mbuf *m; struct mbuf *m_orig; int iovcnt; int send_len; int len; int send_count; struct ip *ip; struct udphdr *udp; #if !defined (__Userspace_os_Windows) int res; #endif struct sockaddr_in dst; #if defined (__Userspace_os_Windows) WSAMSG win_msg_hdr; int win_sent_len; WSABUF send_iovec[MAXLEN_MBUF_CHAIN]; WSABUF winbuf; #else struct iovec send_iovec[MAXLEN_MBUF_CHAIN]; struct msghdr msg_hdr; #endif int use_udp_tunneling; *result = 0; m = SCTP_HEADER_TO_CHAIN(o_pak); m_orig = m; len = sizeof(struct ip); if (SCTP_BUF_LEN(m) < len) { if ((m = m_pullup(m, len)) == 0) { SCTP_PRINTF("Can not get the IP header in the first mbuf.\n"); return; } } ip = mtod(m, struct ip *); use_udp_tunneling = (ip->ip_p == IPPROTO_UDP); if (use_udp_tunneling) { len = sizeof(struct ip) + sizeof(struct udphdr); if (SCTP_BUF_LEN(m) < len) { if ((m = m_pullup(m, len)) == 0) { SCTP_PRINTF("Can not get the UDP/IP header in the first mbuf.\n"); return; } ip = mtod(m, struct ip *); } udp = (struct udphdr *)(ip + 1); } else { udp = NULL; } if (!use_udp_tunneling) { if (ip->ip_src.s_addr == INADDR_ANY) { /* TODO get addr of outgoing interface */ SCTP_PRINTF("Why did the SCTP implementation did not choose a source address?\n"); } /* TODO need to worry about ro->ro_dst as in ip_output? */ #if defined(__Userspace_os_Linux) || defined (__Userspace_os_Windows) /* need to put certain fields into network order for Linux */ ip->ip_len = htons(ip->ip_len); ip->ip_off = 0; #endif } memset((void *)&dst, 0, sizeof(struct sockaddr_in)); dst.sin_family = AF_INET; dst.sin_addr.s_addr = ip->ip_dst.s_addr; #ifdef HAVE_SIN_LEN dst.sin_len = sizeof(struct sockaddr_in); #endif if (use_udp_tunneling) { dst.sin_port = udp->uh_dport; } else { dst.sin_port = 0; } /* tweak the mbuf chain */ if (use_udp_tunneling) { m_adj(m, sizeof(struct ip) + sizeof(struct udphdr)); } send_len = SCTP_HEADER_LEN(m); /* length of entire packet */ send_count = 0; for (iovcnt = 0; m != NULL && iovcnt < MAXLEN_MBUF_CHAIN; m = m->m_next, iovcnt++) { #if !defined (__Userspace_os_Windows) send_iovec[iovcnt].iov_base = (caddr_t)m->m_data; send_iovec[iovcnt].iov_len = SCTP_BUF_LEN(m); send_count += send_iovec[iovcnt].iov_len; #else send_iovec[iovcnt].buf = (caddr_t)m->m_data; send_iovec[iovcnt].len = SCTP_BUF_LEN(m); send_count += send_iovec[iovcnt].len; #endif } if (m != NULL) { SCTP_PRINTF("mbuf chain couldn't be copied completely\n"); goto free_mbuf; } #if !defined (__Userspace_os_Windows) msg_hdr.msg_name = (struct sockaddr *) &dst; msg_hdr.msg_namelen = sizeof(struct sockaddr_in); msg_hdr.msg_iov = send_iovec; msg_hdr.msg_iovlen = iovcnt; msg_hdr.msg_control = NULL; msg_hdr.msg_controllen = 0; msg_hdr.msg_flags = 0; if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp) > -1)) { if ((res = sendmsg(SCTP_BASE_VAR(userspace_rawsctp), &msg_hdr, MSG_DONTWAIT)) != send_len) { *result = errno; } } if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp) > -1)) { if ((res = sendmsg(SCTP_BASE_VAR(userspace_udpsctp), &msg_hdr, MSG_DONTWAIT)) != send_len) { *result = errno; } } #else win_msg_hdr.name = (struct sockaddr *) &dst; win_msg_hdr.namelen = sizeof(struct sockaddr_in); win_msg_hdr.lpBuffers = (LPWSABUF)send_iovec; win_msg_hdr.dwBufferCount = iovcnt; winbuf.len = 0; winbuf.buf = NULL; win_msg_hdr.Control = winbuf; win_msg_hdr.dwFlags = 0; if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp) > -1)) { if (WSASendTo(SCTP_BASE_VAR(userspace_rawsctp), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) { *result = WSAGetLastError(); } else if (win_sent_len != send_len) { *result = WSAGetLastError(); } } if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp) > -1)) { if (WSASendTo(SCTP_BASE_VAR(userspace_udpsctp), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) { *result = WSAGetLastError(); } else if (win_sent_len != send_len) { *result = WSAGetLastError(); } } #endif free_mbuf: sctp_m_freem(m_orig); } #endif #if defined (INET6) void sctp_userspace_ip6_output(int *result, struct mbuf *o_pak, struct route_in6 *ro, void *stcb, uint32_t vrf_id) { struct mbuf *m; struct mbuf *m_orig; int iovcnt; int send_len; int len; int send_count; struct ip6_hdr *ip6; struct udphdr *udp; #if !defined (__Userspace_os_Windows) int res; #endif struct sockaddr_in6 dst; #if defined (__Userspace_os_Windows) WSAMSG win_msg_hdr; int win_sent_len; WSABUF send_iovec[MAXLEN_MBUF_CHAIN]; WSABUF winbuf; #else struct iovec send_iovec[MAXLEN_MBUF_CHAIN]; struct msghdr msg_hdr; #endif int use_udp_tunneling; *result = 0; m = SCTP_HEADER_TO_CHAIN(o_pak); m_orig = m; len = sizeof(struct ip6_hdr); if (SCTP_BUF_LEN(m) < len) { if ((m = m_pullup(m, len)) == 0) { SCTP_PRINTF("Can not get the IP header in the first mbuf.\n"); return; } } ip6 = mtod(m, struct ip6_hdr *); use_udp_tunneling = (ip6->ip6_nxt == IPPROTO_UDP); if (use_udp_tunneling) { len = sizeof(struct ip6_hdr) + sizeof(struct udphdr); if (SCTP_BUF_LEN(m) < len) { if ((m = m_pullup(m, len)) == 0) { SCTP_PRINTF("Can not get the UDP/IP header in the first mbuf.\n"); return; } ip6 = mtod(m, struct ip6_hdr *); } udp = (struct udphdr *)(ip6 + 1); } else { udp = NULL; } if (!use_udp_tunneling) { if (ip6->ip6_src.s6_addr == in6addr_any.s6_addr) { /* TODO get addr of outgoing interface */ SCTP_PRINTF("Why did the SCTP implementation did not choose a source address?\n"); } /* TODO need to worry about ro->ro_dst as in ip_output? */ #if defined(__Userspace_os_Linux) || defined (__Userspace_os_Windows) /* need to put certain fields into network order for Linux */ ip6->ip6_plen = htons(ip6->ip6_plen); #endif } memset((void *)&dst, 0, sizeof(struct sockaddr_in6)); dst.sin6_family = AF_INET6; dst.sin6_addr = ip6->ip6_dst; #ifdef HAVE_SIN6_LEN dst.sin6_len = sizeof(struct sockaddr_in6); #endif if (use_udp_tunneling) { dst.sin6_port = udp->uh_dport; } else { dst.sin6_port = 0; } /* tweak the mbuf chain */ if (use_udp_tunneling) { m_adj(m, sizeof(struct ip6_hdr) + sizeof(struct udphdr)); } else { m_adj(m, sizeof(struct ip6_hdr)); } send_len = SCTP_HEADER_LEN(m); /* length of entire packet */ send_count = 0; for (iovcnt = 0; m != NULL && iovcnt < MAXLEN_MBUF_CHAIN; m = m->m_next, iovcnt++) { #if !defined (__Userspace_os_Windows) send_iovec[iovcnt].iov_base = (caddr_t)m->m_data; send_iovec[iovcnt].iov_len = SCTP_BUF_LEN(m); send_count += send_iovec[iovcnt].iov_len; #else send_iovec[iovcnt].buf = (caddr_t)m->m_data; send_iovec[iovcnt].len = SCTP_BUF_LEN(m); send_count += send_iovec[iovcnt].len; #endif } if (m != NULL) { SCTP_PRINTF("mbuf chain couldn't be copied completely\n"); goto free_mbuf; } #if !defined (__Userspace_os_Windows) msg_hdr.msg_name = (struct sockaddr *) &dst; msg_hdr.msg_namelen = sizeof(struct sockaddr_in6); msg_hdr.msg_iov = send_iovec; msg_hdr.msg_iovlen = iovcnt; msg_hdr.msg_control = NULL; msg_hdr.msg_controllen = 0; msg_hdr.msg_flags = 0; if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp6) > -1)) { if ((res = sendmsg(SCTP_BASE_VAR(userspace_rawsctp6), &msg_hdr, MSG_DONTWAIT)) != send_len) { *result = errno; } } if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp6) > -1)) { if ((res = sendmsg(SCTP_BASE_VAR(userspace_udpsctp6), &msg_hdr, MSG_DONTWAIT)) != send_len) { *result = errno; } } #else win_msg_hdr.name = (struct sockaddr *) &dst; win_msg_hdr.namelen = sizeof(struct sockaddr_in6); win_msg_hdr.lpBuffers = (LPWSABUF)send_iovec; win_msg_hdr.dwBufferCount = iovcnt; winbuf.len = 0; winbuf.buf = NULL; win_msg_hdr.Control = winbuf; win_msg_hdr.dwFlags = 0; if ((!use_udp_tunneling) && (SCTP_BASE_VAR(userspace_rawsctp6) > -1)) { if (WSASendTo(SCTP_BASE_VAR(userspace_rawsctp6), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) { *result = WSAGetLastError(); } else if (win_sent_len != send_len) { *result = WSAGetLastError(); } } if ((use_udp_tunneling) && (SCTP_BASE_VAR(userspace_udpsctp6) > -1)) { if (WSASendTo(SCTP_BASE_VAR(userspace_udpsctp6), (LPWSABUF) send_iovec, iovcnt, &win_sent_len, win_msg_hdr.dwFlags, win_msg_hdr.name, (int) win_msg_hdr.namelen, NULL, NULL) != 0) { *result = WSAGetLastError(); } else if (win_sent_len != send_len) { *result = WSAGetLastError(); } } #endif free_mbuf: sctp_m_freem(m_orig); } #endif void usrsctp_register_address(void *addr) { struct sockaddr_conn sconn; memset(&sconn, 0, sizeof(struct sockaddr_conn)); sconn.sconn_family = AF_CONN; #ifdef HAVE_SCONN_LEN sconn.sconn_len = sizeof(struct sockaddr_conn); #endif sconn.sconn_port = 0; sconn.sconn_addr = addr; sctp_add_addr_to_vrf(SCTP_DEFAULT_VRFID, NULL, 0xffffffff, 0, "conn", NULL, (struct sockaddr *)&sconn, 0, 0); } void usrsctp_deregister_address(void *addr) { struct sockaddr_conn sconn; memset(&sconn, 0, sizeof(struct sockaddr_conn)); sconn.sconn_family = AF_CONN; #ifdef HAVE_SCONN_LEN sconn.sconn_len = sizeof(struct sockaddr_conn); #endif sconn.sconn_port = 0; sconn.sconn_addr = addr; sctp_del_addr_from_vrf(SCTP_DEFAULT_VRFID, (struct sockaddr *)&sconn, 0xffffffff, "conn"); } #define PREAMBLE_FORMAT "\n%c %02d:%02d:%02d.%06ld " #define PREAMBLE_LENGTH 19 #define HEADER "0000 " #define TRAILER "# SCTP_PACKET\n" char * usrsctp_dumppacket(void *buf, size_t len, int outbound) { size_t i, pos; char *dump_buf, *packet; #ifdef _WIN32 struct timeb tb; struct tm t; #else struct timeval tv; struct tm *t; time_t sec; #endif if ((len == 0) || (buf == NULL)) { return (NULL); } if ((dump_buf = malloc(PREAMBLE_LENGTH + strlen(HEADER) + 3 * len + strlen(TRAILER) + 1)) == NULL) { return (NULL); } pos = 0; #ifdef _WIN32 ftime(&tb); localtime_s(&t, &tb.time); _snprintf_s(dump_buf, PREAMBLE_LENGTH + 1, PREAMBLE_LENGTH, PREAMBLE_FORMAT, outbound ? 'O' : 'I', t.tm_hour, t.tm_min, t.tm_sec, (long)(1000 * tb.millitm)); #else gettimeofday(&tv, NULL); sec = (time_t)tv.tv_sec; t = localtime((const time_t *)&sec); snprintf(dump_buf, PREAMBLE_LENGTH + 1, PREAMBLE_FORMAT, outbound ? 'O' : 'I', t->tm_hour, t->tm_min, t->tm_sec, (long)tv.tv_usec); #endif pos += PREAMBLE_LENGTH; #ifdef _WIN32 strncpy_s(dump_buf + pos, strlen(HEADER) + 1, HEADER, strlen(HEADER)); #else strcpy(dump_buf + pos, HEADER); #endif pos += strlen(HEADER); packet = (char *)buf; for (i = 0; i < len; i++) { uint8_t byte, low, high; byte = (uint8_t)packet[i]; high = byte / 16; low = byte % 16; dump_buf[pos++] = high < 10 ? '0' + high : 'a' + (high - 10); dump_buf[pos++] = low < 10 ? '0' + low : 'a' + (low - 10); dump_buf[pos++] = ' '; } #ifdef _WIN32 strncpy_s(dump_buf + pos, strlen(TRAILER) + 1, TRAILER, strlen(TRAILER)); #else strcpy(dump_buf + pos, TRAILER); #endif pos += strlen(TRAILER); dump_buf[pos++] = '\0'; return (dump_buf); } void usrsctp_freedumpbuffer(char *buf) { free(buf); } void usrsctp_conninput(void *addr, const void *buffer, size_t length, uint8_t ecn_bits) { struct sockaddr_conn src, dst; struct mbuf *m; struct sctphdr *sh; struct sctp_chunkhdr *ch; SCTP_STAT_INCR(sctps_recvpackets); SCTP_STAT_INCR_COUNTER64(sctps_inpackets); memset(&src, 0, sizeof(struct sockaddr_conn)); src.sconn_family = AF_CONN; #ifdef HAVE_SCONN_LEN src.sconn_len = sizeof(struct sockaddr_conn); #endif src.sconn_addr = addr; memset(&dst, 0, sizeof(struct sockaddr_conn)); dst.sconn_family = AF_CONN; #ifdef HAVE_SCONN_LEN dst.sconn_len = sizeof(struct sockaddr_conn); #endif dst.sconn_addr = addr; if ((m = sctp_get_mbuf_for_msg(length, 1, M_NOWAIT, 0, MT_DATA)) == NULL) { return; } m_copyback(m, 0, length, (caddr_t)buffer); if (SCTP_BUF_LEN(m) < (int)(sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr))) { if ((m = m_pullup(m, sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr))) == NULL) { SCTP_STAT_INCR(sctps_hdrops); return; } } sh = mtod(m, struct sctphdr *);; ch = (struct sctp_chunkhdr *)((caddr_t)sh + sizeof(struct sctphdr)); src.sconn_port = sh->src_port; dst.sconn_port = sh->dest_port; sctp_common_input_processing(&m, 0, sizeof(struct sctphdr), length, (struct sockaddr *)&src, (struct sockaddr *)&dst, sh, ch, #if !defined(SCTP_WITH_NO_CSUM) 1, #endif ecn_bits, SCTP_DEFAULT_VRFID, 0); if (m) { sctp_m_freem(m); } return; } #define USRSCTP_SYSCTL_SET_DEF(__field) \ void usrsctp_sysctl_set_ ## __field(uint32_t value) { \ SCTP_BASE_SYSCTL(__field) = value; \ } USRSCTP_SYSCTL_SET_DEF(sctp_sendspace) USRSCTP_SYSCTL_SET_DEF(sctp_recvspace) USRSCTP_SYSCTL_SET_DEF(sctp_auto_asconf) USRSCTP_SYSCTL_SET_DEF(sctp_multiple_asconfs) USRSCTP_SYSCTL_SET_DEF(sctp_ecn_enable) USRSCTP_SYSCTL_SET_DEF(sctp_pr_enable) USRSCTP_SYSCTL_SET_DEF(sctp_auth_enable) USRSCTP_SYSCTL_SET_DEF(sctp_asconf_enable) USRSCTP_SYSCTL_SET_DEF(sctp_reconfig_enable) USRSCTP_SYSCTL_SET_DEF(sctp_nrsack_enable) USRSCTP_SYSCTL_SET_DEF(sctp_pktdrop_enable) USRSCTP_SYSCTL_SET_DEF(sctp_strict_sacks) #if !defined(SCTP_WITH_NO_CSUM) USRSCTP_SYSCTL_SET_DEF(sctp_no_csum_on_loopback) #endif USRSCTP_SYSCTL_SET_DEF(sctp_peer_chunk_oh) USRSCTP_SYSCTL_SET_DEF(sctp_max_burst_default) USRSCTP_SYSCTL_SET_DEF(sctp_max_chunks_on_queue) USRSCTP_SYSCTL_SET_DEF(sctp_hashtblsize) USRSCTP_SYSCTL_SET_DEF(sctp_pcbtblsize) USRSCTP_SYSCTL_SET_DEF(sctp_min_split_point) USRSCTP_SYSCTL_SET_DEF(sctp_chunkscale) USRSCTP_SYSCTL_SET_DEF(sctp_delayed_sack_time_default) USRSCTP_SYSCTL_SET_DEF(sctp_sack_freq_default) USRSCTP_SYSCTL_SET_DEF(sctp_system_free_resc_limit) USRSCTP_SYSCTL_SET_DEF(sctp_asoc_free_resc_limit) USRSCTP_SYSCTL_SET_DEF(sctp_heartbeat_interval_default) USRSCTP_SYSCTL_SET_DEF(sctp_pmtu_raise_time_default) USRSCTP_SYSCTL_SET_DEF(sctp_shutdown_guard_time_default) USRSCTP_SYSCTL_SET_DEF(sctp_secret_lifetime_default) USRSCTP_SYSCTL_SET_DEF(sctp_rto_max_default) USRSCTP_SYSCTL_SET_DEF(sctp_rto_min_default) USRSCTP_SYSCTL_SET_DEF(sctp_rto_initial_default) USRSCTP_SYSCTL_SET_DEF(sctp_init_rto_max_default) USRSCTP_SYSCTL_SET_DEF(sctp_valid_cookie_life_default) USRSCTP_SYSCTL_SET_DEF(sctp_init_rtx_max_default) USRSCTP_SYSCTL_SET_DEF(sctp_assoc_rtx_max_default) USRSCTP_SYSCTL_SET_DEF(sctp_path_rtx_max_default) USRSCTP_SYSCTL_SET_DEF(sctp_add_more_threshold) USRSCTP_SYSCTL_SET_DEF(sctp_nr_outgoing_streams_default) USRSCTP_SYSCTL_SET_DEF(sctp_cmt_on_off) USRSCTP_SYSCTL_SET_DEF(sctp_cmt_use_dac) USRSCTP_SYSCTL_SET_DEF(sctp_use_cwnd_based_maxburst) USRSCTP_SYSCTL_SET_DEF(sctp_nat_friendly) USRSCTP_SYSCTL_SET_DEF(sctp_L2_abc_variable) USRSCTP_SYSCTL_SET_DEF(sctp_mbuf_threshold_count) USRSCTP_SYSCTL_SET_DEF(sctp_do_drain) USRSCTP_SYSCTL_SET_DEF(sctp_hb_maxburst) USRSCTP_SYSCTL_SET_DEF(sctp_abort_if_one_2_one_hits_limit) USRSCTP_SYSCTL_SET_DEF(sctp_strict_data_order) USRSCTP_SYSCTL_SET_DEF(sctp_min_residual) USRSCTP_SYSCTL_SET_DEF(sctp_max_retran_chunk) USRSCTP_SYSCTL_SET_DEF(sctp_logging_level) USRSCTP_SYSCTL_SET_DEF(sctp_default_cc_module) USRSCTP_SYSCTL_SET_DEF(sctp_default_frag_interleave) USRSCTP_SYSCTL_SET_DEF(sctp_mobility_base) USRSCTP_SYSCTL_SET_DEF(sctp_mobility_fasthandoff) USRSCTP_SYSCTL_SET_DEF(sctp_inits_include_nat_friendly) USRSCTP_SYSCTL_SET_DEF(sctp_udp_tunneling_port) USRSCTP_SYSCTL_SET_DEF(sctp_enable_sack_immediately) USRSCTP_SYSCTL_SET_DEF(sctp_vtag_time_wait) USRSCTP_SYSCTL_SET_DEF(sctp_blackhole) USRSCTP_SYSCTL_SET_DEF(sctp_diag_info_code) USRSCTP_SYSCTL_SET_DEF(sctp_fr_max_burst_default) USRSCTP_SYSCTL_SET_DEF(sctp_path_pf_threshold) USRSCTP_SYSCTL_SET_DEF(sctp_default_ss_module) USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_bw) USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_rtt) USRSCTP_SYSCTL_SET_DEF(sctp_rttvar_eqret) USRSCTP_SYSCTL_SET_DEF(sctp_steady_step) USRSCTP_SYSCTL_SET_DEF(sctp_use_dccc_ecn) USRSCTP_SYSCTL_SET_DEF(sctp_buffer_splitting) USRSCTP_SYSCTL_SET_DEF(sctp_initial_cwnd) #ifdef SCTP_DEBUG USRSCTP_SYSCTL_SET_DEF(sctp_debug_on) #endif #define USRSCTP_SYSCTL_GET_DEF(__field) \ uint32_t usrsctp_sysctl_get_ ## __field(void) { \ return SCTP_BASE_SYSCTL(__field); \ } USRSCTP_SYSCTL_GET_DEF(sctp_sendspace) USRSCTP_SYSCTL_GET_DEF(sctp_recvspace) USRSCTP_SYSCTL_GET_DEF(sctp_auto_asconf) USRSCTP_SYSCTL_GET_DEF(sctp_multiple_asconfs) USRSCTP_SYSCTL_GET_DEF(sctp_ecn_enable) USRSCTP_SYSCTL_GET_DEF(sctp_pr_enable) USRSCTP_SYSCTL_GET_DEF(sctp_auth_enable) USRSCTP_SYSCTL_GET_DEF(sctp_asconf_enable) USRSCTP_SYSCTL_GET_DEF(sctp_reconfig_enable) USRSCTP_SYSCTL_GET_DEF(sctp_nrsack_enable) USRSCTP_SYSCTL_GET_DEF(sctp_pktdrop_enable) USRSCTP_SYSCTL_GET_DEF(sctp_strict_sacks) #if !defined(SCTP_WITH_NO_CSUM) USRSCTP_SYSCTL_GET_DEF(sctp_no_csum_on_loopback) #endif USRSCTP_SYSCTL_GET_DEF(sctp_peer_chunk_oh) USRSCTP_SYSCTL_GET_DEF(sctp_max_burst_default) USRSCTP_SYSCTL_GET_DEF(sctp_max_chunks_on_queue) USRSCTP_SYSCTL_GET_DEF(sctp_hashtblsize) USRSCTP_SYSCTL_GET_DEF(sctp_pcbtblsize) USRSCTP_SYSCTL_GET_DEF(sctp_min_split_point) USRSCTP_SYSCTL_GET_DEF(sctp_chunkscale) USRSCTP_SYSCTL_GET_DEF(sctp_delayed_sack_time_default) USRSCTP_SYSCTL_GET_DEF(sctp_sack_freq_default) USRSCTP_SYSCTL_GET_DEF(sctp_system_free_resc_limit) USRSCTP_SYSCTL_GET_DEF(sctp_asoc_free_resc_limit) USRSCTP_SYSCTL_GET_DEF(sctp_heartbeat_interval_default) USRSCTP_SYSCTL_GET_DEF(sctp_pmtu_raise_time_default) USRSCTP_SYSCTL_GET_DEF(sctp_shutdown_guard_time_default) USRSCTP_SYSCTL_GET_DEF(sctp_secret_lifetime_default) USRSCTP_SYSCTL_GET_DEF(sctp_rto_max_default) USRSCTP_SYSCTL_GET_DEF(sctp_rto_min_default) USRSCTP_SYSCTL_GET_DEF(sctp_rto_initial_default) USRSCTP_SYSCTL_GET_DEF(sctp_init_rto_max_default) USRSCTP_SYSCTL_GET_DEF(sctp_valid_cookie_life_default) USRSCTP_SYSCTL_GET_DEF(sctp_init_rtx_max_default) USRSCTP_SYSCTL_GET_DEF(sctp_assoc_rtx_max_default) USRSCTP_SYSCTL_GET_DEF(sctp_path_rtx_max_default) USRSCTP_SYSCTL_GET_DEF(sctp_add_more_threshold) USRSCTP_SYSCTL_GET_DEF(sctp_nr_outgoing_streams_default) USRSCTP_SYSCTL_GET_DEF(sctp_cmt_on_off) USRSCTP_SYSCTL_GET_DEF(sctp_cmt_use_dac) USRSCTP_SYSCTL_GET_DEF(sctp_use_cwnd_based_maxburst) USRSCTP_SYSCTL_GET_DEF(sctp_nat_friendly) USRSCTP_SYSCTL_GET_DEF(sctp_L2_abc_variable) USRSCTP_SYSCTL_GET_DEF(sctp_mbuf_threshold_count) USRSCTP_SYSCTL_GET_DEF(sctp_do_drain) USRSCTP_SYSCTL_GET_DEF(sctp_hb_maxburst) USRSCTP_SYSCTL_GET_DEF(sctp_abort_if_one_2_one_hits_limit) USRSCTP_SYSCTL_GET_DEF(sctp_strict_data_order) USRSCTP_SYSCTL_GET_DEF(sctp_min_residual) USRSCTP_SYSCTL_GET_DEF(sctp_max_retran_chunk) USRSCTP_SYSCTL_GET_DEF(sctp_logging_level) USRSCTP_SYSCTL_GET_DEF(sctp_default_cc_module) USRSCTP_SYSCTL_GET_DEF(sctp_default_frag_interleave) USRSCTP_SYSCTL_GET_DEF(sctp_mobility_base) USRSCTP_SYSCTL_GET_DEF(sctp_mobility_fasthandoff) USRSCTP_SYSCTL_GET_DEF(sctp_inits_include_nat_friendly) USRSCTP_SYSCTL_GET_DEF(sctp_udp_tunneling_port) USRSCTP_SYSCTL_GET_DEF(sctp_enable_sack_immediately) USRSCTP_SYSCTL_GET_DEF(sctp_vtag_time_wait) USRSCTP_SYSCTL_GET_DEF(sctp_blackhole) USRSCTP_SYSCTL_GET_DEF(sctp_diag_info_code) USRSCTP_SYSCTL_GET_DEF(sctp_fr_max_burst_default) USRSCTP_SYSCTL_GET_DEF(sctp_path_pf_threshold) USRSCTP_SYSCTL_GET_DEF(sctp_default_ss_module) USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_bw) USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_rtt) USRSCTP_SYSCTL_GET_DEF(sctp_rttvar_eqret) USRSCTP_SYSCTL_GET_DEF(sctp_steady_step) USRSCTP_SYSCTL_GET_DEF(sctp_use_dccc_ecn) USRSCTP_SYSCTL_GET_DEF(sctp_buffer_splitting) USRSCTP_SYSCTL_GET_DEF(sctp_initial_cwnd) #ifdef SCTP_DEBUG USRSCTP_SYSCTL_GET_DEF(sctp_debug_on) #endif void usrsctp_get_stat(struct sctpstat *stat) { *stat = SCTP_BASE_STATS; }