/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef vm_EnvironmentObject_h #define vm_EnvironmentObject_h #include "jscntxt.h" #include "jsobj.h" #include "jsweakmap.h" #include "builtin/ModuleObject.h" #include "frontend/NameAnalysisTypes.h" #include "gc/Barrier.h" #include "js/GCHashTable.h" #include "vm/ArgumentsObject.h" #include "vm/ProxyObject.h" #include "vm/Scope.h" namespace js { class ModuleObject; typedef Handle<ModuleObject*> HandleModuleObject; /* * Return a shape representing the static scope containing the variable * accessed by the ALIASEDVAR op at 'pc'. */ extern Shape* EnvironmentCoordinateToEnvironmentShape(JSScript* script, jsbytecode* pc); /* Return the name being accessed by the given ALIASEDVAR op. */ extern PropertyName* EnvironmentCoordinateName(EnvironmentCoordinateNameCache& cache, JSScript* script, jsbytecode* pc); /* Return the function script accessed by the given ALIASEDVAR op, or nullptr. */ extern JSScript* EnvironmentCoordinateFunctionScript(JSScript* script, jsbytecode* pc); /*** Environment objects *****************************************************/ /*** Environment objects *****************************************************/ /* * About environments * ------------------ * * (See also: ecma262 rev c7952de (19 Aug 2016) 8.1 "Lexical Environments".) * * Scoping in ES is specified in terms of "Environment Records". There's a * global Environment Record per realm, and a new Environment Record is created * whenever control enters a function, block, or other scope. * * A "Lexical Environment" is a list of nested Environment Records, innermost * first: everything that's in scope. Throughout SpiderMonkey, "environment" * means a Lexical Environment. * * N.B.: "Scope" means something different: a static scope, the compile-time * analogue of an environment. See Scope.h. * * How SpiderMonkey represents environments * ---------------------------------------- * * Some environments are stored as JSObjects. Several kinds of objects * represent environments: * * JSObject * | * +--NativeObject * | | * | +--EnvironmentObject Engine-internal environment * | | | * | | +--CallObject Environment of entire function * | | | * | | +--ModuleEnvironmentObject Module top-level environment * | | | * | | +--LexicalEnvironmentObject Lexical (block) environment * | | | | * | | | +--NamedLambdaObject Environment for `(function f(){...})` * | | | containing only a binding for `f` * | | +--VarEnvironmentObject See VarScope in Scope.h. * | | | * | | +--WithEnvironmentObject Presents object properties as bindings * | | | * | | +--NonSyntacticVariablesObject See "Non-syntactic environments" below * | | * | +--GlobalObject The global environment * | * +--ProxyObject * | * +--DebugEnvironmentProxy Environment for debugger eval-in-frame * * EnvironmentObjects are technically real JSObjects but only belong on the * environment chain (that is, fp->environmentChain() or fun->environment()). * They are never exposed to scripts. * * Note that reserved slots in any base classes shown above are fixed for all * derived classes. So e.g. EnvironmentObject::enclosingEnvironment() can * simply access a fixed slot without further dynamic type information. * * When the current environment is represented by an object, the stack frame * has a pointer to that object (see AbstractFramePtr::environmentChain()). * However, that isn't always the case. Where possible, we store binding values * in JS stack slots. For block and function scopes where all bindings can be * stored in stack slots, nothing is allocated in the heap; there is no * environment object. * * Full information about the environment chain is always recoverable: * EnvironmentIter can do it, and we construct a fake environment for debugger * eval-in-frame (see "Debug environment objects" below). * * Syntactic Environments * ---------------------- * * Environments may be syntactic, i.e., corresponding to source text, or * non-syntactic, i.e., specially created by embedding. The distinction is * necessary to maintain invariants about the environment chain: non-syntactic * environments may not occur in arbitrary positions in the chain. * * CallObject, ModuleEnvironmentObject, and LexicalEnvironmentObject always * represent syntactic environments. (CallObject is considered syntactic even * when it's used as the scope of strict eval code.) WithEnvironmentObject is * syntactic when it's used to represent the scope of a `with` block. * * * Non-syntactic Environments * -------------------------- * * A non-syntactic environment is one that was not created due to JS source * code. On the scope chain, a single NonSyntactic GlobalScope maps to 0+ * non-syntactic environment objects. This is contrasted with syntactic * environments, where each scope corresponds to 0 or 1 environment object. * * There are 3 kinds of dynamic environment objects: * * 1. WithEnvironmentObject * * When the embedding compiles or executes a script, it has the option to * pass in a vector of objects to be used as the initial env chain, ordered * from outermost env to innermost env. Each of those objects is wrapped by * a WithEnvironmentObject. * * The innermost object passed in by the embedding becomes a qualified * variables object that captures 'var' bindings. That is, it wraps the * holder object of 'var' bindings. * * Does not hold 'let' or 'const' bindings. * * 2. NonSyntacticVariablesObject * * When the embedding wants qualified 'var' bindings and unqualified * bareword assignments to go on a different object than the global * object. While any object can be made into a qualified variables object, * only the GlobalObject and NonSyntacticVariablesObject are considered * unqualified variables objects. * * Unlike WithEnvironmentObjects that delegate to the object they wrap, * this object is itself the holder of 'var' bindings. * * Does not hold 'let' or 'const' bindings. * * 3. LexicalEnvironmentObject * * Each non-syntactic object used as a qualified variables object needs to * enclose a non-syntactic LexicalEnvironmentObject to hold 'let' and * 'const' bindings. There is a bijection per compartment between the * non-syntactic variables objects and their non-syntactic * LexicalEnvironmentObjects. * * Does not hold 'var' bindings. * * The embedding (Gecko) uses non-syntactic envs for various things, some of * which are detailed below. All env chain listings below are, from top to * bottom, outermost to innermost. * * A. Component loading * * Components may be loaded in "reuse loader global" mode, where to save on * memory, all JSMs and JS-implemented XPCOM modules are loaded into a single * global. Each individual JSMs are compiled as functions with their own * FakeBackstagePass. They have the following env chain: * * BackstagePass global * | * Global lexical scope * | * WithEnvironmentObject wrapping FakeBackstagePass * | * LexicalEnvironmentObject * * B. Subscript loading * * Subscripts may be loaded into a target object. They have the following * env chain: * * Loader global * | * Global lexical scope * | * WithEnvironmentObject wrapping target * | * LexicalEnvironmentObject * * C. Frame scripts * * XUL frame scripts are always loaded with a NonSyntacticVariablesObject as a * "polluting global". This is done exclusively in * js::ExecuteInGlobalAndReturnScope. * * Loader global * | * Global lexical scope * | * NonSyntacticVariablesObject * | * LexicalEnvironmentObject * * D. XBL and DOM event handlers * * XBL methods are compiled as functions with XUL elements on the env chain, * and DOM event handlers are compiled as functions with HTML elements on the * env chain. For a chain of elements e0,...,eN: * * ... * | * WithEnvironmentObject wrapping eN * | * ... * | * WithEnvironmentObject wrapping e0 * | * LexicalEnvironmentObject * */ class EnvironmentObject : public NativeObject { protected: // The enclosing environment. Either another EnvironmentObject, a // GlobalObject, or a non-syntactic environment object. static const uint32_t ENCLOSING_ENV_SLOT = 0; inline void setAliasedBinding(JSContext* cx, uint32_t slot, PropertyName* name, const Value& v); void setEnclosingEnvironment(JSObject* enclosing) { setReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing)); } public: // Since every env chain terminates with a global object, whether // GlobalObject or a non-syntactic one, and since those objects do not // derive EnvironmentObject (they have completely different layouts), the // enclosing environment of an EnvironmentObject is necessarily non-null. JSObject& enclosingEnvironment() const { return getReservedSlot(ENCLOSING_ENV_SLOT).toObject(); } void initEnclosingEnvironment(JSObject* enclosing) { initReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing)); } // Get or set a name contained in this environment. const Value& aliasedBinding(EnvironmentCoordinate ec) { return getSlot(ec.slot()); } const Value& aliasedBinding(const BindingIter& bi) { MOZ_ASSERT(bi.location().kind() == BindingLocation::Kind::Environment); return getSlot(bi.location().slot()); } inline void setAliasedBinding(JSContext* cx, EnvironmentCoordinate ec, PropertyName* name, const Value& v); inline void setAliasedBinding(JSContext* cx, const BindingIter& bi, const Value& v); // For JITs. static size_t offsetOfEnclosingEnvironment() { return getFixedSlotOffset(ENCLOSING_ENV_SLOT); } static uint32_t enclosingEnvironmentSlot() { return ENCLOSING_ENV_SLOT; } }; class CallObject : public EnvironmentObject { protected: static const uint32_t CALLEE_SLOT = 1; static CallObject* create(JSContext* cx, HandleScript script, HandleFunction callee, HandleObject enclosing); public: static const uint32_t RESERVED_SLOTS = 2; static const Class class_; /* These functions are internal and are exposed only for JITs. */ /* * Construct a bare-bones call object given a shape and a non-singleton * group. The call object must be further initialized to be usable. */ static CallObject* create(JSContext* cx, HandleShape shape, HandleObjectGroup group); /* * Construct a bare-bones call object given a shape and make it into * a singleton. The call object must be initialized to be usable. */ static CallObject* createSingleton(JSContext* cx, HandleShape shape); static CallObject* createTemplateObject(JSContext* cx, HandleScript script, HandleObject enclosing, gc::InitialHeap heap); static CallObject* create(JSContext* cx, HandleFunction callee, HandleObject enclosing); static CallObject* create(JSContext* cx, AbstractFramePtr frame); static CallObject* createHollowForDebug(JSContext* cx, HandleFunction callee); /* * When an aliased formal (var accessed by nested closures) is also * aliased by the arguments object, it must of course exist in one * canonical location and that location is always the CallObject. For this * to work, the ArgumentsObject stores special MagicValue in its array for * forwarded-to-CallObject variables. This MagicValue's payload is the * slot of the CallObject to access. */ const Value& aliasedFormalFromArguments(const Value& argsValue) { return getSlot(ArgumentsObject::SlotFromMagicScopeSlotValue(argsValue)); } inline void setAliasedFormalFromArguments(JSContext* cx, const Value& argsValue, jsid id, const Value& v); JSFunction& callee() const { return getReservedSlot(CALLEE_SLOT).toObject().as<JSFunction>(); } /* For jit access. */ static size_t offsetOfCallee() { return getFixedSlotOffset(CALLEE_SLOT); } static size_t calleeSlot() { return CALLEE_SLOT; } }; class VarEnvironmentObject : public EnvironmentObject { static const uint32_t SCOPE_SLOT = 1; static VarEnvironmentObject* create(JSContext* cx, HandleShape shape, HandleObject enclosing, gc::InitialHeap heap); void initScope(Scope* scope) { initReservedSlot(SCOPE_SLOT, PrivateGCThingValue(scope)); } public: static const uint32_t RESERVED_SLOTS = 2; static const Class class_; static VarEnvironmentObject* create(JSContext* cx, HandleScope scope, AbstractFramePtr frame); static VarEnvironmentObject* createHollowForDebug(JSContext* cx, Handle<VarScope*> scope); Scope& scope() const { Value v = getReservedSlot(SCOPE_SLOT); MOZ_ASSERT(v.isPrivateGCThing()); Scope& s = *static_cast<Scope*>(v.toGCThing()); MOZ_ASSERT(s.is<VarScope>() || s.is<EvalScope>()); return s; } bool isForEval() const { return scope().is<EvalScope>(); } }; class ModuleEnvironmentObject : public EnvironmentObject { static const uint32_t MODULE_SLOT = 1; static const ObjectOps objectOps_; public: static const Class class_; static const uint32_t RESERVED_SLOTS = 2; static ModuleEnvironmentObject* create(ExclusiveContext* cx, HandleModuleObject module); ModuleObject& module(); IndirectBindingMap& importBindings(); bool createImportBinding(JSContext* cx, HandleAtom importName, HandleModuleObject module, HandleAtom exportName); bool hasImportBinding(HandlePropertyName name); bool lookupImport(jsid name, ModuleEnvironmentObject** envOut, Shape** shapeOut); void fixEnclosingEnvironmentAfterCompartmentMerge(GlobalObject& global); private: static bool lookupProperty(JSContext* cx, HandleObject obj, HandleId id, MutableHandleObject objp, MutableHandleShape propp); static bool hasProperty(JSContext* cx, HandleObject obj, HandleId id, bool* foundp); static bool getProperty(JSContext* cx, HandleObject obj, HandleValue receiver, HandleId id, MutableHandleValue vp); static bool setProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v, HandleValue receiver, JS::ObjectOpResult& result); static bool getOwnPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id, MutableHandle<PropertyDescriptor> desc); static bool deleteProperty(JSContext* cx, HandleObject obj, HandleId id, ObjectOpResult& result); static bool enumerate(JSContext* cx, HandleObject obj, AutoIdVector& properties, bool enumerableOnly); }; typedef Rooted<ModuleEnvironmentObject*> RootedModuleEnvironmentObject; typedef Handle<ModuleEnvironmentObject*> HandleModuleEnvironmentObject; typedef MutableHandle<ModuleEnvironmentObject*> MutableHandleModuleEnvironmentObject; class LexicalEnvironmentObject : public EnvironmentObject { // Global and non-syntactic lexical environments need to store a 'this' // value and all other lexical environments have a fixed shape and store a // backpointer to the LexicalScope. // // Since the two sets are disjoint, we only use one slot to save space. static const unsigned THIS_VALUE_OR_SCOPE_SLOT = 1; public: static const unsigned RESERVED_SLOTS = 2; static const Class class_; private: static LexicalEnvironmentObject* createTemplateObject(JSContext* cx, HandleShape shape, HandleObject enclosing, gc::InitialHeap heap); void initThisValue(JSObject* obj) { MOZ_ASSERT(isGlobal() || !isSyntactic()); initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, GetThisValue(obj)); } void initScopeUnchecked(LexicalScope* scope) { initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, PrivateGCThingValue(scope)); } void initScope(LexicalScope* scope) { MOZ_ASSERT(!isGlobal()); MOZ_ASSERT(isSyntactic()); initScopeUnchecked(scope); } public: static LexicalEnvironmentObject* createTemplateObject(JSContext* cx, Handle<LexicalScope*> scope, HandleObject enclosing, gc::InitialHeap heap); static LexicalEnvironmentObject* create(JSContext* cx, Handle<LexicalScope*> scope, AbstractFramePtr frame); static LexicalEnvironmentObject* createGlobal(JSContext* cx, Handle<GlobalObject*> global); static LexicalEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject enclosing); static LexicalEnvironmentObject* createHollowForDebug(JSContext* cx, Handle<LexicalScope*> scope); // Create a new LexicalEnvironmentObject with the same enclosing env and // variable values as this. static LexicalEnvironmentObject* clone(JSContext* cx, Handle<LexicalEnvironmentObject*> env); // Create a new LexicalEnvironmentObject with the same enclosing env as // this, with all variables uninitialized. static LexicalEnvironmentObject* recreate(JSContext* cx, Handle<LexicalEnvironmentObject*> env); // For non-extensible lexical environments, the LexicalScope that created // this environment. Otherwise asserts. LexicalScope& scope() const { Value v = getReservedSlot(THIS_VALUE_OR_SCOPE_SLOT); MOZ_ASSERT(!isExtensible() && v.isPrivateGCThing()); return *static_cast<LexicalScope*>(v.toGCThing()); } // Is this the global lexical scope? bool isGlobal() const { return enclosingEnvironment().is<GlobalObject>(); } GlobalObject& global() const { return enclosingEnvironment().as<GlobalObject>(); } // Global and non-syntactic lexical scopes are extensible. All other // lexical scopes are not. bool isExtensible() const; // Is this a syntactic (i.e. corresponds to a source text) lexical // environment? bool isSyntactic() const { return !isExtensible() || isGlobal(); } // For extensible lexical environments, the 'this' value for its // scope. Otherwise asserts. Value thisValue() const; }; class NamedLambdaObject : public LexicalEnvironmentObject { static NamedLambdaObject* create(JSContext* cx, HandleFunction callee, HandleFunction replacement, HandleObject enclosing, gc::InitialHeap heap); public: static NamedLambdaObject* createTemplateObject(JSContext* cx, HandleFunction callee, gc::InitialHeap heap); static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame); static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame, HandleFunction replacement); // For JITs. static size_t lambdaSlot(); }; // A non-syntactic dynamic scope object that captures non-lexical // bindings. That is, a scope object that captures both qualified var // assignments and unqualified bareword assignments. Its parent is always the // global lexical environment. // // This is used in ExecuteInGlobalAndReturnScope and sits in front of the // global scope to store 'var' bindings, and to store fresh properties created // by assignments to undeclared variables that otherwise would have gone on // the global object. class NonSyntacticVariablesObject : public EnvironmentObject { public: static const unsigned RESERVED_SLOTS = 1; static const Class class_; static NonSyntacticVariablesObject* create(JSContext* cx); }; // With environment objects on the run-time environment chain. class WithEnvironmentObject : public EnvironmentObject { static const unsigned OBJECT_SLOT = 1; static const unsigned THIS_SLOT = 2; static const unsigned SCOPE_SLOT = 3; public: static const unsigned RESERVED_SLOTS = 4; static const Class class_; static WithEnvironmentObject* create(JSContext* cx, HandleObject object, HandleObject enclosing, Handle<WithScope*> scope); static WithEnvironmentObject* createNonSyntactic(JSContext* cx, HandleObject object, HandleObject enclosing); /* Return the 'o' in 'with (o)'. */ JSObject& object() const; /* Return object for GetThisValue. */ JSObject* withThis() const; /* * Return whether this object is a syntactic with object. If not, this is * a With object we inserted between the outermost syntactic scope and the * global object to wrap the environment chain someone explicitly passed * via JSAPI to CompileFunction or script evaluation. */ bool isSyntactic() const; // For syntactic with environment objects, the with scope. WithScope& scope() const; static inline size_t objectSlot() { return OBJECT_SLOT; } static inline size_t thisSlot() { return THIS_SLOT; } }; // Internal scope object used by JSOP_BINDNAME upon encountering an // uninitialized lexical slot or an assignment to a 'const' binding. // // ES6 lexical bindings cannot be accessed in any way (throwing // ReferenceErrors) until initialized. Normally, NAME operations // unconditionally check for uninitialized lexical slots. When getting or // looking up names, this can be done without slowing down normal operations // on the return value. When setting names, however, we do not want to pollute // all set-property paths with uninitialized lexical checks. For setting names // (i.e. JSOP_SETNAME), we emit an accompanying, preceding JSOP_BINDNAME which // finds the right scope on which to set the name. Moreover, when the name on // the scope is an uninitialized lexical, we cannot throw eagerly, as the spec // demands that the error be thrown after evaluating the RHS of // assignments. Instead, this sentinel scope object is pushed on the stack. // Attempting to access anything on this scope throws the appropriate // ReferenceError. // // ES6 'const' bindings induce a runtime error when assigned to outside // of initialization, regardless of strictness. class RuntimeLexicalErrorObject : public EnvironmentObject { static const unsigned ERROR_SLOT = 1; public: static const unsigned RESERVED_SLOTS = 2; static const Class class_; static RuntimeLexicalErrorObject* create(JSContext* cx, HandleObject enclosing, unsigned errorNumber); unsigned errorNumber() { return getReservedSlot(ERROR_SLOT).toInt32(); } }; /*****************************************************************************/ // A environment iterator describes the active environments starting from an // environment, scope pair. This pair may be derived from the current point of // execution in a frame. If derived in such a fashion, the EnvironmentIter // tracks whether the current scope is within the extent of this initial // frame. Here, "frame" means a single activation of: a function, eval, or // global code. class MOZ_RAII EnvironmentIter { Rooted<ScopeIter> si_; RootedObject env_; AbstractFramePtr frame_; void incrementScopeIter(); void settle(); // No value semantics. EnvironmentIter(const EnvironmentIter& ei) = delete; public: // Constructing from a copy of an existing EnvironmentIter. EnvironmentIter(JSContext* cx, const EnvironmentIter& ei MOZ_GUARD_OBJECT_NOTIFIER_PARAM); // Constructing from an environment, scope pair. All environments // considered not to be withinInitialFrame, since no frame is given. EnvironmentIter(JSContext* cx, JSObject* env, Scope* scope MOZ_GUARD_OBJECT_NOTIFIER_PARAM); // Constructing from a frame. Places the EnvironmentIter on the innermost // environment at pc. EnvironmentIter(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc MOZ_GUARD_OBJECT_NOTIFIER_PARAM); bool done() const { return si_.done(); } explicit operator bool() const { return !done(); } void operator++(int) { if (hasAnyEnvironmentObject()) env_ = &env_->as<EnvironmentObject>().enclosingEnvironment(); incrementScopeIter(); settle(); } EnvironmentIter& operator++() { operator++(1); return *this; } // If done(): JSObject& enclosingEnvironment() const; // If !done(): bool hasNonSyntacticEnvironmentObject() const; bool hasSyntacticEnvironment() const { return si_.hasSyntacticEnvironment(); } bool hasAnyEnvironmentObject() const { return hasNonSyntacticEnvironmentObject() || hasSyntacticEnvironment(); } EnvironmentObject& environment() const { MOZ_ASSERT(hasAnyEnvironmentObject()); return env_->as<EnvironmentObject>(); } Scope& scope() const { return *si_.scope(); } Scope* maybeScope() const { if (si_) return si_.scope(); return nullptr; } JSFunction& callee() const { return env_->as<CallObject>().callee(); } bool withinInitialFrame() const { return !!frame_; } AbstractFramePtr initialFrame() const { MOZ_ASSERT(withinInitialFrame()); return frame_; } AbstractFramePtr maybeInitialFrame() const { return frame_; } MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER }; // The key in MissingEnvironmentMap. For live frames, maps live frames to // their synthesized environments. For completely optimized-out environments, // maps the Scope to their synthesized environments. The env we synthesize for // Scopes are read-only, and we never use their parent links, so they don't // need to be distinct. // // That is, completely optimized out environments can't be distinguished by // frame. Note that even if the frame corresponding to the Scope is live on // the stack, it is unsound to synthesize an environment from that live // frame. In other words, the provenance of the environment chain is from // allocated closures (i.e., allocation sites) and is irrecoverable from // simple stack inspection (i.e., call sites). class MissingEnvironmentKey { friend class LiveEnvironmentVal; AbstractFramePtr frame_; Scope* scope_; public: explicit MissingEnvironmentKey(const EnvironmentIter& ei) : frame_(ei.maybeInitialFrame()), scope_(ei.maybeScope()) { } MissingEnvironmentKey(AbstractFramePtr frame, Scope* scope) : frame_(frame), scope_(scope) { } AbstractFramePtr frame() const { return frame_; } Scope* scope() const { return scope_; } void updateScope(Scope* scope) { scope_ = scope; } void updateFrame(AbstractFramePtr frame) { frame_ = frame; } // For use as hash policy. typedef MissingEnvironmentKey Lookup; static HashNumber hash(MissingEnvironmentKey sk); static bool match(MissingEnvironmentKey sk1, MissingEnvironmentKey sk2); bool operator!=(const MissingEnvironmentKey& other) const { return frame_ != other.frame_ || scope_ != other.scope_; } static void rekey(MissingEnvironmentKey& k, const MissingEnvironmentKey& newKey) { k = newKey; } }; // The value in LiveEnvironmentMap, mapped from by live environment objects. class LiveEnvironmentVal { friend class DebugEnvironments; friend class MissingEnvironmentKey; AbstractFramePtr frame_; HeapPtr<Scope*> scope_; static void staticAsserts(); public: explicit LiveEnvironmentVal(const EnvironmentIter& ei) : frame_(ei.initialFrame()), scope_(ei.maybeScope()) { } AbstractFramePtr frame() const { return frame_; } Scope* scope() const { return scope_; } void updateFrame(AbstractFramePtr frame) { frame_ = frame; } bool needsSweep(); }; /*****************************************************************************/ /* * Debug environment objects * * The debugger effectively turns every opcode into a potential direct eval. * Naively, this would require creating a EnvironmentObject for every * call/block scope and using JSOP_GETALIASEDVAR for every access. To optimize * this, the engine assumes there is no debugger and optimizes scope access * and creation accordingly. When the debugger wants to perform an unexpected * eval-in-frame (or other, similar environment-requiring operations), * fp->environmentChain is now incomplete. * * To resolve this, the debugger first calls GetDebugEnvironmentFor* to * synthesize a "debug env chain". A debug env chain is just a chain of * objects that fill in missing environments and protect the engine from * unexpected access. (The latter means that some debugger operations, like * redefining a lexical binding, can fail when a true eval would succeed.) To * do both of these things, GetDebugEnvironmentFor* creates a new proxy * DebugEnvironmentProxy to sit in front of every existing EnvironmentObject. * * GetDebugEnvironmentFor* ensures the invariant that the same * DebugEnvironmentProxy is always produced for the same underlying * environment (optimized or not!). This is maintained by some bookkeeping * information stored in DebugEnvironments. */ extern JSObject* GetDebugEnvironmentForFunction(JSContext* cx, HandleFunction fun); extern JSObject* GetDebugEnvironmentForFrame(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc); extern JSObject* GetDebugEnvironmentForGlobalLexicalEnvironment(JSContext* cx); /* Provides debugger access to a environment. */ class DebugEnvironmentProxy : public ProxyObject { /* * The enclosing environment on the dynamic environment chain. This slot is analogous * to the ENCLOSING_ENV_SLOT of a EnvironmentObject. */ static const unsigned ENCLOSING_EXTRA = 0; /* * NullValue or a dense array holding the unaliased variables of a function * frame that has been popped. */ static const unsigned SNAPSHOT_EXTRA = 1; public: static DebugEnvironmentProxy* create(JSContext* cx, EnvironmentObject& env, HandleObject enclosing); EnvironmentObject& environment() const; JSObject& enclosingEnvironment() const; /* May only be called for proxies to function call objects. */ ArrayObject* maybeSnapshot() const; void initSnapshot(ArrayObject& snapshot); // Currently, the 'declarative' environments are function, module, and // lexical environments. bool isForDeclarative() const; // Get a property by 'id', but returns sentinel values instead of throwing // on exceptional cases. bool getMaybeSentinelValue(JSContext* cx, HandleId id, MutableHandleValue vp); // Returns true iff this is a function environment with its own this-binding // (all functions except arrow functions and generator expression lambdas). bool isFunctionEnvironmentWithThis(); // Does this debug environment not have a real counterpart or was never // live (and thus does not have a synthesized EnvironmentObject or a // snapshot)? bool isOptimizedOut() const; }; /* Maintains per-compartment debug environment bookkeeping information. */ class DebugEnvironments { /* The map from (non-debug) environments to debug environments. */ ObjectWeakMap proxiedEnvs; /* * The map from live frames which have optimized-away environments to the * corresponding debug environments. */ typedef HashMap<MissingEnvironmentKey, ReadBarrieredDebugEnvironmentProxy, MissingEnvironmentKey, RuntimeAllocPolicy> MissingEnvironmentMap; MissingEnvironmentMap missingEnvs; /* * The map from environment objects of live frames to the live frame. This * map updated lazily whenever the debugger needs the information. In * between two lazy updates, liveEnvs becomes incomplete (but not invalid, * onPop* removes environments as they are popped). Thus, two consecutive * debugger lazy updates of liveEnvs need only fill in the new * environments. */ typedef GCHashMap<ReadBarriered<JSObject*>, LiveEnvironmentVal, MovableCellHasher<ReadBarriered<JSObject*>>, RuntimeAllocPolicy> LiveEnvironmentMap; LiveEnvironmentMap liveEnvs; public: explicit DebugEnvironments(JSContext* cx); ~DebugEnvironments(); private: bool init(); static DebugEnvironments* ensureCompartmentData(JSContext* cx); template <typename Environment, typename Scope> static void onPopGeneric(JSContext* cx, const EnvironmentIter& ei); public: void mark(JSTracer* trc); void sweep(JSRuntime* rt); void finish(); // If a live frame has a synthesized entry in missingEnvs, make sure it's not // collected. void markLiveFrame(JSTracer* trc, AbstractFramePtr frame); static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, EnvironmentObject& env); static bool addDebugEnvironment(JSContext* cx, Handle<EnvironmentObject*> env, Handle<DebugEnvironmentProxy*> debugEnv); static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx, const EnvironmentIter& ei); static bool addDebugEnvironment(JSContext* cx, const EnvironmentIter& ei, Handle<DebugEnvironmentProxy*> debugEnv); static bool updateLiveEnvironments(JSContext* cx); static LiveEnvironmentVal* hasLiveEnvironment(EnvironmentObject& env); static void unsetPrevUpToDateUntil(JSContext* cx, AbstractFramePtr frame); // When a frame bails out from Ion to Baseline, there might be missing // envs keyed on, and live envs containing, the old // RematerializedFrame. Forward those values to the new BaselineFrame. static void forwardLiveFrame(JSContext* cx, AbstractFramePtr from, AbstractFramePtr to); // When an environment is popped, we store a snapshot of its bindings that // live on the frame. // // This is done during frame unwinding, which cannot handle errors // gracefully. Errors result in no snapshot being set on the // DebugEnvironmentProxy. static void takeFrameSnapshot(JSContext* cx, Handle<DebugEnvironmentProxy*> debugEnv, AbstractFramePtr frame); // In debug-mode, these must be called whenever exiting a scope that might // have stack-allocated locals. static void onPopCall(JSContext* cx, AbstractFramePtr frame); static void onPopVar(JSContext* cx, const EnvironmentIter& ei); static void onPopVar(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc); static void onPopLexical(JSContext* cx, const EnvironmentIter& ei); static void onPopLexical(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc); static void onPopWith(AbstractFramePtr frame); static void onCompartmentUnsetIsDebuggee(JSCompartment* c); }; } /* namespace js */ template <> inline bool JSObject::is<js::EnvironmentObject>() const { return is<js::CallObject>() || is<js::VarEnvironmentObject>() || is<js::ModuleEnvironmentObject>() || is<js::LexicalEnvironmentObject>() || is<js::WithEnvironmentObject>() || is<js::NonSyntacticVariablesObject>() || is<js::RuntimeLexicalErrorObject>(); } template<> bool JSObject::is<js::DebugEnvironmentProxy>() const; namespace js { inline bool IsSyntacticEnvironment(JSObject* env) { if (!env->is<EnvironmentObject>()) return false; if (env->is<WithEnvironmentObject>()) return env->as<WithEnvironmentObject>().isSyntactic(); if (env->is<LexicalEnvironmentObject>()) return env->as<LexicalEnvironmentObject>().isSyntactic(); if (env->is<NonSyntacticVariablesObject>()) return false; return true; } inline bool IsExtensibleLexicalEnvironment(JSObject* env) { return env->is<LexicalEnvironmentObject>() && env->as<LexicalEnvironmentObject>().isExtensible(); } inline bool IsGlobalLexicalEnvironment(JSObject* env) { return env->is<LexicalEnvironmentObject>() && env->as<LexicalEnvironmentObject>().isGlobal(); } template <typename SpecificEnvironment> inline bool IsFrameInitialEnvironment(AbstractFramePtr frame, SpecificEnvironment& env) { // A frame's initial environment is the innermost environment // corresponding to the scope chain from frame.script()->bodyScope() to // frame.script()->outermostScope(). This environment must be on the chain // for the frame to be considered initialized. That is, it must be on the // chain for the environment chain to fully match the scope chain at the // start of execution in the frame. // // This logic must be in sync with the HAS_INITIAL_ENV logic in // InitFromBailout. // A function frame's CallObject, if present, is always the initial // environment. if (mozilla::IsSame<SpecificEnvironment, CallObject>::value) return true; // For an eval frame, the VarEnvironmentObject, if present, is always the // initial environment. if (mozilla::IsSame<SpecificEnvironment, VarEnvironmentObject>::value && frame.isEvalFrame()) { return true; } // For named lambda frames without CallObjects (i.e., no binding in the // body of the function was closed over), the LexicalEnvironmentObject // corresponding to the named lambda scope is the initial environment. if (mozilla::IsSame<SpecificEnvironment, NamedLambdaObject>::value && frame.isFunctionFrame() && frame.callee()->needsNamedLambdaEnvironment() && !frame.callee()->needsCallObject()) { LexicalScope* namedLambdaScope = frame.script()->maybeNamedLambdaScope(); return &env.template as<LexicalEnvironmentObject>().scope() == namedLambdaScope; } return false; } extern bool CreateObjectsForEnvironmentChain(JSContext* cx, AutoObjectVector& chain, HandleObject terminatingEnv, MutableHandleObject envObj); ModuleEnvironmentObject* GetModuleEnvironmentForScript(JSScript* script); MOZ_MUST_USE bool GetThisValueForDebuggerMaybeOptimizedOut(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc, MutableHandleValue res); MOZ_MUST_USE bool CheckVarNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv, HandlePropertyName name); MOZ_MUST_USE bool CheckCanDeclareGlobalBinding(JSContext* cx, Handle<GlobalObject*> global, HandlePropertyName name, bool isFunction); MOZ_MUST_USE bool CheckLexicalNameConflict(JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv, HandleObject varObj, HandlePropertyName name); MOZ_MUST_USE bool CheckGlobalDeclarationConflicts(JSContext* cx, HandleScript script, Handle<LexicalEnvironmentObject*> lexicalEnv, HandleObject varObj); MOZ_MUST_USE bool CheckEvalDeclarationConflicts(JSContext* cx, HandleScript script, HandleObject envChain, HandleObject varObj); MOZ_MUST_USE bool InitFunctionEnvironmentObjects(JSContext* cx, AbstractFramePtr frame); MOZ_MUST_USE bool PushVarEnvironmentObject(JSContext* cx, HandleScope scope, AbstractFramePtr frame); #ifdef DEBUG bool AnalyzeEntrainedVariables(JSContext* cx, HandleScript script); #endif } // namespace js namespace JS { template <> struct DeletePolicy<js::DebugEnvironments> : public js::GCManagedDeletePolicy<js::DebugEnvironments> {}; } // namespace JS #endif /* vm_EnvironmentObject_h */