//////////////////////////////////////////////////////////////////////////////// /// /// Cubic interpolation routine. /// /// Author : Copyright (c) Olli Parviainen /// Author e-mail : oparviai 'at' iki.fi /// SoundTouch WWW: http://www.surina.net/soundtouch /// //////////////////////////////////////////////////////////////////////////////// // // $Id: InterpolateCubic.cpp 179 2014-01-06 18:41:42Z oparviai $ // //////////////////////////////////////////////////////////////////////////////// // // License : // // SoundTouch audio processing library // Copyright (c) Olli Parviainen // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //////////////////////////////////////////////////////////////////////////////// #include <stddef.h> #include <math.h> #include "InterpolateCubic.h" #include "STTypes.h" using namespace soundtouch; // cubic interpolation coefficients static const float _coeffs[]= { -0.5f, 1.0f, -0.5f, 0.0f, 1.5f, -2.5f, 0.0f, 1.0f, -1.5f, 2.0f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, 0.0f}; InterpolateCubic::InterpolateCubic() { fract = 0; } void InterpolateCubic::resetRegisters() { fract = 0; } /// Transpose mono audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateCubic::transposeMono(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { int i; int srcSampleEnd = srcSamples - 4; int srcCount = 0; i = 0; while (srcCount < srcSampleEnd) { float out; const float x3 = 1.0f; const float x2 = (float)fract; // x const float x1 = x2*x2; // x^2 const float x0 = x1*x2; // x^3 float y0, y1, y2, y3; assert(fract < 1.0); y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3; y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3; y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3; y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3; out = y0 * psrc[0] + y1 * psrc[1] + y2 * psrc[2] + y3 * psrc[3]; pdest[i] = (SAMPLETYPE)out; i ++; // update position fraction fract += rate; // update whole positions int whole = (int)fract; fract -= whole; psrc += whole; srcCount += whole; } srcSamples = srcCount; return i; } /// Transpose stereo audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateCubic::transposeStereo(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { int i; int srcSampleEnd = srcSamples - 4; int srcCount = 0; i = 0; while (srcCount < srcSampleEnd) { const float x3 = 1.0f; const float x2 = (float)fract; // x const float x1 = x2*x2; // x^2 const float x0 = x1*x2; // x^3 float y0, y1, y2, y3; float out0, out1; assert(fract < 1.0); y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3; y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3; y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3; y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3; out0 = y0 * psrc[0] + y1 * psrc[2] + y2 * psrc[4] + y3 * psrc[6]; out1 = y0 * psrc[1] + y1 * psrc[3] + y2 * psrc[5] + y3 * psrc[7]; pdest[2*i] = (SAMPLETYPE)out0; pdest[2*i+1] = (SAMPLETYPE)out1; i ++; // update position fraction fract += rate; // update whole positions int whole = (int)fract; fract -= whole; psrc += 2*whole; srcCount += whole; } srcSamples = srcCount; return i; } /// Transpose multi-channel audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateCubic::transposeMulti(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { int i; int srcSampleEnd = srcSamples - 4; int srcCount = 0; i = 0; while (srcCount < srcSampleEnd) { const float x3 = 1.0f; const float x2 = (float)fract; // x const float x1 = x2*x2; // x^2 const float x0 = x1*x2; // x^3 float y0, y1, y2, y3; assert(fract < 1.0); y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3; y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3; y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3; y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3; for (int c = 0; c < numChannels; c ++) { float out; out = y0 * psrc[c] + y1 * psrc[c + numChannels] + y2 * psrc[c + 2 * numChannels] + y3 * psrc[c + 3 * numChannels]; pdest[0] = (SAMPLETYPE)out; pdest ++; } i ++; // update position fraction fract += rate; // update whole positions int whole = (int)fract; fract -= whole; psrc += numChannels*whole; srcCount += whole; } srcSamples = srcCount; return i; }