/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* struct containing the input to nsIFrame::Reflow */ #ifndef mozilla_ReflowInput_h #define mozilla_ReflowInput_h #include "nsMargin.h" #include "nsStyleCoord.h" #include "nsIFrame.h" #include "mozilla/Assertions.h" #include <algorithm> class nsPresContext; class nsRenderingContext; class nsFloatManager; class nsLineLayout; class nsIPercentBSizeObserver; struct nsHypotheticalPosition; /** * @return aValue clamped to [aMinValue, aMaxValue]. * * @note This function needs to handle aMinValue > aMaxValue. In that case, * aMinValue is returned. * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-widths * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-heights */ template <class NumericType> NumericType NS_CSS_MINMAX(NumericType aValue, NumericType aMinValue, NumericType aMaxValue) { NumericType result = aValue; if (aMaxValue < result) result = aMaxValue; if (aMinValue > result) result = aMinValue; return result; } /** * CSS Frame type. Included as part of the reflow state. */ typedef uint32_t nsCSSFrameType; #define NS_CSS_FRAME_TYPE_UNKNOWN 0 #define NS_CSS_FRAME_TYPE_INLINE 1 #define NS_CSS_FRAME_TYPE_BLOCK 2 /* block-level in normal flow */ #define NS_CSS_FRAME_TYPE_FLOATING 3 #define NS_CSS_FRAME_TYPE_ABSOLUTE 4 #define NS_CSS_FRAME_TYPE_INTERNAL_TABLE 5 /* row group frame, row frame, cell frame, ... */ /** * Bit-flag that indicates whether the element is replaced. Applies to inline, * block-level, floating, and absolutely positioned elements */ #define NS_CSS_FRAME_TYPE_REPLACED 0x08000 /** * Bit-flag that indicates that the element is replaced and contains a block * (eg some form controls). Applies to inline, block-level, floating, and * absolutely positioned elements. Mutually exclusive with * NS_CSS_FRAME_TYPE_REPLACED. */ #define NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK 0x10000 /** * Helper macros for telling whether items are replaced */ #define NS_FRAME_IS_REPLACED_NOBLOCK(_ft) \ (NS_CSS_FRAME_TYPE_REPLACED == ((_ft) & NS_CSS_FRAME_TYPE_REPLACED)) #define NS_FRAME_IS_REPLACED(_ft) \ (NS_FRAME_IS_REPLACED_NOBLOCK(_ft) || \ NS_FRAME_IS_REPLACED_CONTAINS_BLOCK(_ft)) #define NS_FRAME_REPLACED(_ft) \ (NS_CSS_FRAME_TYPE_REPLACED | (_ft)) #define NS_FRAME_IS_REPLACED_CONTAINS_BLOCK(_ft) \ (NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK == \ ((_ft) & NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK)) #define NS_FRAME_REPLACED_CONTAINS_BLOCK(_ft) \ (NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK | (_ft)) /** * A macro to extract the type. Masks off the 'replaced' bit-flag */ #define NS_FRAME_GET_TYPE(_ft) \ ((_ft) & ~(NS_CSS_FRAME_TYPE_REPLACED | \ NS_CSS_FRAME_TYPE_REPLACED_CONTAINS_BLOCK)) namespace mozilla { // A base class of ReflowInput that computes only the padding, // border, and margin, since those values are needed more often. struct SizeComputationInput { public: typedef mozilla::WritingMode WritingMode; typedef mozilla::LogicalMargin LogicalMargin; // The frame being reflowed. nsIFrame* mFrame; // Rendering context to use for measurement. nsRenderingContext* mRenderingContext; const nsMargin& ComputedPhysicalMargin() const { return mComputedMargin; } const nsMargin& ComputedPhysicalBorderPadding() const { return mComputedBorderPadding; } const nsMargin& ComputedPhysicalPadding() const { return mComputedPadding; } // We may need to eliminate the (few) users of these writable-reference accessors // as part of migrating to logical coordinates. nsMargin& ComputedPhysicalMargin() { return mComputedMargin; } nsMargin& ComputedPhysicalBorderPadding() { return mComputedBorderPadding; } nsMargin& ComputedPhysicalPadding() { return mComputedPadding; } const LogicalMargin ComputedLogicalMargin() const { return LogicalMargin(mWritingMode, mComputedMargin); } const LogicalMargin ComputedLogicalBorderPadding() const { return LogicalMargin(mWritingMode, mComputedBorderPadding); } const LogicalMargin ComputedLogicalPadding() const { return LogicalMargin(mWritingMode, mComputedPadding); } void SetComputedLogicalMargin(mozilla::WritingMode aWM, const LogicalMargin& aMargin) { mComputedMargin = aMargin.GetPhysicalMargin(aWM); } void SetComputedLogicalMargin(const LogicalMargin& aMargin) { SetComputedLogicalMargin(mWritingMode, aMargin); } void SetComputedLogicalBorderPadding(mozilla::WritingMode aWM, const LogicalMargin& aMargin) { mComputedBorderPadding = aMargin.GetPhysicalMargin(aWM); } void SetComputedLogicalBorderPadding(const LogicalMargin& aMargin) { SetComputedLogicalBorderPadding(mWritingMode, aMargin); } void SetComputedLogicalPadding(mozilla::WritingMode aWM, const LogicalMargin& aMargin) { mComputedPadding = aMargin.GetPhysicalMargin(aWM); } void SetComputedLogicalPadding(const LogicalMargin& aMargin) { SetComputedLogicalPadding(mWritingMode, aMargin); } WritingMode GetWritingMode() const { return mWritingMode; } protected: // cached copy of the frame's writing-mode, for logical coordinates WritingMode mWritingMode; // These are PHYSICAL coordinates (for now). // Will probably become logical in due course. // Computed margin values nsMargin mComputedMargin; // Cached copy of the border + padding values nsMargin mComputedBorderPadding; // Computed padding values nsMargin mComputedPadding; public: // Callers using this constructor must call InitOffsets on their own. SizeComputationInput(nsIFrame *aFrame, nsRenderingContext *aRenderingContext) : mFrame(aFrame) , mRenderingContext(aRenderingContext) , mWritingMode(aFrame->GetWritingMode()) { } SizeComputationInput(nsIFrame *aFrame, nsRenderingContext *aRenderingContext, mozilla::WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize); struct ReflowInputFlags { ReflowInputFlags() { memset(this, 0, sizeof(*this)); } uint32_t mSpecialBSizeReflow:1; // used by tables to communicate special reflow (in process) to handle // percent bsize frames inside cells which may not have computed bsizes uint32_t mNextInFlowUntouched:1; // nothing in the frame's next-in-flow (or its descendants) // is changing uint32_t mIsTopOfPage:1; // Is the current context at the top of a // page? When true, we force something // that's too tall for a page/column to // fit anyway to avoid infinite loops. uint32_t mAssumingHScrollbar:1; // parent frame is an nsIScrollableFrame and it // is assuming a horizontal scrollbar uint32_t mAssumingVScrollbar:1; // parent frame is an nsIScrollableFrame and it // is assuming a vertical scrollbar uint32_t mIsIResize:1; // Is frame (a) not dirty and (b) a // different inline-size than before? uint32_t mIsBResize:1; // Is frame (a) not dirty and (b) a // different block-size than before or // (potentially) in a context where // percent block-sizes have a different // basis? uint32_t mTableIsSplittable:1; // tables are splittable, this should happen only inside a page // and never insider a column frame uint32_t mHeightDependsOnAncestorCell:1; // Does frame height depend on // an ancestor table-cell? uint32_t mIsColumnBalancing:1; // nsColumnSetFrame is balancing columns uint32_t mIsFlexContainerMeasuringHeight:1; // nsFlexContainerFrame is // reflowing this child to // measure its intrinsic height. uint32_t mDummyParentReflowInput:1; // a "fake" reflow state made // in order to be the parent // of a real one uint32_t mMustReflowPlaceholders:1; // Should this frame reflow its place- // holder children? If the available // height of this frame didn't change, // but its in a paginated environment // (e.g. columns), it should always // reflow its placeholder children. uint32_t mShrinkWrap:1; // stores the COMPUTE_SIZE_SHRINK_WRAP ctor flag uint32_t mUseAutoBSize:1; // stores the COMPUTE_SIZE_USE_AUTO_BSIZE ctor flag uint32_t mStaticPosIsCBOrigin:1; // the STATIC_POS_IS_CB_ORIGIN ctor flag uint32_t mIClampMarginBoxMinSize:1; // the I_CLAMP_MARGIN_BOX_MIN_SIZE ctor flag uint32_t mBClampMarginBoxMinSize:1; // the B_CLAMP_MARGIN_BOX_MIN_SIZE ctor flag // If set, the following two flags indicate that: // (1) this frame is absolutely-positioned (or fixed-positioned). // (2) this frame's static position depends on the CSS Box Alignment. // (3) we do need to compute the static position, because the frame's // {Inline and/or Block} offsets actually depend on it. // When these bits are set, the offset values (IStart/IEnd, BStart/BEnd) // represent the "start" edge of the frame's CSS Box Alignment container // area, in that axis -- and these offsets need to be further-resolved // (with CSS Box Alignment) after we know the OOF frame's size. // NOTE: The "I" and "B" (for "Inline" and "Block") refer the axes of the // *containing block's writing-mode*, NOT mFrame's own writing-mode. This // is purely for convenience, since that's the writing-mode we're dealing // with when we set & react to these bits. uint32_t mIOffsetsNeedCSSAlign:1; uint32_t mBOffsetsNeedCSSAlign:1; }; #ifdef DEBUG // Reflow trace methods. Defined in nsFrame.cpp so they have access // to the display-reflow infrastructure. static void* DisplayInitOffsetsEnter( nsIFrame* aFrame, SizeComputationInput* aState, const mozilla::LogicalSize& aPercentBasis, const nsMargin* aBorder, const nsMargin* aPadding); static void DisplayInitOffsetsExit(nsIFrame* aFrame, SizeComputationInput* aState, void* aValue); #endif private: /** * Computes margin values from the specified margin style information, and * fills in the mComputedMargin member. * * @param aWM Writing mode of the containing block * @param aPercentBasis * Logical size in the writing mode of the containing block to use * for resolving percentage margin values in the inline and block * axes. * The inline size is usually the containing block inline-size * (width if writing mode is horizontal, and height if vertical). * The block size is usually the containing block inline-size, per * CSS21 sec 8.3 (read in conjunction with CSS Writing Modes sec * 7.2), but may be the containing block block-size, e.g. in CSS3 * Flexbox and Grid. * @return true if the margin is dependent on the containing block size. */ bool ComputeMargin(mozilla::WritingMode aWM, const mozilla::LogicalSize& aPercentBasis); /** * Computes padding values from the specified padding style information, and * fills in the mComputedPadding member. * * @param aWM Writing mode of the containing block * @param aPercentBasis * Logical size in the writing mode of the containing block to use * for resolving percentage padding values in the inline and block * axes. * The inline size is usually the containing block inline-size * (width if writing mode is horizontal, and height if vertical). * The block size is usually the containing block inline-size, per * CSS21 sec 8.3 (read in conjunction with CSS Writing Modes sec * 7.2), but may be the containing block block-size, e.g. in CSS3 * Flexbox and Grid. * @return true if the padding is dependent on the containing block size. */ bool ComputePadding(mozilla::WritingMode aWM, const mozilla::LogicalSize& aPercentBasis, nsIAtom* aFrameType); protected: void InitOffsets(mozilla::WritingMode aWM, const mozilla::LogicalSize& aPercentBasis, nsIAtom* aFrameType, ReflowInputFlags aFlags, const nsMargin* aBorder = nullptr, const nsMargin* aPadding = nullptr); /* * Convert nsStyleCoord to nscoord when percentages depend on the * inline size of the containing block, and enumerated values are for * inline size, min-inline-size, or max-inline-size. Does not handle * auto inline sizes. */ inline nscoord ComputeISizeValue(nscoord aContainingBlockISize, nscoord aContentEdgeToBoxSizing, nscoord aBoxSizingToMarginEdge, const nsStyleCoord& aCoord) const; // same as previous, but using mComputedBorderPadding, mComputedPadding, // and mComputedMargin nscoord ComputeISizeValue(nscoord aContainingBlockISize, mozilla::StyleBoxSizing aBoxSizing, const nsStyleCoord& aCoord) const; nscoord ComputeBSizeValue(nscoord aContainingBlockBSize, mozilla::StyleBoxSizing aBoxSizing, const nsStyleCoord& aCoord) const; }; /** * State passed to a frame during reflow or intrinsic size calculation. * * XXX Refactor so only a base class (nsSizingState?) is used for intrinsic * size calculation. * * @see nsIFrame#Reflow() */ struct ReflowInput : public SizeComputationInput { // the reflow states are linked together. this is the pointer to the // parent's reflow state const ReflowInput* mParentReflowInput; // pointer to the float manager associated with this area nsFloatManager* mFloatManager; // LineLayout object (only for inline reflow; set to nullptr otherwise) nsLineLayout* mLineLayout; // The appropriate reflow state for the containing block (for // percentage widths, etc.) of this reflow state's frame. MOZ_INIT_OUTSIDE_CTOR const ReflowInput *mCBReflowInput; // The type of frame, from css's perspective. This value is // initialized by the Init method below. MOZ_INIT_OUTSIDE_CTOR nsCSSFrameType mFrameType; // The amount the in-flow position of the block is moving vertically relative // to its previous in-flow position (i.e. the amount the line containing the // block is moving). // This should be zero for anything which is not a block outside, and it // should be zero for anything which has a non-block parent. // The intended use of this value is to allow the accurate determination // of the potential impact of a float // This takes on an arbitrary value the first time a block is reflowed nscoord mBlockDelta; // If an ReflowInput finds itself initialized with an unconstrained // inline-size, it will look up its parentReflowInput chain for a state // with an orthogonal writing mode and a non-NS_UNCONSTRAINEDSIZE value for // orthogonal limit; when it finds such a reflow-state, it will use its // orthogonal-limit value to constrain inline-size. // This is initialized to NS_UNCONSTRAINEDSIZE (so it will be ignored), // but reset to a suitable value for the reflow root by nsPresShell. nscoord mOrthogonalLimit; // Accessors for the private fields below. Forcing all callers to use these // will allow us to introduce logical-coordinate versions and gradually // change clients from physical to logical as needed; and potentially switch // the internal fields from physical to logical coordinates in due course, // while maintaining compatibility with not-yet-updated code. nscoord AvailableWidth() const { return mAvailableWidth; } nscoord AvailableHeight() const { return mAvailableHeight; } nscoord ComputedWidth() const { return mComputedWidth; } nscoord ComputedHeight() const { return mComputedHeight; } nscoord ComputedMinWidth() const { return mComputedMinWidth; } nscoord ComputedMaxWidth() const { return mComputedMaxWidth; } nscoord ComputedMinHeight() const { return mComputedMinHeight; } nscoord ComputedMaxHeight() const { return mComputedMaxHeight; } nscoord& AvailableWidth() { return mAvailableWidth; } nscoord& AvailableHeight() { return mAvailableHeight; } nscoord& ComputedWidth() { return mComputedWidth; } nscoord& ComputedHeight() { return mComputedHeight; } nscoord& ComputedMinWidth() { return mComputedMinWidth; } nscoord& ComputedMaxWidth() { return mComputedMaxWidth; } nscoord& ComputedMinHeight() { return mComputedMinHeight; } nscoord& ComputedMaxHeight() { return mComputedMaxHeight; } // ISize and BSize are logical-coordinate dimensions: // ISize is the size in the writing mode's inline direction (which equates to // width in horizontal writing modes, height in vertical ones), and BSize is // the size in the block-progression direction. nscoord AvailableISize() const { return mWritingMode.IsVertical() ? mAvailableHeight : mAvailableWidth; } nscoord AvailableBSize() const { return mWritingMode.IsVertical() ? mAvailableWidth : mAvailableHeight; } nscoord ComputedISize() const { return mWritingMode.IsVertical() ? mComputedHeight : mComputedWidth; } nscoord ComputedBSize() const { return mWritingMode.IsVertical() ? mComputedWidth : mComputedHeight; } nscoord ComputedMinISize() const { return mWritingMode.IsVertical() ? mComputedMinHeight : mComputedMinWidth; } nscoord ComputedMaxISize() const { return mWritingMode.IsVertical() ? mComputedMaxHeight : mComputedMaxWidth; } nscoord ComputedMinBSize() const { return mWritingMode.IsVertical() ? mComputedMinWidth : mComputedMinHeight; } nscoord ComputedMaxBSize() const { return mWritingMode.IsVertical() ? mComputedMaxWidth : mComputedMaxHeight; } nscoord& AvailableISize() { return mWritingMode.IsVertical() ? mAvailableHeight : mAvailableWidth; } nscoord& AvailableBSize() { return mWritingMode.IsVertical() ? mAvailableWidth : mAvailableHeight; } nscoord& ComputedISize() { return mWritingMode.IsVertical() ? mComputedHeight : mComputedWidth; } nscoord& ComputedBSize() { return mWritingMode.IsVertical() ? mComputedWidth : mComputedHeight; } nscoord& ComputedMinISize() { return mWritingMode.IsVertical() ? mComputedMinHeight : mComputedMinWidth; } nscoord& ComputedMaxISize() { return mWritingMode.IsVertical() ? mComputedMaxHeight : mComputedMaxWidth; } nscoord& ComputedMinBSize() { return mWritingMode.IsVertical() ? mComputedMinWidth : mComputedMinHeight; } nscoord& ComputedMaxBSize() { return mWritingMode.IsVertical() ? mComputedMaxWidth : mComputedMaxHeight; } mozilla::LogicalSize AvailableSize() const { return mozilla::LogicalSize(mWritingMode, AvailableISize(), AvailableBSize()); } mozilla::LogicalSize ComputedSize() const { return mozilla::LogicalSize(mWritingMode, ComputedISize(), ComputedBSize()); } mozilla::LogicalSize ComputedMinSize() const { return mozilla::LogicalSize(mWritingMode, ComputedMinISize(), ComputedMinBSize()); } mozilla::LogicalSize ComputedMaxSize() const { return mozilla::LogicalSize(mWritingMode, ComputedMaxISize(), ComputedMaxBSize()); } mozilla::LogicalSize AvailableSize(mozilla::WritingMode aWM) const { return AvailableSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedSize(mozilla::WritingMode aWM) const { return ComputedSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedMinSize(mozilla::WritingMode aWM) const { return ComputedMinSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedMaxSize(mozilla::WritingMode aWM) const { return ComputedMaxSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedSizeWithPadding() const { mozilla::WritingMode wm = GetWritingMode(); return mozilla::LogicalSize(wm, ComputedISize() + ComputedLogicalPadding().IStartEnd(wm), ComputedBSize() + ComputedLogicalPadding().BStartEnd(wm)); } mozilla::LogicalSize ComputedSizeWithPadding(mozilla::WritingMode aWM) const { return ComputedSizeWithPadding().ConvertTo(aWM, GetWritingMode()); } mozilla::LogicalSize ComputedSizeWithBorderPadding() const { mozilla::WritingMode wm = GetWritingMode(); return mozilla::LogicalSize(wm, ComputedISize() + ComputedLogicalBorderPadding().IStartEnd(wm), ComputedBSize() + ComputedLogicalBorderPadding().BStartEnd(wm)); } mozilla::LogicalSize ComputedSizeWithBorderPadding(mozilla::WritingMode aWM) const { return ComputedSizeWithBorderPadding().ConvertTo(aWM, GetWritingMode()); } mozilla::LogicalSize ComputedSizeWithMarginBorderPadding() const { mozilla::WritingMode wm = GetWritingMode(); return mozilla::LogicalSize(wm, ComputedISize() + ComputedLogicalMargin().IStartEnd(wm) + ComputedLogicalBorderPadding().IStartEnd(wm), ComputedBSize() + ComputedLogicalMargin().BStartEnd(wm) + ComputedLogicalBorderPadding().BStartEnd(wm)); } mozilla::LogicalSize ComputedSizeWithMarginBorderPadding(mozilla::WritingMode aWM) const { return ComputedSizeWithMarginBorderPadding().ConvertTo(aWM, GetWritingMode()); } nsSize ComputedPhysicalSize() const { return nsSize(ComputedWidth(), ComputedHeight()); } // XXX this will need to change when we make mComputedOffsets logical; // we won't be able to return a reference for the physical offsets const nsMargin& ComputedPhysicalOffsets() const { return mComputedOffsets; } nsMargin& ComputedPhysicalOffsets() { return mComputedOffsets; } const LogicalMargin ComputedLogicalOffsets() const { return LogicalMargin(mWritingMode, mComputedOffsets); } void SetComputedLogicalOffsets(const LogicalMargin& aOffsets) { mComputedOffsets = aOffsets.GetPhysicalMargin(mWritingMode); } // Return the state's computed size including border-padding, with // unconstrained dimensions replaced by zero. nsSize ComputedSizeAsContainerIfConstrained() const { const nscoord wd = ComputedWidth(); const nscoord ht = ComputedHeight(); return nsSize(wd == NS_UNCONSTRAINEDSIZE ? 0 : wd + ComputedPhysicalBorderPadding().LeftRight(), ht == NS_UNCONSTRAINEDSIZE ? 0 : ht + ComputedPhysicalBorderPadding().TopBottom()); } private: // the available width in which to reflow the frame. The space // represents the amount of room for the frame's margin, border, // padding, and content area. The frame size you choose should fit // within the available width. nscoord mAvailableWidth; // A value of NS_UNCONSTRAINEDSIZE for the available height means // you can choose whatever size you want. In galley mode the // available height is always NS_UNCONSTRAINEDSIZE, and only page // mode or multi-column layout involves a constrained height. The // element's the top border and padding, and content, must fit. If the // element is complete after reflow then its bottom border, padding // and margin (and similar for its complete ancestors) will need to // fit in this height. nscoord mAvailableHeight; // The computed width specifies the frame's content area width, and it does // not apply to inline non-replaced elements // // For replaced inline frames, a value of NS_INTRINSICSIZE means you should // use your intrinsic width as the computed width // // For block-level frames, the computed width is based on the width of the // containing block, the margin/border/padding areas, and the min/max width. MOZ_INIT_OUTSIDE_CTOR nscoord mComputedWidth; // The computed height specifies the frame's content height, and it does // not apply to inline non-replaced elements // // For replaced inline frames, a value of NS_INTRINSICSIZE means you should // use your intrinsic height as the computed height // // For non-replaced block-level frames in the flow and floated, a value of // NS_AUTOHEIGHT means you choose a height to shrink wrap around the normal // flow child frames. The height must be within the limit of the min/max // height if there is such a limit // // For replaced block-level frames, a value of NS_INTRINSICSIZE // means you use your intrinsic height as the computed height MOZ_INIT_OUTSIDE_CTOR nscoord mComputedHeight; // Computed values for 'left/top/right/bottom' offsets. Only applies to // 'positioned' elements. These are PHYSICAL coordinates (for now). nsMargin mComputedOffsets; // Computed values for 'min-width/max-width' and 'min-height/max-height' // XXXldb The width ones here should go; they should be needed only // internally. MOZ_INIT_OUTSIDE_CTOR nscoord mComputedMinWidth, mComputedMaxWidth; MOZ_INIT_OUTSIDE_CTOR nscoord mComputedMinHeight, mComputedMaxHeight; public: // Cached pointers to the various style structs used during intialization MOZ_INIT_OUTSIDE_CTOR const nsStyleDisplay* mStyleDisplay; MOZ_INIT_OUTSIDE_CTOR const nsStyleVisibility* mStyleVisibility; MOZ_INIT_OUTSIDE_CTOR const nsStylePosition* mStylePosition; MOZ_INIT_OUTSIDE_CTOR const nsStyleBorder* mStyleBorder; MOZ_INIT_OUTSIDE_CTOR const nsStyleMargin* mStyleMargin; MOZ_INIT_OUTSIDE_CTOR const nsStylePadding* mStylePadding; MOZ_INIT_OUTSIDE_CTOR const nsStyleText* mStyleText; bool IsFloating() const; mozilla::StyleDisplay GetDisplay() const; // a frame (e.g. nsTableCellFrame) which may need to generate a special // reflow for percent bsize calculations nsIPercentBSizeObserver* mPercentBSizeObserver; // CSS margin collapsing sometimes requires us to reflow // optimistically assuming that margins collapse to see if clearance // is required. When we discover that clearance is required, we // store the frame in which clearance was discovered to the location // requested here. nsIFrame** mDiscoveredClearance; ReflowInputFlags mFlags; // This value keeps track of how deeply nested a given reflow state // is from the top of the frame tree. int16_t mReflowDepth; // Logical and physical accessors for the resize flags. All users should go // via these accessors, so that in due course we can change the storage from // physical to logical. bool IsHResize() const { return mWritingMode.IsVertical() ? mFlags.mIsBResize : mFlags.mIsIResize; } bool IsVResize() const { return mWritingMode.IsVertical() ? mFlags.mIsIResize : mFlags.mIsBResize; } bool IsIResize() const { return mFlags.mIsIResize; } bool IsBResize() const { return mFlags.mIsBResize; } bool IsBResizeForWM(mozilla::WritingMode aWM) const { return aWM.IsOrthogonalTo(mWritingMode) ? mFlags.mIsIResize : mFlags.mIsBResize; } void SetHResize(bool aValue) { if (mWritingMode.IsVertical()) { mFlags.mIsBResize = aValue; } else { mFlags.mIsIResize = aValue; } } void SetVResize(bool aValue) { if (mWritingMode.IsVertical()) { mFlags.mIsIResize = aValue; } else { mFlags.mIsBResize = aValue; } } void SetIResize(bool aValue) { mFlags.mIsIResize = aValue; } void SetBResize(bool aValue) { mFlags.mIsBResize = aValue; } // Note: The copy constructor is written by the compiler automatically. You // can use that and then override specific values if you want, or you can // call Init as desired... /** * Initialize a ROOT reflow state. * * @param aPresContext Must be equal to aFrame->PresContext(). * @param aFrame The frame for whose reflow state is being constructed. * @param aRenderingContext The rendering context to be used for measurements. * @param aAvailableSpace See comments for availableHeight and availableWidth * members. * @param aFlags A set of flags used for additional boolean parameters (see * below). */ ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame, nsRenderingContext* aRenderingContext, const mozilla::LogicalSize& aAvailableSpace, uint32_t aFlags = 0); /** * Initialize a reflow state for a child frame's reflow. Some parts of the * state are copied from the parent's reflow state. The remainder is computed. * * @param aPresContext Must be equal to aFrame->PresContext(). * @param aParentReflowInput A reference to an ReflowInput object that * is to be the parent of this object. * @param aFrame The frame for whose reflow state is being constructed. * @param aAvailableSpace See comments for availableHeight and availableWidth * members. * @param aContainingBlockSize An optional size, in app units, specifying * the containing block size to use instead of the default which is * to use the aAvailableSpace. * @param aFlags A set of flags used for additional boolean parameters (see * below). */ ReflowInput(nsPresContext* aPresContext, const ReflowInput& aParentReflowInput, nsIFrame* aFrame, const mozilla::LogicalSize& aAvailableSpace, const mozilla::LogicalSize* aContainingBlockSize = nullptr, uint32_t aFlags = 0); // Values for |aFlags| passed to constructor enum { // Indicates that the parent of this reflow state is "fake" (see // mDummyParentReflowInput in mFlags). DUMMY_PARENT_REFLOW_STATE = (1<<0), // Indicates that the calling function will initialize the reflow state, and // that the constructor should not call Init(). CALLER_WILL_INIT = (1<<1), // The caller wants shrink-wrap behavior (i.e. ComputeSizeFlags::eShrinkWrap // will be passed to ComputeSize()). COMPUTE_SIZE_SHRINK_WRAP = (1<<2), // The caller wants 'auto' bsize behavior (ComputeSizeFlags::eUseAutoBSize // will be be passed to ComputeSize()). COMPUTE_SIZE_USE_AUTO_BSIZE = (1<<3), // The caller wants the abs.pos. static-position resolved at the origin of // the containing block, i.e. at LogicalPoint(0, 0). (Note that this // doesn't necessarily mean that (0, 0) is the *correct* static position // for the frame in question.) STATIC_POS_IS_CB_ORIGIN = (1<<4), // Pass ComputeSizeFlags::eIClampMarginBoxMinSize to ComputeSize(). I_CLAMP_MARGIN_BOX_MIN_SIZE = (1<<5), // Pass ComputeSizeFlags::eBClampMarginBoxMinSize to ComputeSize(). B_CLAMP_MARGIN_BOX_MIN_SIZE = (1<<6), }; // This method initializes various data members. It is automatically // called by the various constructors void Init(nsPresContext* aPresContext, const mozilla::LogicalSize* aContainingBlockSize = nullptr, const nsMargin* aBorder = nullptr, const nsMargin* aPadding = nullptr); /** * Find the content isize of our containing block for the given writing mode, * which need not be the same as the reflow state's mode. */ nscoord GetContainingBlockContentISize(mozilla::WritingMode aWritingMode) const; /** * Calculate the used line-height property. The return value will be >= 0. */ nscoord CalcLineHeight() const; /** * Same as CalcLineHeight() above, but doesn't need a reflow state. * * @param aBlockBSize The computed block size of the content rect of the block * that the line should fill. * Only used with line-height:-moz-block-height. * NS_AUTOHEIGHT results in a normal line-height for * line-height:-moz-block-height. * @param aFontSizeInflation The result of the appropriate * nsLayoutUtils::FontSizeInflationFor call, * or 1.0 if during intrinsic size * calculation. */ static nscoord CalcLineHeight(nsIContent* aContent, nsStyleContext* aStyleContext, nscoord aBlockBSize, float aFontSizeInflation); mozilla::LogicalSize ComputeContainingBlockRectangle( nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const; /** * Apply the mComputed(Min/Max)Width constraints to the content * size computed so far. */ nscoord ApplyMinMaxWidth(nscoord aWidth) const { if (NS_UNCONSTRAINEDSIZE != ComputedMaxWidth()) { aWidth = std::min(aWidth, ComputedMaxWidth()); } return std::max(aWidth, ComputedMinWidth()); } /** * Apply the mComputed(Min/Max)ISize constraints to the content * size computed so far. */ nscoord ApplyMinMaxISize(nscoord aISize) const { if (NS_UNCONSTRAINEDSIZE != ComputedMaxISize()) { aISize = std::min(aISize, ComputedMaxISize()); } return std::max(aISize, ComputedMinISize()); } /** * Apply the mComputed(Min/Max)Height constraints to the content * size computed so far. * * @param aHeight The height that we've computed an to which we want to apply * min/max constraints. * @param aConsumed The amount of the computed height that was consumed by * our prev-in-flows. */ nscoord ApplyMinMaxHeight(nscoord aHeight, nscoord aConsumed = 0) const { aHeight += aConsumed; if (NS_UNCONSTRAINEDSIZE != ComputedMaxHeight()) { aHeight = std::min(aHeight, ComputedMaxHeight()); } if (NS_UNCONSTRAINEDSIZE != ComputedMinHeight()) { aHeight = std::max(aHeight, ComputedMinHeight()); } return aHeight - aConsumed; } /** * Apply the mComputed(Min/Max)BSize constraints to the content * size computed so far. * * @param aBSize The block-size that we've computed an to which we want to apply * min/max constraints. * @param aConsumed The amount of the computed block-size that was consumed by * our prev-in-flows. */ nscoord ApplyMinMaxBSize(nscoord aBSize, nscoord aConsumed = 0) const { aBSize += aConsumed; if (NS_UNCONSTRAINEDSIZE != ComputedMaxBSize()) { aBSize = std::min(aBSize, ComputedMaxBSize()); } if (NS_UNCONSTRAINEDSIZE != ComputedMinBSize()) { aBSize = std::max(aBSize, ComputedMinBSize()); } return aBSize - aConsumed; } bool ShouldReflowAllKids() const { // Note that we could make a stronger optimization for IsBResize if // we use it in a ShouldReflowChild test that replaces the current // checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it // were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE. // This would need to be combined with a slight change in which // frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on. return (mFrame->GetStateBits() & NS_FRAME_IS_DIRTY) || IsIResize() || (IsBResize() && (mFrame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE)); } // This method doesn't apply min/max computed widths to the value passed in. void SetComputedWidth(nscoord aComputedWidth); // This method doesn't apply min/max computed heights to the value passed in. void SetComputedHeight(nscoord aComputedHeight); void SetComputedISize(nscoord aComputedISize) { if (mWritingMode.IsVertical()) { SetComputedHeight(aComputedISize); } else { SetComputedWidth(aComputedISize); } } void SetComputedBSize(nscoord aComputedBSize) { if (mWritingMode.IsVertical()) { SetComputedWidth(aComputedBSize); } else { SetComputedHeight(aComputedBSize); } } void SetComputedBSizeWithoutResettingResizeFlags(nscoord aComputedBSize) { // Viewport frames reset the computed block size on a copy of their reflow // state when reflowing fixed-pos kids. In that case we actually don't // want to mess with the resize flags, because comparing the frame's rect // to the munged computed isize is pointless. ComputedBSize() = aComputedBSize; } void SetTruncated(const ReflowOutput& aMetrics, nsReflowStatus* aStatus) const; bool WillReflowAgainForClearance() const { return mDiscoveredClearance && *mDiscoveredClearance; } // Compute the offsets for a relative position element static void ComputeRelativeOffsets(mozilla::WritingMode aWM, nsIFrame* aFrame, const mozilla::LogicalSize& aCBSize, nsMargin& aComputedOffsets); // If a relatively positioned element, adjust the position appropriately. static void ApplyRelativePositioning(nsIFrame* aFrame, const nsMargin& aComputedOffsets, nsPoint* aPosition); void ApplyRelativePositioning(nsPoint* aPosition) const { ApplyRelativePositioning(mFrame, ComputedPhysicalOffsets(), aPosition); } static void ApplyRelativePositioning(nsIFrame* aFrame, mozilla::WritingMode aWritingMode, const mozilla::LogicalMargin& aComputedOffsets, mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) { // Subtract the size of the frame from the container size that we // use for converting between the logical and physical origins of // the frame. This accounts for the fact that logical origins in RTL // coordinate systems are at the top right of the frame instead of // the top left. nsSize frameSize = aFrame->GetSize(); nsPoint pos = aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize); ApplyRelativePositioning(aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos); *aPosition = mozilla::LogicalPoint(aWritingMode, pos, aContainerSize - frameSize); } void ApplyRelativePositioning(mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) const { ApplyRelativePositioning(mFrame, mWritingMode, ComputedLogicalOffsets(), aPosition, aContainerSize); } #ifdef DEBUG // Reflow trace methods. Defined in nsFrame.cpp so they have access // to the display-reflow infrastructure. static void* DisplayInitConstraintsEnter(nsIFrame* aFrame, ReflowInput* aState, nscoord aCBISize, nscoord aCBBSize, const nsMargin* aBorder, const nsMargin* aPadding); static void DisplayInitConstraintsExit(nsIFrame* aFrame, ReflowInput* aState, void* aValue); static void* DisplayInitFrameTypeEnter(nsIFrame* aFrame, ReflowInput* aState); static void DisplayInitFrameTypeExit(nsIFrame* aFrame, ReflowInput* aState, void* aValue); #endif protected: void InitFrameType(nsIAtom* aFrameType); void InitCBReflowInput(); void InitResizeFlags(nsPresContext* aPresContext, nsIAtom* aFrameType); void InitConstraints(nsPresContext* aPresContext, const mozilla::LogicalSize& aContainingBlockSize, const nsMargin* aBorder, const nsMargin* aPadding, nsIAtom* aFrameType); // Returns the nearest containing block or block frame (whether or not // it is a containing block) for the specified frame. Also returns // the inline-start edge and logical size of the containing block's // content area. // These are returned in the coordinate space of the containing block. nsIFrame* GetHypotheticalBoxContainer(nsIFrame* aFrame, nscoord& aCBIStartEdge, mozilla::LogicalSize& aCBSize) const; // Calculate a "hypothetical box" position where the placeholder frame // (for a position:fixed/absolute element) would have been placed if it were // positioned statically. The hypothetical box position will have a writing // mode with the same block direction as the absolute containing block // (cbrs->frame), though it may differ in inline direction. void CalculateHypotheticalPosition(nsPresContext* aPresContext, nsIFrame* aPlaceholderFrame, const ReflowInput* cbrs, nsHypotheticalPosition& aHypotheticalPos, nsIAtom* aFrameType) const; void InitAbsoluteConstraints(nsPresContext* aPresContext, const ReflowInput* cbrs, const mozilla::LogicalSize& aContainingBlockSize, nsIAtom* aFrameType); // Calculates the computed values for the 'min-Width', 'max-Width', // 'min-Height', and 'max-Height' properties, and stores them in the assorted // data members void ComputeMinMaxValues(const mozilla::LogicalSize& aContainingBlockSize); // aInsideBoxSizing returns the part of the padding, border, and margin // in the aAxis dimension that goes inside the edge given by box-sizing; // aOutsideBoxSizing returns the rest. void CalculateBorderPaddingMargin(mozilla::LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing, nscoord* aOutsideBoxSizing) const; void CalculateBlockSideMargins(nsIAtom* aFrameType); }; } // namespace mozilla #endif // mozilla_ReflowInput_h