// Copyright 2019 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "regexp/regexp-compiler.h" #include "regexp/regexp-macro-assembler-arch.h" #ifdef V8_INTL_SUPPORT #include "regexp/special-case.h" #endif // V8_INTL_SUPPORT #ifdef V8_INTL_SUPPORT #include "unicode/locid.h" #include "unicode/uniset.h" #include "unicode/utypes.h" #endif // V8_INTL_SUPPORT namespace v8 { namespace internal { using namespace regexp_compiler_constants; // NOLINT(build/namespaces) // ------------------------------------------------------------------- // Implementation of the Irregexp regular expression engine. // // The Irregexp regular expression engine is intended to be a complete // implementation of ECMAScript regular expressions. It generates either // bytecodes or native code. // The Irregexp regexp engine is structured in three steps. // 1) The parser generates an abstract syntax tree. See ast.cc. // 2) From the AST a node network is created. The nodes are all // subclasses of RegExpNode. The nodes represent states when // executing a regular expression. Several optimizations are // performed on the node network. // 3) From the nodes we generate either byte codes or native code // that can actually execute the regular expression (perform // the search). The code generation step is described in more // detail below. // Code generation. // // The nodes are divided into four main categories. // * Choice nodes // These represent places where the regular expression can // match in more than one way. For example on entry to an // alternation (foo|bar) or a repetition (*, +, ? or {}). // * Action nodes // These represent places where some action should be // performed. Examples include recording the current position // in the input string to a register (in order to implement // captures) or other actions on register for example in order // to implement the counters needed for {} repetitions. // * Matching nodes // These attempt to match some element part of the input string. // Examples of elements include character classes, plain strings // or back references. // * End nodes // These are used to implement the actions required on finding // a successful match or failing to find a match. // // The code generated (whether as byte codes or native code) maintains // some state as it runs. This consists of the following elements: // // * The capture registers. Used for string captures. // * Other registers. Used for counters etc. // * The current position. // * The stack of backtracking information. Used when a matching node // fails to find a match and needs to try an alternative. // // Conceptual regular expression execution model: // // There is a simple conceptual model of regular expression execution // which will be presented first. The actual code generated is a more // efficient simulation of the simple conceptual model: // // * Choice nodes are implemented as follows: // For each choice except the last { // push current position // push backtrack code location // // backtrack code location: // pop current position // } // // // * Actions nodes are generated as follows // // // push backtrack code location // // backtrack code location: // // // // * Matching nodes are generated as follows: // if input string matches at current position // update current position // // else // // // Thus it can be seen that the current position is saved and restored // by the choice nodes, whereas the registers are saved and restored by // by the action nodes that manipulate them. // // The other interesting aspect of this model is that nodes are generated // at the point where they are needed by a recursive call to Emit(). If // the node has already been code generated then the Emit() call will // generate a jump to the previously generated code instead. In order to // limit recursion it is possible for the Emit() function to put the node // on a work list for later generation and instead generate a jump. The // destination of the jump is resolved later when the code is generated. // // Actual regular expression code generation. // // Code generation is actually more complicated than the above. In order // to improve the efficiency of the generated code some optimizations are // performed // // * Choice nodes have 1-character lookahead. // A choice node looks at the following character and eliminates some of // the choices immediately based on that character. This is not yet // implemented. // * Simple greedy loops store reduced backtracking information. // A quantifier like /.*foo/m will greedily match the whole input. It will // then need to backtrack to a point where it can match "foo". The naive // implementation of this would push each character position onto the // backtracking stack, then pop them off one by one. This would use space // proportional to the length of the input string. However since the "." // can only match in one way and always has a constant length (in this case // of 1) it suffices to store the current position on the top of the stack // once. Matching now becomes merely incrementing the current position and // backtracking becomes decrementing the current position and checking the // result against the stored current position. This is faster and saves // space. // * The current state is virtualized. // This is used to defer expensive operations until it is clear that they // are needed and to generate code for a node more than once, allowing // specialized an efficient versions of the code to be created. This is // explained in the section below. // // Execution state virtualization. // // Instead of emitting code, nodes that manipulate the state can record their // manipulation in an object called the Trace. The Trace object can record a // current position offset, an optional backtrack code location on the top of // the virtualized backtrack stack and some register changes. When a node is // to be emitted it can flush the Trace or update it. Flushing the Trace // will emit code to bring the actual state into line with the virtual state. // Avoiding flushing the state can postpone some work (e.g. updates of capture // registers). Postponing work can save time when executing the regular // expression since it may be found that the work never has to be done as a // failure to match can occur. In addition it is much faster to jump to a // known backtrack code location than it is to pop an unknown backtrack // location from the stack and jump there. // // The virtual state found in the Trace affects code generation. For example // the virtual state contains the difference between the actual current // position and the virtual current position, and matching code needs to use // this offset to attempt a match in the correct location of the input // string. Therefore code generated for a non-trivial trace is specialized // to that trace. The code generator therefore has the ability to generate // code for each node several times. In order to limit the size of the // generated code there is an arbitrary limit on how many specialized sets of // code may be generated for a given node. If the limit is reached, the // trace is flushed and a generic version of the code for a node is emitted. // This is subsequently used for that node. The code emitted for non-generic // trace is not recorded in the node and so it cannot currently be reused in // the event that code generation is requested for an identical trace. void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { UNREACHABLE(); } void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { text->AddElement(TextElement::Atom(this), zone); } void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { text->AddElement(TextElement::CharClass(this), zone); } void RegExpText::AppendToText(RegExpText* text, Zone* zone) { for (int i = 0; i < elements()->length(); i++) text->AddElement(elements()->at(i), zone); } TextElement TextElement::Atom(RegExpAtom* atom) { return TextElement(ATOM, atom); } TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { return TextElement(CHAR_CLASS, char_class); } int TextElement::length() const { switch (text_type()) { case ATOM: return atom()->length(); case CHAR_CLASS: return 1; } UNREACHABLE(); } class RecursionCheck { public: explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { compiler->IncrementRecursionDepth(); } ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } private: RegExpCompiler* compiler_; }; // Attempts to compile the regexp using an Irregexp code generator. Returns // a fixed array or a null handle depending on whether it succeeded. RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, bool one_byte) : next_register_(2 * (capture_count + 1)), unicode_lookaround_stack_register_(kNoRegister), unicode_lookaround_position_register_(kNoRegister), work_list_(nullptr), recursion_depth_(0), one_byte_(one_byte), reg_exp_too_big_(false), limiting_recursion_(false), optimize_(FLAG_regexp_optimization), read_backward_(false), current_expansion_factor_(1), frequency_collator_(), isolate_(isolate), zone_(zone) { accept_ = new (zone) EndNode(EndNode::ACCEPT, zone); DCHECK_GE(RegExpMacroAssembler::kMaxRegister, next_register_ - 1); } RegExpCompiler::CompilationResult RegExpCompiler::Assemble( Isolate* isolate, RegExpMacroAssembler* macro_assembler, RegExpNode* start, int capture_count, Handle pattern) { macro_assembler_ = macro_assembler; ZoneVector work_list(zone()); work_list_ = &work_list; Label fail; macro_assembler_->PushBacktrack(&fail); Trace new_trace; start->Emit(this, &new_trace); macro_assembler_->BindJumpTarget(&fail); macro_assembler_->Fail(); while (!work_list.empty()) { RegExpNode* node = work_list.back(); work_list.pop_back(); node->set_on_work_list(false); if (!node->label()->is_bound()) node->Emit(this, &new_trace); } if (reg_exp_too_big_) { macro_assembler_->AbortedCodeGeneration(); return CompilationResult::RegExpTooBig(); } Handle code = macro_assembler_->GetCode(pattern); isolate->IncreaseTotalRegexpCodeGenerated(code); work_list_ = nullptr; return {*code, next_register_}; } bool Trace::DeferredAction::Mentions(int that) { if (action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast(this)->range(); return range.Contains(that); } else { return reg() == that; } } bool Trace::mentions_reg(int reg) { for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) return true; } return false; } bool Trace::GetStoredPosition(int reg, int* cp_offset) { DCHECK_EQ(0, *cp_offset); for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) { if (action->action_type() == ActionNode::STORE_POSITION) { *cp_offset = static_cast(action)->cp_offset(); return true; } else { return false; } } } return false; } // A (dynamically-sized) set of unsigned integers that behaves especially well // on small integers (< kFirstLimit). May do zone-allocation. class DynamicBitSet : public ZoneObject { public: V8_EXPORT_PRIVATE bool Get(unsigned value) const { if (value < kFirstLimit) { return (first_ & (1 << value)) != 0; } else if (remaining_ == nullptr) { return false; } else { return remaining_->Contains(value); } } // Destructively set a value in this set. void Set(unsigned value, Zone* zone) { if (value < kFirstLimit) { first_ |= (1 << value); } else { if (remaining_ == nullptr) remaining_ = new (zone) ZoneList(1, zone); if (remaining_->is_empty() || !remaining_->Contains(value)) remaining_->Add(value, zone); } } private: static constexpr unsigned kFirstLimit = 32; uint32_t first_ = 0; ZoneList* remaining_ = nullptr; }; int Trace::FindAffectedRegisters(DynamicBitSet* affected_registers, Zone* zone) { int max_register = RegExpCompiler::kNoRegister; for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast(action)->range(); for (int i = range.from(); i <= range.to(); i++) affected_registers->Set(i, zone); if (range.to() > max_register) max_register = range.to(); } else { affected_registers->Set(action->reg(), zone); if (action->reg() > max_register) max_register = action->reg(); } } return max_register; } void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, int max_register, const DynamicBitSet& registers_to_pop, const DynamicBitSet& registers_to_clear) { for (int reg = max_register; reg >= 0; reg--) { if (registers_to_pop.Get(reg)) { assembler->PopRegister(reg); } else if (registers_to_clear.Get(reg)) { int clear_to = reg; while (reg > 0 && registers_to_clear.Get(reg - 1)) { reg--; } assembler->ClearRegisters(reg, clear_to); } } } void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, int max_register, const DynamicBitSet& affected_registers, DynamicBitSet* registers_to_pop, DynamicBitSet* registers_to_clear, Zone* zone) { // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. const int push_limit = (assembler->stack_limit_slack() + 1) / 2; // Count pushes performed to force a stack limit check occasionally. int pushes = 0; for (int reg = 0; reg <= max_register; reg++) { if (!affected_registers.Get(reg)) { continue; } // The chronologically first deferred action in the trace // is used to infer the action needed to restore a register // to its previous state (or not, if it's safe to ignore it). enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; DeferredActionUndoType undo_action = IGNORE; int value = 0; bool absolute = false; bool clear = false; static const int kNoStore = kMinInt; int store_position = kNoStore; // This is a little tricky because we are scanning the actions in reverse // historical order (newest first). for (DeferredAction* action = actions_; action != nullptr; action = action->next()) { if (action->Mentions(reg)) { switch (action->action_type()) { case ActionNode::SET_REGISTER_FOR_LOOP: { Trace::DeferredSetRegisterForLoop* psr = static_cast(action); if (!absolute) { value += psr->value(); absolute = true; } // SET_REGISTER_FOR_LOOP is only used for newly introduced loop // counters. They can have a significant previous value if they // occur in a loop. TODO(lrn): Propagate this information, so // we can set undo_action to IGNORE if we know there is no value to // restore. undo_action = RESTORE; DCHECK_EQ(store_position, kNoStore); DCHECK(!clear); break; } case ActionNode::INCREMENT_REGISTER: if (!absolute) { value++; } DCHECK_EQ(store_position, kNoStore); DCHECK(!clear); undo_action = RESTORE; break; case ActionNode::STORE_POSITION: { Trace::DeferredCapture* pc = static_cast(action); if (!clear && store_position == kNoStore) { store_position = pc->cp_offset(); } // For captures we know that stores and clears alternate. // Other register, are never cleared, and if the occur // inside a loop, they might be assigned more than once. if (reg <= 1) { // Registers zero and one, aka "capture zero", is // always set correctly if we succeed. There is no // need to undo a setting on backtrack, because we // will set it again or fail. undo_action = IGNORE; } else { undo_action = pc->is_capture() ? CLEAR : RESTORE; } DCHECK(!absolute); DCHECK_EQ(value, 0); break; } case ActionNode::CLEAR_CAPTURES: { // Since we're scanning in reverse order, if we've already // set the position we have to ignore historically earlier // clearing operations. if (store_position == kNoStore) { clear = true; } undo_action = RESTORE; DCHECK(!absolute); DCHECK_EQ(value, 0); break; } default: UNREACHABLE(); break; } } } // Prepare for the undo-action (e.g., push if it's going to be popped). if (undo_action == RESTORE) { pushes++; RegExpMacroAssembler::StackCheckFlag stack_check = RegExpMacroAssembler::kNoStackLimitCheck; if (pushes == push_limit) { stack_check = RegExpMacroAssembler::kCheckStackLimit; pushes = 0; } assembler->PushRegister(reg, stack_check); registers_to_pop->Set(reg, zone); } else if (undo_action == CLEAR) { registers_to_clear->Set(reg, zone); } // Perform the chronologically last action (or accumulated increment) // for the register. if (store_position != kNoStore) { assembler->WriteCurrentPositionToRegister(reg, store_position); } else if (clear) { assembler->ClearRegisters(reg, reg); } else if (absolute) { assembler->SetRegister(reg, value); } else if (value != 0) { assembler->AdvanceRegister(reg, value); } } } // This is called as we come into a loop choice node and some other tricky // nodes. It normalizes the state of the code generator to ensure we can // generate generic code. void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); DCHECK(!is_trivial()); if (actions_ == nullptr && backtrack() == nullptr) { // Here we just have some deferred cp advances to fix and we are back to // a normal situation. We may also have to forget some information gained // through a quick check that was already performed. if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); // Create a new trivial state and generate the node with that. Trace new_state; successor->Emit(compiler, &new_state); return; } // Generate deferred actions here along with code to undo them again. DynamicBitSet affected_registers; if (backtrack() != nullptr) { // Here we have a concrete backtrack location. These are set up by choice // nodes and so they indicate that we have a deferred save of the current // position which we may need to emit here. assembler->PushCurrentPosition(); } int max_register = FindAffectedRegisters(&affected_registers, compiler->zone()); DynamicBitSet registers_to_pop; DynamicBitSet registers_to_clear; PerformDeferredActions(assembler, max_register, affected_registers, ®isters_to_pop, ®isters_to_clear, compiler->zone()); if (cp_offset_ != 0) { assembler->AdvanceCurrentPosition(cp_offset_); } // Create a new trivial state and generate the node with that. Label undo; assembler->PushBacktrack(&undo); if (successor->KeepRecursing(compiler)) { Trace new_state; successor->Emit(compiler, &new_state); } else { compiler->AddWork(successor); assembler->GoTo(successor->label()); } // On backtrack we need to restore state. assembler->BindJumpTarget(&undo); RestoreAffectedRegisters(assembler, max_register, registers_to_pop, registers_to_clear); if (backtrack() == nullptr) { assembler->Backtrack(); } else { assembler->PopCurrentPosition(); assembler->GoTo(backtrack()); } } void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // Omit flushing the trace. We discard the entire stack frame anyway. if (!label()->is_bound()) { // We are completely independent of the trace, since we ignore it, // so this code can be used as the generic version. assembler->Bind(label()); } // Throw away everything on the backtrack stack since the start // of the negative submatch and restore the character position. assembler->ReadCurrentPositionFromRegister(current_position_register_); assembler->ReadStackPointerFromRegister(stack_pointer_register_); if (clear_capture_count_ > 0) { // Clear any captures that might have been performed during the success // of the body of the negative look-ahead. int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; assembler->ClearRegisters(clear_capture_start_, clear_capture_end); } // Now that we have unwound the stack we find at the top of the stack the // backtrack that the BeginSubmatch node got. assembler->Backtrack(); } void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!label()->is_bound()) { assembler->Bind(label()); } switch (action_) { case ACCEPT: assembler->Succeed(); return; case BACKTRACK: assembler->GoTo(trace->backtrack()); return; case NEGATIVE_SUBMATCH_SUCCESS: // This case is handled in a different virtual method. UNREACHABLE(); } UNIMPLEMENTED(); } void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { if (guards_ == nullptr) guards_ = new (zone) ZoneList(1, zone); guards_->Add(guard, zone); } ActionNode* ActionNode::SetRegisterForLoop(int reg, int val, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(SET_REGISTER_FOR_LOOP, on_success); result->data_.u_store_register.reg = reg; result->data_.u_store_register.value = val; return result; } ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); result->data_.u_increment_register.reg = reg; return result; } ActionNode* ActionNode::StorePosition(int reg, bool is_capture, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(STORE_POSITION, on_success); result->data_.u_position_register.reg = reg; result->data_.u_position_register.is_capture = is_capture; return result; } ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); result->data_.u_clear_captures.range_from = range.from(); result->data_.u_clear_captures.range_to = range.to(); return result; } ActionNode* ActionNode::BeginSubmatch(int stack_reg, int position_reg, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); result->data_.u_submatch.stack_pointer_register = stack_reg; result->data_.u_submatch.current_position_register = position_reg; return result; } ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, int position_reg, int clear_register_count, int clear_register_from, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); result->data_.u_submatch.stack_pointer_register = stack_reg; result->data_.u_submatch.current_position_register = position_reg; result->data_.u_submatch.clear_register_count = clear_register_count; result->data_.u_submatch.clear_register_from = clear_register_from; return result; } ActionNode* ActionNode::EmptyMatchCheck(int start_register, int repetition_register, int repetition_limit, RegExpNode* on_success) { ActionNode* result = new (on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); result->data_.u_empty_match_check.start_register = start_register; result->data_.u_empty_match_check.repetition_register = repetition_register; result->data_.u_empty_match_check.repetition_limit = repetition_limit; return result; } #define DEFINE_ACCEPT(Type) \ void Type##Node::Accept(NodeVisitor* visitor) { visitor->Visit##Type(this); } FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) #undef DEFINE_ACCEPT // ------------------------------------------------------------------- // Emit code. void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, Trace* trace) { switch (guard->op()) { case Guard::LT: DCHECK(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterGE(guard->reg(), guard->value(), trace->backtrack()); break; case Guard::GEQ: DCHECK(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterLT(guard->reg(), guard->value(), trace->backtrack()); break; } } // Returns the number of characters in the equivalence class, omitting those // that cannot occur in the source string because it is Latin1. static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, bool one_byte_subject, unibrow::uchar* letters, int letter_length) { #ifdef V8_INTL_SUPPORT if (RegExpCaseFolding::IgnoreSet().contains(character)) { letters[0] = character; return 1; } bool in_special_add_set = RegExpCaseFolding::SpecialAddSet().contains(character); icu::UnicodeSet set; set.add(character); set = set.closeOver(USET_CASE_INSENSITIVE); UChar32 canon = 0; if (in_special_add_set) { canon = RegExpCaseFolding::Canonicalize(character); } int32_t range_count = set.getRangeCount(); int items = 0; for (int32_t i = 0; i < range_count; i++) { UChar32 start = set.getRangeStart(i); UChar32 end = set.getRangeEnd(i); CHECK(end - start + items <= letter_length); for (UChar32 cu = start; cu <= end; cu++) { if (one_byte_subject && cu > String::kMaxOneByteCharCode) break; if (in_special_add_set && RegExpCaseFolding::Canonicalize(cu) != canon) { continue; } letters[items++] = (unibrow::uchar)(cu); } } return items; #else int length = isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); // Unibrow returns 0 or 1 for characters where case independence is // trivial. if (length == 0) { letters[0] = character; length = 1; } if (one_byte_subject) { int new_length = 0; for (int i = 0; i < length; i++) { if (letters[i] <= String::kMaxOneByteCharCode) { letters[new_length++] = letters[i]; } } length = new_length; } return length; #endif // V8_INTL_SUPPORT } static inline bool EmitSimpleCharacter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); bool bound_checked = false; if (!preloaded) { assembler->LoadCurrentCharacter(cp_offset, on_failure, check); bound_checked = true; } assembler->CheckNotCharacter(c, on_failure); return bound_checked; } // Only emits non-letters (things that don't have case). Only used for case // independent matches. static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool one_byte = compiler->one_byte(); unibrow::uchar chars[4]; int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4); if (length < 1) { // This can't match. Must be an one-byte subject and a non-one-byte // character. We do not need to do anything since the one-byte pass // already handled this. return false; // Bounds not checked. } bool checked = false; // We handle the length > 1 case in a later pass. if (length == 1) { if (one_byte && c > String::kMaxOneByteCharCodeU) { // Can't match - see above. return false; // Bounds not checked. } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); checked = check; } macro_assembler->CheckNotCharacter(c, on_failure); } return checked; } static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, bool one_byte, uc16 c1, uc16 c2, Label* on_failure) { uc16 char_mask; if (one_byte) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } uc16 exor = c1 ^ c2; // Check whether exor has only one bit set. if (((exor - 1) & exor) == 0) { // If c1 and c2 differ only by one bit. // Ecma262UnCanonicalize always gives the highest number last. DCHECK(c2 > c1); uc16 mask = char_mask ^ exor; macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); return true; } DCHECK(c2 > c1); uc16 diff = c2 - c1; if (((diff - 1) & diff) == 0 && c1 >= diff) { // If the characters differ by 2^n but don't differ by one bit then // subtract the difference from the found character, then do the or // trick. We avoid the theoretical case where negative numbers are // involved in order to simplify code generation. uc16 mask = char_mask ^ diff; macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask, on_failure); return true; } return false; } // Only emits letters (things that have case). Only used for case independent // matches. static inline bool EmitAtomLetter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool one_byte = compiler->one_byte(); unibrow::uchar chars[4]; int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4); if (length <= 1) return false; // We may not need to check against the end of the input string // if this character lies before a character that matched. if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); } Label ok; switch (length) { case 2: { if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], chars[1], on_failure)) { } else { macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckNotCharacter(chars[1], on_failure); macro_assembler->Bind(&ok); } break; } case 4: macro_assembler->CheckCharacter(chars[3], &ok); V8_FALLTHROUGH; case 3: macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckCharacter(chars[1], &ok); macro_assembler->CheckNotCharacter(chars[2], on_failure); macro_assembler->Bind(&ok); break; default: UNREACHABLE(); } return true; } static void EmitBoundaryTest(RegExpMacroAssembler* masm, int border, Label* fall_through, Label* above_or_equal, Label* below) { if (below != fall_through) { masm->CheckCharacterLT(border, below); if (above_or_equal != fall_through) masm->GoTo(above_or_equal); } else { masm->CheckCharacterGT(border - 1, above_or_equal); } } static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first, int last, Label* fall_through, Label* in_range, Label* out_of_range) { if (in_range == fall_through) { if (first == last) { masm->CheckNotCharacter(first, out_of_range); } else { masm->CheckCharacterNotInRange(first, last, out_of_range); } } else { if (first == last) { masm->CheckCharacter(first, in_range); } else { masm->CheckCharacterInRange(first, last, in_range); } if (out_of_range != fall_through) masm->GoTo(out_of_range); } } // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. static void EmitUseLookupTable(RegExpMacroAssembler* masm, ZoneList* ranges, int start_index, int end_index, int min_char, Label* fall_through, Label* even_label, Label* odd_label) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; int base = (min_char & ~kMask); USE(base); // Assert that everything is on one kTableSize page. for (int i = start_index; i <= end_index; i++) { DCHECK_EQ(ranges->at(i) & ~kMask, base); } DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); char templ[kSize]; Label* on_bit_set; Label* on_bit_clear; int bit; if (even_label == fall_through) { on_bit_set = odd_label; on_bit_clear = even_label; bit = 1; } else { on_bit_set = even_label; on_bit_clear = odd_label; bit = 0; } for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { templ[i] = bit; } int j = 0; bit ^= 1; for (int i = start_index; i < end_index; i++) { for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { templ[j] = bit; } bit ^= 1; } for (int i = j; i < kSize; i++) { templ[i] = bit; } Factory* factory = masm->isolate()->factory(); // TODO(erikcorry): Cache these. Handle ba = factory->NewByteArray(kSize, AllocationType::kOld); for (int i = 0; i < kSize; i++) { ba->set(i, templ[i]); } masm->CheckBitInTable(ba, on_bit_set); if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); } static void CutOutRange(RegExpMacroAssembler* masm, ZoneList* ranges, int start_index, int end_index, int cut_index, Label* even_label, Label* odd_label) { bool odd = (((cut_index - start_index) & 1) == 1); Label* in_range_label = odd ? odd_label : even_label; Label dummy; EmitDoubleBoundaryTest(masm, ranges->at(cut_index), ranges->at(cut_index + 1) - 1, &dummy, in_range_label, &dummy); DCHECK(!dummy.is_linked()); // Cut out the single range by rewriting the array. This creates a new // range that is a merger of the two ranges on either side of the one we // are cutting out. The oddity of the labels is preserved. for (int j = cut_index; j > start_index; j--) { ranges->at(j) = ranges->at(j - 1); } for (int j = cut_index + 1; j < end_index; j++) { ranges->at(j) = ranges->at(j + 1); } } // Unicode case. Split the search space into kSize spaces that are handled // with recursion. static void SplitSearchSpace(ZoneList* ranges, int start_index, int end_index, int* new_start_index, int* new_end_index, int* border) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; int first = ranges->at(start_index); int last = ranges->at(end_index) - 1; *new_start_index = start_index; *border = (ranges->at(start_index) & ~kMask) + kSize; while (*new_start_index < end_index) { if (ranges->at(*new_start_index) > *border) break; (*new_start_index)++; } // new_start_index is the index of the first edge that is beyond the // current kSize space. // For very large search spaces we do a binary chop search of the non-Latin1 // space instead of just going to the end of the current kSize space. The // heuristics are complicated a little by the fact that any 128-character // encoding space can be quickly tested with a table lookup, so we don't // wish to do binary chop search at a smaller granularity than that. A // 128-character space can take up a lot of space in the ranges array if, // for example, we only want to match every second character (eg. the lower // case characters on some Unicode pages). int binary_chop_index = (end_index + start_index) / 2; // The first test ensures that we get to the code that handles the Latin1 // range with a single not-taken branch, speeding up this important // character range (even non-Latin1 charset-based text has spaces and // punctuation). if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. end_index - start_index > (*new_start_index - start_index) * 2 && last - first > kSize * 2 && binary_chop_index > *new_start_index && ranges->at(binary_chop_index) >= first + 2 * kSize) { int scan_forward_for_section_border = binary_chop_index; int new_border = (ranges->at(binary_chop_index) | kMask) + 1; while (scan_forward_for_section_border < end_index) { if (ranges->at(scan_forward_for_section_border) > new_border) { *new_start_index = scan_forward_for_section_border; *border = new_border; break; } scan_forward_for_section_border++; } } DCHECK(*new_start_index > start_index); *new_end_index = *new_start_index - 1; if (ranges->at(*new_end_index) == *border) { (*new_end_index)--; } if (*border >= ranges->at(end_index)) { *border = ranges->at(end_index); *new_start_index = end_index; // Won't be used. *new_end_index = end_index - 1; } } // Gets a series of segment boundaries representing a character class. If the // character is in the range between an even and an odd boundary (counting from // start_index) then go to even_label, otherwise go to odd_label. We already // know that the character is in the range of min_char to max_char inclusive. // Either label can be nullptr indicating backtracking. Either label can also // be equal to the fall_through label. static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList* ranges, int start_index, int end_index, uc32 min_char, uc32 max_char, Label* fall_through, Label* even_label, Label* odd_label) { DCHECK_LE(min_char, String::kMaxUtf16CodeUnit); DCHECK_LE(max_char, String::kMaxUtf16CodeUnit); int first = ranges->at(start_index); int last = ranges->at(end_index) - 1; DCHECK_LT(min_char, first); // Just need to test if the character is before or on-or-after // a particular character. if (start_index == end_index) { EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); return; } // Another almost trivial case: There is one interval in the middle that is // different from the end intervals. if (start_index + 1 == end_index) { EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label, odd_label); return; } // It's not worth using table lookup if there are very few intervals in the // character class. if (end_index - start_index <= 6) { // It is faster to test for individual characters, so we look for those // first, then try arbitrary ranges in the second round. static int kNoCutIndex = -1; int cut = kNoCutIndex; for (int i = start_index; i < end_index; i++) { if (ranges->at(i) == ranges->at(i + 1) - 1) { cut = i; break; } } if (cut == kNoCutIndex) cut = start_index; CutOutRange(masm, ranges, start_index, end_index, cut, even_label, odd_label); DCHECK_GE(end_index - start_index, 2); GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char, max_char, fall_through, even_label, odd_label); return; } // If there are a lot of intervals in the regexp, then we will use tables to // determine whether the character is inside or outside the character class. static const int kBits = RegExpMacroAssembler::kTableSizeBits; if ((max_char >> kBits) == (min_char >> kBits)) { EmitUseLookupTable(masm, ranges, start_index, end_index, min_char, fall_through, even_label, odd_label); return; } if ((min_char >> kBits) != (first >> kBits)) { masm->CheckCharacterLT(first, odd_label); GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char, fall_through, odd_label, even_label); return; } int new_start_index = 0; int new_end_index = 0; int border = 0; SplitSearchSpace(ranges, start_index, end_index, &new_start_index, &new_end_index, &border); Label handle_rest; Label* above = &handle_rest; if (border == last + 1) { // We didn't find any section that started after the limit, so everything // above the border is one of the terminal labels. above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; DCHECK(new_end_index == end_index - 1); } DCHECK_LE(start_index, new_end_index); DCHECK_LE(new_start_index, end_index); DCHECK_LT(start_index, new_start_index); DCHECK_LT(new_end_index, end_index); DCHECK(new_end_index + 1 == new_start_index || (new_end_index + 2 == new_start_index && border == ranges->at(new_end_index + 1))); DCHECK_LT(min_char, border - 1); DCHECK_LT(border, max_char); DCHECK_LT(ranges->at(new_end_index), border); DCHECK(border < ranges->at(new_start_index) || (border == ranges->at(new_start_index) && new_start_index == end_index && new_end_index == end_index - 1 && border == last + 1)); DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); masm->CheckCharacterGT(border - 1, above); Label dummy; GenerateBranches(masm, ranges, start_index, new_end_index, min_char, border - 1, &dummy, even_label, odd_label); if (handle_rest.is_linked()) { masm->Bind(&handle_rest); bool flip = (new_start_index & 1) != (start_index & 1); GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char, &dummy, flip ? odd_label : even_label, flip ? even_label : odd_label); } } static void EmitCharClass(RegExpMacroAssembler* macro_assembler, RegExpCharacterClass* cc, bool one_byte, Label* on_failure, int cp_offset, bool check_offset, bool preloaded, Zone* zone) { ZoneList* ranges = cc->ranges(zone); CharacterRange::Canonicalize(ranges); int max_char; if (one_byte) { max_char = String::kMaxOneByteCharCode; } else { max_char = String::kMaxUtf16CodeUnit; } int range_count = ranges->length(); int last_valid_range = range_count - 1; while (last_valid_range >= 0) { CharacterRange& range = ranges->at(last_valid_range); if (range.from() <= max_char) { break; } last_valid_range--; } if (last_valid_range < 0) { if (!cc->is_negated()) { macro_assembler->GoTo(on_failure); } if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } return; } if (last_valid_range == 0 && ranges->at(0).IsEverything(max_char)) { if (cc->is_negated()) { macro_assembler->GoTo(on_failure); } else { // This is a common case hit by non-anchored expressions. if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } } return; } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); } if (cc->is_standard(zone) && macro_assembler->CheckSpecialCharacterClass( cc->standard_type(), on_failure)) { return; } // A new list with ascending entries. Each entry is a code unit // where there is a boundary between code units that are part of // the class and code units that are not. Normally we insert an // entry at zero which goes to the failure label, but if there // was already one there we fall through for success on that entry. // Subsequent entries have alternating meaning (success/failure). ZoneList* range_boundaries = new (zone) ZoneList(last_valid_range, zone); bool zeroth_entry_is_failure = !cc->is_negated(); for (int i = 0; i <= last_valid_range; i++) { CharacterRange& range = ranges->at(i); if (range.from() == 0) { DCHECK_EQ(i, 0); zeroth_entry_is_failure = !zeroth_entry_is_failure; } else { range_boundaries->Add(range.from(), zone); } range_boundaries->Add(range.to() + 1, zone); } int end_index = range_boundaries->length() - 1; if (range_boundaries->at(end_index) > max_char) { end_index--; } Label fall_through; GenerateBranches(macro_assembler, range_boundaries, 0, // start_index. end_index, 0, // min_char. max_char, &fall_through, zeroth_entry_is_failure ? &fall_through : on_failure, zeroth_entry_is_failure ? on_failure : &fall_through); macro_assembler->Bind(&fall_through); } RegExpNode::~RegExpNode() = default; RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, Trace* trace) { // If we are generating a greedy loop then don't stop and don't reuse code. if (trace->stop_node() != nullptr) { return CONTINUE; } RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->is_trivial()) { if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) { // If a generic version is already scheduled to be generated or we have // recursed too deeply then just generate a jump to that code. macro_assembler->GoTo(&label_); // This will queue it up for generation of a generic version if it hasn't // already been queued. compiler->AddWork(this); return DONE; } // Generate generic version of the node and bind the label for later use. macro_assembler->Bind(&label_); return CONTINUE; } // We are being asked to make a non-generic version. Keep track of how many // non-generic versions we generate so as not to overdo it. trace_count_++; if (KeepRecursing(compiler) && compiler->optimize() && trace_count_ < kMaxCopiesCodeGenerated) { return CONTINUE; } // If we get here code has been generated for this node too many times or // recursion is too deep. Time to switch to a generic version. The code for // generic versions above can handle deep recursion properly. bool was_limiting = compiler->limiting_recursion(); compiler->set_limiting_recursion(true); trace->Flush(compiler, this); compiler->set_limiting_recursion(was_limiting); return DONE; } bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) { return !compiler->limiting_recursion() && compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion; } void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) { // Anything may follow a positive submatch success, thus we need to accept // all characters from this position onwards. bm->SetRest(offset); } else { on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); } SaveBMInfo(bm, not_at_start, offset); } void ActionNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { if (action_type_ == SET_REGISTER_FOR_LOOP) { on_success()->GetQuickCheckDetailsFromLoopEntry(details, compiler, filled_in, not_at_start); } else { on_success()->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } } void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Match the behaviour of EatsAtLeast on this node. if (assertion_type() == AT_START && not_at_start) return; on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); SaveBMInfo(bm, not_at_start, offset); } void NegativeLookaroundChoiceNode::GetQuickCheckDetails( QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { RegExpNode* node = continue_node(); return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } // Takes the left-most 1-bit and smears it out, setting all bits to its right. static inline uint32_t SmearBitsRight(uint32_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return v; } bool QuickCheckDetails::Rationalize(bool asc) { bool found_useful_op = false; uint32_t char_mask; if (asc) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } mask_ = 0; value_ = 0; int char_shift = 0; for (int i = 0; i < characters_; i++) { Position* pos = &positions_[i]; if ((pos->mask & String::kMaxOneByteCharCode) != 0) { found_useful_op = true; } mask_ |= (pos->mask & char_mask) << char_shift; value_ |= (pos->value & char_mask) << char_shift; char_shift += asc ? 8 : 16; } return found_useful_op; } int RegExpNode::EatsAtLeast(bool not_at_start) { return not_at_start ? eats_at_least_.eats_at_least_from_not_start : eats_at_least_.eats_at_least_from_possibly_start; } EatsAtLeastInfo RegExpNode::EatsAtLeastFromLoopEntry() { // SET_REGISTER_FOR_LOOP is only used to initialize loop counters, and it // implies that the following node must be a LoopChoiceNode. If we need to // set registers to constant values for other reasons, we could introduce a // new action type SET_REGISTER that doesn't imply anything about its // successor. UNREACHABLE(); } void RegExpNode::GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { // See comment in RegExpNode::EatsAtLeastFromLoopEntry. UNREACHABLE(); } EatsAtLeastInfo LoopChoiceNode::EatsAtLeastFromLoopEntry() { DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue. if (read_backward()) { // Can't do anything special for a backward loop, so return the basic values // that we got during analysis. return *eats_at_least_info(); } // Figure out how much the loop body itself eats, not including anything in // the continuation case. In general, the nodes in the loop body should report // that they eat at least the number eaten by the continuation node, since any // successful match in the loop body must also include the continuation node. // However, in some cases involving positive lookaround, the loop body under- // reports its appetite, so use saturated math here to avoid negative numbers. uint8_t loop_body_from_not_start = base::saturated_cast( loop_node_->EatsAtLeast(true) - continue_node_->EatsAtLeast(true)); uint8_t loop_body_from_possibly_start = base::saturated_cast( loop_node_->EatsAtLeast(false) - continue_node_->EatsAtLeast(true)); // Limit the number of loop iterations to avoid overflow in subsequent steps. int loop_iterations = base::saturated_cast(min_loop_iterations()); EatsAtLeastInfo result; result.eats_at_least_from_not_start = base::saturated_cast(loop_iterations * loop_body_from_not_start + continue_node_->EatsAtLeast(true)); if (loop_iterations > 0 && loop_body_from_possibly_start > 0) { // First loop iteration eats at least one, so all subsequent iterations // and the after-loop chunk are guaranteed to not be at the start. result.eats_at_least_from_possibly_start = base::saturated_cast( loop_body_from_possibly_start + (loop_iterations - 1) * loop_body_from_not_start + continue_node_->EatsAtLeast(true)); } else { // Loop body might eat nothing, so only continue node contributes. result.eats_at_least_from_possibly_start = continue_node_->EatsAtLeast(false); } return result; } bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, Trace* bounds_check_trace, Trace* trace, bool preload_has_checked_bounds, Label* on_possible_success, QuickCheckDetails* details, bool fall_through_on_failure, ChoiceNode* predecessor) { DCHECK_NOT_NULL(predecessor); if (details->characters() == 0) return false; GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); if (details->cannot_match()) return false; if (!details->Rationalize(compiler->one_byte())) return false; DCHECK(details->characters() == 1 || compiler->macro_assembler()->CanReadUnaligned()); uint32_t mask = details->mask(); uint32_t value = details->value(); RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (trace->characters_preloaded() != details->characters()) { DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); // The bounds check is performed using the minimum number of characters // any choice would eat, so if the bounds check fails, then none of the // choices can succeed, so we can just immediately backtrack, rather // than go to the next choice. The number of characters preloaded may be // less than the number used for the bounds check. int eats_at_least = predecessor->EatsAtLeast( bounds_check_trace->at_start() == Trace::FALSE_VALUE); DCHECK_GE(eats_at_least, details->characters()); assembler->LoadCurrentCharacter( trace->cp_offset(), bounds_check_trace->backtrack(), !preload_has_checked_bounds, details->characters(), eats_at_least); } bool need_mask = true; if (details->characters() == 1) { // If number of characters preloaded is 1 then we used a byte or 16 bit // load so the value is already masked down. uint32_t char_mask; if (compiler->one_byte()) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } if ((mask & char_mask) == char_mask) need_mask = false; mask &= char_mask; } else { // For 2-character preloads in one-byte mode or 1-character preloads in // two-byte mode we also use a 16 bit load with zero extend. static const uint32_t kTwoByteMask = 0xFFFF; static const uint32_t kFourByteMask = 0xFFFFFFFF; if (details->characters() == 2 && compiler->one_byte()) { if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; } else if (details->characters() == 1 && !compiler->one_byte()) { if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; } else { if (mask == kFourByteMask) need_mask = false; } } if (fall_through_on_failure) { if (need_mask) { assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); } else { assembler->CheckCharacter(value, on_possible_success); } } else { if (need_mask) { assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); } else { assembler->CheckNotCharacter(value, trace->backtrack()); } } return true; } // Here is the meat of GetQuickCheckDetails (see also the comment on the // super-class in the .h file). // // We iterate along the text object, building up for each character a // mask and value that can be used to test for a quick failure to match. // The masks and values for the positions will be combined into a single // machine word for the current character width in order to be used in // generating a quick check. void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { // Do not collect any quick check details if the text node reads backward, // since it reads in the opposite direction than we use for quick checks. if (read_backward()) return; Isolate* isolate = compiler->macro_assembler()->isolate(); DCHECK(characters_filled_in < details->characters()); int characters = details->characters(); int char_mask; if (compiler->one_byte()) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } for (int k = 0; k < elements()->length(); k++) { TextElement elm = elements()->at(k); if (elm.text_type() == TextElement::ATOM) { Vector quarks = elm.atom()->data(); for (int i = 0; i < characters && i < quarks.length(); i++) { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); uc16 c = quarks[i]; if (elm.atom()->ignore_case()) { unibrow::uchar chars[4]; int length = GetCaseIndependentLetters( isolate, c, compiler->one_byte(), chars, 4); if (length == 0) { // This can happen because all case variants are non-Latin1, but we // know the input is Latin1. details->set_cannot_match(); pos->determines_perfectly = false; return; } if (length == 1) { // This letter has no case equivalents, so it's nice and simple // and the mask-compare will determine definitely whether we have // a match at this character position. pos->mask = char_mask; pos->value = chars[0]; pos->determines_perfectly = true; } else { uint32_t common_bits = char_mask; uint32_t bits = chars[0]; for (int j = 1; j < length; j++) { uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); common_bits ^= differing_bits; bits &= common_bits; } // If length is 2 and common bits has only one zero in it then // our mask and compare instruction will determine definitely // whether we have a match at this character position. Otherwise // it can only be an approximate check. uint32_t one_zero = (common_bits | ~char_mask); if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { pos->determines_perfectly = true; } pos->mask = common_bits; pos->value = bits; } } else { // Don't ignore case. Nice simple case where the mask-compare will // determine definitely whether we have a match at this character // position. if (c > char_mask) { details->set_cannot_match(); pos->determines_perfectly = false; return; } pos->mask = char_mask; pos->value = c; pos->determines_perfectly = true; } characters_filled_in++; DCHECK(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } else { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); RegExpCharacterClass* tree = elm.char_class(); ZoneList* ranges = tree->ranges(zone()); DCHECK(!ranges->is_empty()); if (tree->is_negated()) { // A quick check uses multi-character mask and compare. There is no // useful way to incorporate a negative char class into this scheme // so we just conservatively create a mask and value that will always // succeed. pos->mask = 0; pos->value = 0; } else { int first_range = 0; while (ranges->at(first_range).from() > char_mask) { first_range++; if (first_range == ranges->length()) { details->set_cannot_match(); pos->determines_perfectly = false; return; } } CharacterRange range = ranges->at(first_range); uc16 from = range.from(); uc16 to = range.to(); if (to > char_mask) { to = char_mask; } uint32_t differing_bits = (from ^ to); // A mask and compare is only perfect if the differing bits form a // number like 00011111 with one single block of trailing 1s. if ((differing_bits & (differing_bits + 1)) == 0 && from + differing_bits == to) { pos->determines_perfectly = true; } uint32_t common_bits = ~SmearBitsRight(differing_bits); uint32_t bits = (from & common_bits); for (int i = first_range + 1; i < ranges->length(); i++) { CharacterRange range = ranges->at(i); uc16 from = range.from(); uc16 to = range.to(); if (from > char_mask) continue; if (to > char_mask) to = char_mask; // Here we are combining more ranges into the mask and compare // value. With each new range the mask becomes more sparse and // so the chances of a false positive rise. A character class // with multiple ranges is assumed never to be equivalent to a // mask and compare operation. pos->determines_perfectly = false; uint32_t new_common_bits = (from ^ to); new_common_bits = ~SmearBitsRight(new_common_bits); common_bits &= new_common_bits; bits &= new_common_bits; uint32_t differing_bits = (from & common_bits) ^ bits; common_bits ^= differing_bits; bits &= common_bits; } pos->mask = common_bits; pos->value = bits; } characters_filled_in++; DCHECK(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } DCHECK(characters_filled_in != details->characters()); if (!details->cannot_match()) { on_success()->GetQuickCheckDetails(details, compiler, characters_filled_in, true); } } void QuickCheckDetails::Clear() { for (int i = 0; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ = 0; } void QuickCheckDetails::Advance(int by, bool one_byte) { if (by >= characters_ || by < 0) { DCHECK_IMPLIES(by < 0, characters_ == 0); Clear(); return; } DCHECK_LE(characters_ - by, 4); DCHECK_LE(characters_, 4); for (int i = 0; i < characters_ - by; i++) { positions_[i] = positions_[by + i]; } for (int i = characters_ - by; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ -= by; // We could change mask_ and value_ here but we would never advance unless // they had already been used in a check and they won't be used again because // it would gain us nothing. So there's no point. } void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { DCHECK(characters_ == other->characters_); if (other->cannot_match_) { return; } if (cannot_match_) { *this = *other; return; } for (int i = from_index; i < characters_; i++) { QuickCheckDetails::Position* pos = positions(i); QuickCheckDetails::Position* other_pos = other->positions(i); if (pos->mask != other_pos->mask || pos->value != other_pos->value || !other_pos->determines_perfectly) { // Our mask-compare operation will be approximate unless we have the // exact same operation on both sides of the alternation. pos->determines_perfectly = false; } pos->mask &= other_pos->mask; pos->value &= pos->mask; other_pos->value &= pos->mask; uc16 differing_bits = (pos->value ^ other_pos->value); pos->mask &= ~differing_bits; pos->value &= pos->mask; } } class VisitMarker { public: explicit VisitMarker(NodeInfo* info) : info_(info) { DCHECK(!info->visited); info->visited = true; } ~VisitMarker() { info_->visited = false; } private: NodeInfo* info_; }; // Temporarily sets traversed_loop_initialization_node_. class LoopInitializationMarker { public: explicit LoopInitializationMarker(LoopChoiceNode* node) : node_(node) { DCHECK(!node_->traversed_loop_initialization_node_); node_->traversed_loop_initialization_node_ = true; } ~LoopInitializationMarker() { DCHECK(node_->traversed_loop_initialization_node_); node_->traversed_loop_initialization_node_ = false; } private: LoopChoiceNode* node_; DISALLOW_COPY_AND_ASSIGN(LoopInitializationMarker); }; // Temporarily decrements min_loop_iterations_. class IterationDecrementer { public: explicit IterationDecrementer(LoopChoiceNode* node) : node_(node) { DCHECK_GT(node_->min_loop_iterations_, 0); --node_->min_loop_iterations_; } ~IterationDecrementer() { ++node_->min_loop_iterations_; } private: LoopChoiceNode* node_; DISALLOW_COPY_AND_ASSIGN(IterationDecrementer); }; RegExpNode* SeqRegExpNode::FilterOneByte(int depth) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; DCHECK(!info()->visited); VisitMarker marker(info()); return FilterSuccessor(depth - 1); } RegExpNode* SeqRegExpNode::FilterSuccessor(int depth) { RegExpNode* next = on_success_->FilterOneByte(depth - 1); if (next == nullptr) return set_replacement(nullptr); on_success_ = next; return set_replacement(this); } // We need to check for the following characters: 0x39C 0x3BC 0x178. bool RangeContainsLatin1Equivalents(CharacterRange range) { // TODO(dcarney): this could be a lot more efficient. return range.Contains(0x039C) || range.Contains(0x03BC) || range.Contains(0x0178); } static bool RangesContainLatin1Equivalents(ZoneList* ranges) { for (int i = 0; i < ranges->length(); i++) { // TODO(dcarney): this could be a lot more efficient. if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; } return false; } RegExpNode* TextNode::FilterOneByte(int depth) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; DCHECK(!info()->visited); VisitMarker marker(info()); int element_count = elements()->length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()->at(i); if (elm.text_type() == TextElement::ATOM) { Vector quarks = elm.atom()->data(); for (int j = 0; j < quarks.length(); j++) { uc16 c = quarks[j]; if (elm.atom()->ignore_case()) { c = unibrow::Latin1::TryConvertToLatin1(c); } if (c > unibrow::Latin1::kMaxChar) return set_replacement(nullptr); // Replace quark in case we converted to Latin-1. uc16* writable_quarks = const_cast(quarks.begin()); writable_quarks[j] = c; } } else { DCHECK(elm.text_type() == TextElement::CHAR_CLASS); RegExpCharacterClass* cc = elm.char_class(); ZoneList* ranges = cc->ranges(zone()); CharacterRange::Canonicalize(ranges); // Now they are in order so we only need to look at the first. int range_count = ranges->length(); if (cc->is_negated()) { if (range_count != 0 && ranges->at(0).from() == 0 && ranges->at(0).to() >= String::kMaxOneByteCharCode) { // This will be handled in a later filter. if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges)) continue; return set_replacement(nullptr); } } else { if (range_count == 0 || ranges->at(0).from() > String::kMaxOneByteCharCode) { // This will be handled in a later filter. if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges)) continue; return set_replacement(nullptr); } } } } return FilterSuccessor(depth - 1); } RegExpNode* LoopChoiceNode::FilterOneByte(int depth) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; { VisitMarker marker(info()); RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1); // If we can't continue after the loop then there is no sense in doing the // loop. if (continue_replacement == nullptr) return set_replacement(nullptr); } return ChoiceNode::FilterOneByte(depth - 1); } RegExpNode* ChoiceNode::FilterOneByte(int depth) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); int choice_count = alternatives_->length(); for (int i = 0; i < choice_count; i++) { GuardedAlternative alternative = alternatives_->at(i); if (alternative.guards() != nullptr && alternative.guards()->length() != 0) { set_replacement(this); return this; } } int surviving = 0; RegExpNode* survivor = nullptr; for (int i = 0; i < choice_count; i++) { GuardedAlternative alternative = alternatives_->at(i); RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1); DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. if (replacement != nullptr) { alternatives_->at(i).set_node(replacement); surviving++; survivor = replacement; } } if (surviving < 2) return set_replacement(survivor); set_replacement(this); if (surviving == choice_count) { return this; } // Only some of the nodes survived the filtering. We need to rebuild the // alternatives list. ZoneList* new_alternatives = new (zone()) ZoneList(surviving, zone()); for (int i = 0; i < choice_count; i++) { RegExpNode* replacement = alternatives_->at(i).node()->FilterOneByte(depth - 1); if (replacement != nullptr) { alternatives_->at(i).set_node(replacement); new_alternatives->Add(alternatives_->at(i), zone()); } } alternatives_ = new_alternatives; return this; } RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = continue_node(); RegExpNode* replacement = node->FilterOneByte(depth - 1); if (replacement == nullptr) return set_replacement(nullptr); alternatives_->at(kContinueIndex).set_node(replacement); RegExpNode* neg_node = lookaround_node(); RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1); // If the negative lookahead is always going to fail then // we don't need to check it. if (neg_replacement == nullptr) return set_replacement(replacement); alternatives_->at(kLookaroundIndex).set_node(neg_replacement); return set_replacement(this); } void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { if (body_can_be_zero_length_ || info()->visited) return; not_at_start = not_at_start || this->not_at_start(); DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue. if (traversed_loop_initialization_node_ && min_loop_iterations_ > 0 && loop_node_->EatsAtLeast(not_at_start) > continue_node_->EatsAtLeast(true)) { // Loop body is guaranteed to execute at least once, and consume characters // when it does, meaning the only possible quick checks from this point // begin with the loop body. We may recursively visit this LoopChoiceNode, // but we temporarily decrease its minimum iteration counter so we know when // to check the continue case. IterationDecrementer next_iteration(this); loop_node_->GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } else { // Might not consume anything in the loop body, so treat it like a normal // ChoiceNode (and don't recursively visit this node again). VisitMarker marker(info()); ChoiceNode::GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } } void LoopChoiceNode::GetQuickCheckDetailsFromLoopEntry( QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { if (traversed_loop_initialization_node_) { // We already entered this loop once, exited via its continuation node, and // followed an outer loop's back-edge to before the loop entry point. We // could try to reset the minimum iteration count to its starting value at // this point, but that seems like more trouble than it's worth. It's safe // to keep going with the current (possibly reduced) minimum iteration // count. GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } else { // We are entering a loop via its counter initialization action, meaning we // are guaranteed to run the loop body at least some minimum number of times // before running the continuation node. Set a flag so that this node knows // (now and any times we visit it again recursively) that it was entered // from the top. LoopInitializationMarker marker(this); GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } } void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (body_can_be_zero_length_ || budget <= 0) { bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); return; } ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); SaveBMInfo(bm, not_at_start, offset); } void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { not_at_start = (not_at_start || not_at_start_); int choice_count = alternatives_->length(); DCHECK_LT(0, choice_count); alternatives_->at(0).node()->GetQuickCheckDetails( details, compiler, characters_filled_in, not_at_start); for (int i = 1; i < choice_count; i++) { QuickCheckDetails new_details(details->characters()); RegExpNode* node = alternatives_->at(i).node(); node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in, not_at_start); // Here we merge the quick match details of the two branches. details->Merge(&new_details, characters_filled_in); } } namespace { // Check for [0-9A-Z_a-z]. void EmitWordCheck(RegExpMacroAssembler* assembler, Label* word, Label* non_word, bool fall_through_on_word) { if (assembler->CheckSpecialCharacterClass( fall_through_on_word ? 'w' : 'W', fall_through_on_word ? non_word : word)) { // Optimized implementation available. return; } assembler->CheckCharacterGT('z', non_word); assembler->CheckCharacterLT('0', non_word); assembler->CheckCharacterGT('a' - 1, word); assembler->CheckCharacterLT('9' + 1, word); assembler->CheckCharacterLT('A', non_word); assembler->CheckCharacterLT('Z' + 1, word); if (fall_through_on_word) { assembler->CheckNotCharacter('_', non_word); } else { assembler->CheckCharacter('_', word); } } // Emit the code to check for a ^ in multiline mode (1-character lookbehind // that matches newline or the start of input). void EmitHat(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // We will load the previous character into the current character register. Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); // A positive (> 0) cp_offset means we've already successfully matched a // non-empty-width part of the pattern, and thus cannot be at or before the // start of the subject string. We can thus skip both at-start and // bounds-checks when loading the one-character lookbehind. const bool may_be_at_or_before_subject_string_start = new_trace.cp_offset() <= 0; Label ok; if (may_be_at_or_before_subject_string_start) { // The start of input counts as a newline in this context, so skip to ok if // we are at the start. assembler->CheckAtStart(new_trace.cp_offset(), &ok); } // If we've already checked that we are not at the start of input, it's okay // to load the previous character without bounds checks. const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start; assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, new_trace.backtrack(), can_skip_bounds_check); if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) { // Newline means \n, \r, 0x2028 or 0x2029. if (!compiler->one_byte()) { assembler->CheckCharacterAfterAnd(0x2028, 0xFFFE, &ok); } assembler->CheckCharacter('\n', &ok); assembler->CheckNotCharacter('\r', new_trace.backtrack()); } assembler->Bind(&ok); on_success->Emit(compiler, &new_trace); } } // namespace // Emit the code to handle \b and \B (word-boundary or non-word-boundary). void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Isolate* isolate = assembler->isolate(); Trace::TriBool next_is_word_character = Trace::UNKNOWN; bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); BoyerMooreLookahead* lookahead = bm_info(not_at_start); if (lookahead == nullptr) { int eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(not_at_start)); if (eats_at_least >= 1) { BoyerMooreLookahead* bm = new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start); if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } } else { if (lookahead->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); if (next_is_word_character == Trace::UNKNOWN) { Label before_non_word; Label before_word; if (trace->characters_preloaded() != 1) { assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); } // Fall through on non-word. EmitWordCheck(assembler, &before_word, &before_non_word, false); // Next character is not a word character. assembler->Bind(&before_non_word); Label ok; BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); assembler->GoTo(&ok); assembler->Bind(&before_word); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); assembler->Bind(&ok); } else if (next_is_word_character == Trace::TRUE_VALUE) { BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); } else { DCHECK(next_is_word_character == Trace::FALSE_VALUE); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); } } void AssertionNode::BacktrackIfPrevious( RegExpCompiler* compiler, Trace* trace, AssertionNode::IfPrevious backtrack_if_previous) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); Label fall_through; Label* non_word = backtrack_if_previous == kIsNonWord ? new_trace.backtrack() : &fall_through; Label* word = backtrack_if_previous == kIsNonWord ? &fall_through : new_trace.backtrack(); // A positive (> 0) cp_offset means we've already successfully matched a // non-empty-width part of the pattern, and thus cannot be at or before the // start of the subject string. We can thus skip both at-start and // bounds-checks when loading the one-character lookbehind. const bool may_be_at_or_before_subject_string_start = new_trace.cp_offset() <= 0; if (may_be_at_or_before_subject_string_start) { // The start of input counts as a non-word character, so the question is // decided if we are at the start. assembler->CheckAtStart(new_trace.cp_offset(), non_word); } // If we've already checked that we are not at the start of input, it's okay // to load the previous character without bounds checks. const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start; assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, non_word, can_skip_bounds_check); EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); assembler->Bind(&fall_through); on_success()->Emit(compiler, &new_trace); } void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { if (assertion_type_ == AT_START && not_at_start) { details->set_cannot_match(); return; } return on_success()->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); switch (assertion_type_) { case AT_END: { Label ok; assembler->CheckPosition(trace->cp_offset(), &ok); assembler->GoTo(trace->backtrack()); assembler->Bind(&ok); break; } case AT_START: { if (trace->at_start() == Trace::FALSE_VALUE) { assembler->GoTo(trace->backtrack()); return; } if (trace->at_start() == Trace::UNKNOWN) { assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack()); Trace at_start_trace = *trace; at_start_trace.set_at_start(Trace::TRUE_VALUE); on_success()->Emit(compiler, &at_start_trace); return; } } break; case AFTER_NEWLINE: EmitHat(compiler, on_success(), trace); return; case AT_BOUNDARY: case AT_NON_BOUNDARY: { EmitBoundaryCheck(compiler, trace); return; } } on_success()->Emit(compiler, trace); } static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { if (quick_check == nullptr) return false; if (offset >= quick_check->characters()) return false; return quick_check->positions(offset)->determines_perfectly; } static void UpdateBoundsCheck(int index, int* checked_up_to) { if (index > *checked_up_to) { *checked_up_to = index; } } // We call this repeatedly to generate code for each pass over the text node. // The passes are in increasing order of difficulty because we hope one // of the first passes will fail in which case we are saved the work of the // later passes. for example for the case independent regexp /%[asdfghjkl]a/ // we will check the '%' in the first pass, the case independent 'a' in the // second pass and the character class in the last pass. // // The passes are done from right to left, so for example to test for /bar/ // we will first test for an 'r' with offset 2, then an 'a' with offset 1 // and then a 'b' with offset 0. This means we can avoid the end-of-input // bounds check most of the time. In the example we only need to check for // end-of-input when loading the putative 'r'. // // A slight complication involves the fact that the first character may already // be fetched into a register by the previous node. In this case we want to // do the test for that character first. We do this in separate passes. The // 'preloaded' argument indicates that we are doing such a 'pass'. If such a // pass has been performed then subsequent passes will have true in // first_element_checked to indicate that that character does not need to be // checked again. // // In addition to all this we are passed a Trace, which can // contain an AlternativeGeneration object. In this AlternativeGeneration // object we can see details of any quick check that was already passed in // order to get to the code we are now generating. The quick check can involve // loading characters, which means we do not need to recheck the bounds // up to the limit the quick check already checked. In addition the quick // check can have involved a mask and compare operation which may simplify // or obviate the need for further checks at some character positions. void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, bool preloaded, Trace* trace, bool first_element_checked, int* checked_up_to) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Isolate* isolate = assembler->isolate(); bool one_byte = compiler->one_byte(); Label* backtrack = trace->backtrack(); QuickCheckDetails* quick_check = trace->quick_check_performed(); int element_count = elements()->length(); int backward_offset = read_backward() ? -Length() : 0; for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { TextElement elm = elements()->at(i); int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset; if (elm.text_type() == TextElement::ATOM) { if (SkipPass(pass, elm.atom()->ignore_case())) continue; Vector quarks = elm.atom()->data(); for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { if (first_element_checked && i == 0 && j == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; uc16 quark = quarks[j]; if (elm.atom()->ignore_case()) { // Everywhere else we assume that a non-Latin-1 character cannot match // a Latin-1 character. Avoid the cases where this is assumption is // invalid by using the Latin1 equivalent instead. quark = unibrow::Latin1::TryConvertToLatin1(quark); } bool needs_bounds_check = *checked_up_to < cp_offset + j || read_backward(); bool bounds_checked = false; switch (pass) { case NON_LATIN1_MATCH: DCHECK(one_byte); if (quark > String::kMaxOneByteCharCode) { assembler->GoTo(backtrack); return; } break; case NON_LETTER_CHARACTER_MATCH: bounds_checked = EmitAtomNonLetter(isolate, compiler, quark, backtrack, cp_offset + j, needs_bounds_check, preloaded); break; case SIMPLE_CHARACTER_MATCH: bounds_checked = EmitSimpleCharacter(isolate, compiler, quark, backtrack, cp_offset + j, needs_bounds_check, preloaded); break; case CASE_CHARACTER_MATCH: bounds_checked = EmitAtomLetter(isolate, compiler, quark, backtrack, cp_offset + j, needs_bounds_check, preloaded); break; default: break; } if (bounds_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); } } else { DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); if (pass == CHARACTER_CLASS_MATCH) { if (first_element_checked && i == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset())) continue; RegExpCharacterClass* cc = elm.char_class(); bool bounds_check = *checked_up_to < cp_offset || read_backward(); EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, bounds_check, preloaded, zone()); UpdateBoundsCheck(cp_offset, checked_up_to); } } } } int TextNode::Length() { TextElement elm = elements()->last(); DCHECK_LE(0, elm.cp_offset()); return elm.cp_offset() + elm.length(); } bool TextNode::SkipPass(TextEmitPassType pass, bool ignore_case) { if (ignore_case) { return pass == SIMPLE_CHARACTER_MATCH; } else { return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; } } TextNode* TextNode::CreateForCharacterRanges(Zone* zone, ZoneList* ranges, bool read_backward, RegExpNode* on_success, JSRegExp::Flags flags) { DCHECK_NOT_NULL(ranges); ZoneList* elms = new (zone) ZoneList(1, zone); elms->Add(TextElement::CharClass( new (zone) RegExpCharacterClass(zone, ranges, flags)), zone); return new (zone) TextNode(elms, read_backward, on_success); } TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead, CharacterRange trail, bool read_backward, RegExpNode* on_success, JSRegExp::Flags flags) { ZoneList* lead_ranges = CharacterRange::List(zone, lead); ZoneList* trail_ranges = CharacterRange::List(zone, trail); ZoneList* elms = new (zone) ZoneList(2, zone); elms->Add(TextElement::CharClass( new (zone) RegExpCharacterClass(zone, lead_ranges, flags)), zone); elms->Add(TextElement::CharClass( new (zone) RegExpCharacterClass(zone, trail_ranges, flags)), zone); return new (zone) TextNode(elms, read_backward, on_success); } // This generates the code to match a text node. A text node can contain // straight character sequences (possibly to be matched in a case-independent // way) and character classes. For efficiency we do not do this in a single // pass from left to right. Instead we pass over the text node several times, // emitting code for some character positions every time. See the comment on // TextEmitPass for details. void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); return; } if (compiler->one_byte()) { int dummy = 0; TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); } bool first_elt_done = false; int bound_checked_to = trace->cp_offset() - 1; bound_checked_to += trace->bound_checked_up_to(); // If a character is preloaded into the current character register then // check that now. if (trace->characters_preloaded() == 1) { for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { TextEmitPass(compiler, static_cast(pass), true, trace, false, &bound_checked_to); } first_elt_done = true; } for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { TextEmitPass(compiler, static_cast(pass), false, trace, first_elt_done, &bound_checked_to); } Trace successor_trace(*trace); // If we advance backward, we may end up at the start. successor_trace.AdvanceCurrentPositionInTrace( read_backward() ? -Length() : Length(), compiler); successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN : Trace::FALSE_VALUE); RecursionCheck rc(compiler); on_success()->Emit(compiler, &successor_trace); } void Trace::InvalidateCurrentCharacter() { characters_preloaded_ = 0; } void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { // We don't have an instruction for shifting the current character register // down or for using a shifted value for anything so lets just forget that // we preloaded any characters into it. characters_preloaded_ = 0; // Adjust the offsets of the quick check performed information. This // information is used to find out what we already determined about the // characters by means of mask and compare. quick_check_performed_.Advance(by, compiler->one_byte()); cp_offset_ += by; if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); cp_offset_ = 0; } bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); } void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) { int element_count = elements()->length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()->at(i); if (elm.text_type() == TextElement::CHAR_CLASS) { RegExpCharacterClass* cc = elm.char_class(); #ifdef V8_INTL_SUPPORT bool case_equivalents_already_added = NeedsUnicodeCaseEquivalents(cc->flags()); #else bool case_equivalents_already_added = false; #endif if (IgnoreCase(cc->flags()) && !case_equivalents_already_added) { // None of the standard character classes is different in the case // independent case and it slows us down if we don't know that. if (cc->is_standard(zone())) continue; ZoneList* ranges = cc->ranges(zone()); CharacterRange::AddCaseEquivalents(isolate, zone(), ranges, is_one_byte); } } } } int TextNode::GreedyLoopTextLength() { return Length(); } RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler) { if (read_backward()) return nullptr; if (elements()->length() != 1) return nullptr; TextElement elm = elements()->at(0); if (elm.text_type() != TextElement::CHAR_CLASS) return nullptr; RegExpCharacterClass* node = elm.char_class(); ZoneList* ranges = node->ranges(zone()); CharacterRange::Canonicalize(ranges); if (node->is_negated()) { return ranges->length() == 0 ? on_success() : nullptr; } if (ranges->length() != 1) return nullptr; uint32_t max_char; if (compiler->one_byte()) { max_char = String::kMaxOneByteCharCode; } else { max_char = String::kMaxUtf16CodeUnit; } return ranges->at(0).IsEverything(max_char) ? on_success() : nullptr; } // Finds the fixed match length of a sequence of nodes that goes from // this alternative and back to this choice node. If there are variable // length nodes or other complications in the way then return a sentinel // value indicating that a greedy loop cannot be constructed. int ChoiceNode::GreedyLoopTextLengthForAlternative( GuardedAlternative* alternative) { int length = 0; RegExpNode* node = alternative->node(); // Later we will generate code for all these text nodes using recursion // so we have to limit the max number. int recursion_depth = 0; while (node != this) { if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { return kNodeIsTooComplexForGreedyLoops; } int node_length = node->GreedyLoopTextLength(); if (node_length == kNodeIsTooComplexForGreedyLoops) { return kNodeIsTooComplexForGreedyLoops; } length += node_length; SeqRegExpNode* seq_node = static_cast(node); node = seq_node->on_success(); } return read_backward() ? -length : length; } void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { DCHECK_NULL(loop_node_); AddAlternative(alt); loop_node_ = alt.node(); } void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { DCHECK_NULL(continue_node_); AddAlternative(alt); continue_node_ = alt.node(); } void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->stop_node() == this) { // Back edge of greedy optimized loop node graph. int text_length = GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); DCHECK_NE(kNodeIsTooComplexForGreedyLoops, text_length); // Update the counter-based backtracking info on the stack. This is an // optimization for greedy loops (see below). DCHECK(trace->cp_offset() == text_length); macro_assembler->AdvanceCurrentPosition(text_length); macro_assembler->GoTo(trace->loop_label()); return; } DCHECK_NULL(trace->stop_node()); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } ChoiceNode::Emit(compiler, trace); } int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least) { int preload_characters = Min(4, eats_at_least); DCHECK_LE(preload_characters, 4); if (compiler->macro_assembler()->CanReadUnaligned()) { bool one_byte = compiler->one_byte(); if (one_byte) { // We can't preload 3 characters because there is no machine instruction // to do that. We can't just load 4 because we could be reading // beyond the end of the string, which could cause a memory fault. if (preload_characters == 3) preload_characters = 2; } else { if (preload_characters > 2) preload_characters = 2; } } else { if (preload_characters > 1) preload_characters = 1; } return preload_characters; } // This class is used when generating the alternatives in a choice node. It // records the way the alternative is being code generated. class AlternativeGeneration : public Malloced { public: AlternativeGeneration() : possible_success(), expects_preload(false), after(), quick_check_details() {} Label possible_success; bool expects_preload; Label after; QuickCheckDetails quick_check_details; }; // Creates a list of AlternativeGenerations. If the list has a reasonable // size then it is on the stack, otherwise the excess is on the heap. class AlternativeGenerationList { public: AlternativeGenerationList(int count, Zone* zone) : alt_gens_(count, zone) { for (int i = 0; i < count && i < kAFew; i++) { alt_gens_.Add(a_few_alt_gens_ + i, zone); } for (int i = kAFew; i < count; i++) { alt_gens_.Add(new AlternativeGeneration(), zone); } } ~AlternativeGenerationList() { for (int i = kAFew; i < alt_gens_.length(); i++) { delete alt_gens_[i]; alt_gens_[i] = nullptr; } } AlternativeGeneration* at(int i) { return alt_gens_[i]; } private: static const int kAFew = 10; ZoneList alt_gens_; AlternativeGeneration a_few_alt_gens_[kAFew]; }; void BoyerMoorePositionInfo::Set(int character) { SetInterval(Interval(character, character)); } namespace { ContainedInLattice AddRange(ContainedInLattice containment, const int* ranges, int ranges_length, Interval new_range) { DCHECK_EQ(1, ranges_length & 1); DCHECK_EQ(String::kMaxCodePoint + 1, ranges[ranges_length - 1]); if (containment == kLatticeUnknown) return containment; bool inside = false; int last = 0; for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { // Consider the range from last to ranges[i]. // We haven't got to the new range yet. if (ranges[i] <= new_range.from()) continue; // New range is wholly inside last-ranges[i]. Note that new_range.to() is // inclusive, but the values in ranges are not. if (last <= new_range.from() && new_range.to() < ranges[i]) { return Combine(containment, inside ? kLatticeIn : kLatticeOut); } return kLatticeUnknown; } return containment; } int BitsetFirstSetBit(BoyerMoorePositionInfo::Bitset bitset) { STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == 2 * kInt64Size * kBitsPerByte); // Slight fiddling is needed here, since the bitset is of length 128 while // CountTrailingZeros requires an integral type and std::bitset can only // convert to unsigned long long. So we handle the most- and least-significant // bits separately. { static constexpr BoyerMoorePositionInfo::Bitset mask(~uint64_t{0}); BoyerMoorePositionInfo::Bitset masked_bitset = bitset & mask; STATIC_ASSERT(kInt64Size >= sizeof(decltype(masked_bitset.to_ullong()))); uint64_t lsb = masked_bitset.to_ullong(); if (lsb != 0) return base::bits::CountTrailingZeros(lsb); } { BoyerMoorePositionInfo::Bitset masked_bitset = bitset >> 64; uint64_t msb = masked_bitset.to_ullong(); if (msb != 0) return 64 + base::bits::CountTrailingZeros(msb); } return -1; } } // namespace void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); if (interval.size() >= kMapSize) { map_count_ = kMapSize; map_.set(); return; } for (int i = interval.from(); i <= interval.to(); i++) { int mod_character = (i & kMask); if (!map_[mod_character]) { map_count_++; map_.set(mod_character); } if (map_count_ == kMapSize) return; } } void BoyerMoorePositionInfo::SetAll() { w_ = kLatticeUnknown; if (map_count_ != kMapSize) { map_count_ = kMapSize; map_.set(); } } BoyerMooreLookahead::BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone) : length_(length), compiler_(compiler) { if (compiler->one_byte()) { max_char_ = String::kMaxOneByteCharCode; } else { max_char_ = String::kMaxUtf16CodeUnit; } bitmaps_ = new (zone) ZoneList(length, zone); for (int i = 0; i < length; i++) { bitmaps_->Add(new (zone) BoyerMoorePositionInfo(), zone); } } // Find the longest range of lookahead that has the fewest number of different // characters that can occur at a given position. Since we are optimizing two // different parameters at once this is a tradeoff. bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { int biggest_points = 0; // If more than 32 characters out of 128 can occur it is unlikely that we can // be lucky enough to step forwards much of the time. const int kMaxMax = 32; for (int max_number_of_chars = 4; max_number_of_chars < kMaxMax; max_number_of_chars *= 2) { biggest_points = FindBestInterval(max_number_of_chars, biggest_points, from, to); } if (biggest_points == 0) return false; return true; } // Find the highest-points range between 0 and length_ where the character // information is not too vague. 'Too vague' means that there are more than // max_number_of_chars that can occur at this position. Calculates the number // of points as the product of width-of-the-range and // probability-of-finding-one-of-the-characters, where the probability is // calculated using the frequency distribution of the sample subject string. int BoyerMooreLookahead::FindBestInterval(int max_number_of_chars, int old_biggest_points, int* from, int* to) { int biggest_points = old_biggest_points; static const int kSize = RegExpMacroAssembler::kTableSize; for (int i = 0; i < length_;) { while (i < length_ && Count(i) > max_number_of_chars) i++; if (i == length_) break; int remembered_from = i; BoyerMoorePositionInfo::Bitset union_bitset; for (; i < length_ && Count(i) <= max_number_of_chars; i++) { union_bitset |= bitmaps_->at(i)->raw_bitset(); } int frequency = 0; // Iterate only over set bits. int j; while ((j = BitsetFirstSetBit(union_bitset)) != -1) { DCHECK(union_bitset[j]); // Sanity check. // Add 1 to the frequency to give a small per-character boost for // the cases where our sampling is not good enough and many // characters have a frequency of zero. This means the frequency // can theoretically be up to 2*kSize though we treat it mostly as // a fraction of kSize. frequency += compiler_->frequency_collator()->Frequency(j) + 1; union_bitset.reset(j); } // We use the probability of skipping times the distance we are skipping to // judge the effectiveness of this. Actually we have a cut-off: By // dividing by 2 we switch off the skipping if the probability of skipping // is less than 50%. This is because the multibyte mask-and-compare // skipping in quickcheck is more likely to do well on this case. bool in_quickcheck_range = ((i - remembered_from < 4) || (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); // Called 'probability' but it is only a rough estimate and can actually // be outside the 0-kSize range. int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; int points = (i - remembered_from) * probability; if (points > biggest_points) { *from = remembered_from; *to = i - 1; biggest_points = points; } } return biggest_points; } // Take all the characters that will not prevent a successful match if they // occur in the subject string in the range between min_lookahead and // max_lookahead (inclusive) measured from the current position. If the // character at max_lookahead offset is not one of these characters, then we // can safely skip forwards by the number of characters in the range. int BoyerMooreLookahead::GetSkipTable(int min_lookahead, int max_lookahead, Handle boolean_skip_table) { const int kSkipArrayEntry = 0; const int kDontSkipArrayEntry = 1; std::memset(boolean_skip_table->GetDataStartAddress(), kSkipArrayEntry, boolean_skip_table->length()); for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo::Bitset bitset = bitmaps_->at(i)->raw_bitset(); // Iterate only over set bits. int j; while ((j = BitsetFirstSetBit(bitset)) != -1) { DCHECK(bitset[j]); // Sanity check. boolean_skip_table->set(j, kDontSkipArrayEntry); bitset.reset(j); } } const int skip = max_lookahead + 1 - min_lookahead; return skip; } // See comment above on the implementation of GetSkipTable. void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { const int kSize = RegExpMacroAssembler::kTableSize; int min_lookahead = 0; int max_lookahead = 0; if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; // Check if we only have a single non-empty position info, and that info // contains precisely one character. bool found_single_character = false; int single_character = 0; for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo* map = bitmaps_->at(i); if (map->map_count() == 0) continue; if (found_single_character || map->map_count() > 1) { found_single_character = false; break; } DCHECK(!found_single_character); DCHECK_EQ(map->map_count(), 1); found_single_character = true; single_character = BitsetFirstSetBit(map->raw_bitset()); DCHECK_NE(single_character, -1); } int lookahead_width = max_lookahead + 1 - min_lookahead; if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { // The mask-compare can probably handle this better. return; } if (found_single_character) { Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); if (max_char_ > kSize) { masm->CheckCharacterAfterAnd(single_character, RegExpMacroAssembler::kTableMask, &cont); } else { masm->CheckCharacter(single_character, &cont); } masm->AdvanceCurrentPosition(lookahead_width); masm->GoTo(&again); masm->Bind(&cont); return; } Factory* factory = masm->isolate()->factory(); Handle boolean_skip_table = factory->NewByteArray(kSize, AllocationType::kOld); int skip_distance = GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table); DCHECK_NE(0, skip_distance); Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); masm->CheckBitInTable(boolean_skip_table, &cont); masm->AdvanceCurrentPosition(skip_distance); masm->GoTo(&again); masm->Bind(&cont); } /* Code generation for choice nodes. * * We generate quick checks that do a mask and compare to eliminate a * choice. If the quick check succeeds then it jumps to the continuation to * do slow checks and check subsequent nodes. If it fails (the common case) * it falls through to the next choice. * * Here is the desired flow graph. Nodes directly below each other imply * fallthrough. Alternatives 1 and 2 have quick checks. Alternative * 3 doesn't have a quick check so we have to call the slow check. * Nodes are marked Qn for quick checks and Sn for slow checks. The entire * regexp continuation is generated directly after the Sn node, up to the * next GoTo if we decide to reuse some already generated code. Some * nodes expect preload_characters to be preloaded into the current * character register. R nodes do this preloading. Vertices are marked * F for failures and S for success (possible success in the case of quick * nodes). L, V, < and > are used as arrow heads. * * ----------> R * | * V * Q1 -----> S1 * | S / * F| / * | F/ * | / * | R * | / * V L * Q2 -----> S2 * | S / * F| / * | F/ * | / * | R * | / * V L * S3 * | * F| * | * R * | * backtrack V * <----------Q4 * \ F | * \ |S * \ F V * \-----S4 * * For greedy loops we push the current position, then generate the code that * eats the input specially in EmitGreedyLoop. The other choice (the * continuation) is generated by the normal code in EmitChoices, and steps back * in the input to the starting position when it fails to match. The loop code * looks like this (U is the unwind code that steps back in the greedy loop). * * _____ * / \ * V | * ----------> S1 | * /| | * / |S | * F/ \_____/ * / * |<----- * | \ * V |S * Q2 ---> U----->backtrack * | F / * S| / * V F / * S2--/ */ GreedyLoopState::GreedyLoopState(bool not_at_start) { counter_backtrack_trace_.set_backtrack(&label_); if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE); } void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { #ifdef DEBUG int choice_count = alternatives_->length(); for (int i = 0; i < choice_count - 1; i++) { GuardedAlternative alternative = alternatives_->at(i); ZoneList* guards = alternative.guards(); int guard_count = (guards == nullptr) ? 0 : guards->length(); for (int j = 0; j < guard_count; j++) { DCHECK(!trace->mentions_reg(guards->at(j)->reg())); } } #endif } void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, PreloadState* state) { if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) { // Save some time by looking at most one machine word ahead. state->eats_at_least_ = EatsAtLeast(current_trace->at_start() == Trace::FALSE_VALUE); } state->preload_characters_ = CalculatePreloadCharacters(compiler, state->eats_at_least_); state->preload_is_current_ = (current_trace->characters_preloaded() == state->preload_characters_); state->preload_has_checked_bounds_ = state->preload_is_current_; } void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { int choice_count = alternatives_->length(); if (choice_count == 1 && alternatives_->at(0).guards() == nullptr) { alternatives_->at(0).node()->Emit(compiler, trace); return; } AssertGuardsMentionRegisters(trace); LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for // other choice nodes we only flush if we are out of code size budget. if (trace->flush_budget() == 0 && trace->actions() != nullptr) { trace->Flush(compiler, this); return; } RecursionCheck rc(compiler); PreloadState preload; preload.init(); GreedyLoopState greedy_loop_state(not_at_start()); int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); AlternativeGenerationList alt_gens(choice_count, zone()); if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload, &greedy_loop_state, text_length); } else { // TODO(erikcorry): Delete this. We don't need this label, but it makes us // match the traces produced pre-cleanup. Label second_choice; compiler->macro_assembler()->Bind(&second_choice); preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); EmitChoices(compiler, &alt_gens, 0, trace, &preload); } // At this point we need to generate slow checks for the alternatives where // the quick check was inlined. We can recognize these because the associated // label was bound. int new_flush_budget = trace->flush_budget() / choice_count; for (int i = 0; i < choice_count; i++) { AlternativeGeneration* alt_gen = alt_gens.at(i); Trace new_trace(*trace); // If there are actions to be flushed we have to limit how many times // they are flushed. Take the budget of the parent trace and distribute // it fairly amongst the children. if (new_trace.actions() != nullptr) { new_trace.set_flush_budget(new_flush_budget); } bool next_expects_preload = i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->at(i), alt_gen, preload.preload_characters_, next_expects_preload); } } Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, AlternativeGenerationList* alt_gens, PreloadState* preload, GreedyLoopState* greedy_loop_state, int text_length) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); // Here we have special handling for greedy loops containing only text nodes // and other simple nodes. These are handled by pushing the current // position on the stack and then incrementing the current position each // time around the switch. On backtrack we decrement the current position // and check it against the pushed value. This avoids pushing backtrack // information for each iteration of the loop, which could take up a lot of // space. DCHECK(trace->stop_node() == nullptr); macro_assembler->PushCurrentPosition(); Label greedy_match_failed; Trace greedy_match_trace; if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE); greedy_match_trace.set_backtrack(&greedy_match_failed); Label loop_label; macro_assembler->Bind(&loop_label); greedy_match_trace.set_stop_node(this); greedy_match_trace.set_loop_label(&loop_label); alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); macro_assembler->Bind(&greedy_match_failed); Label second_choice; // For use in greedy matches. macro_assembler->Bind(&second_choice); Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); EmitChoices(compiler, alt_gens, 1, new_trace, preload); macro_assembler->Bind(greedy_loop_state->label()); // If we have unwound to the bottom then backtrack. macro_assembler->CheckGreedyLoop(trace->backtrack()); // Otherwise try the second priority at an earlier position. macro_assembler->AdvanceCurrentPosition(-text_length); macro_assembler->GoTo(&second_choice); return new_trace; } int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace) { int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; if (alternatives_->length() != 2) return eats_at_least; GuardedAlternative alt1 = alternatives_->at(1); if (alt1.guards() != nullptr && alt1.guards()->length() != 0) { return eats_at_least; } RegExpNode* eats_anything_node = alt1.node(); if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) { return eats_at_least; } // Really we should be creating a new trace when we execute this function, // but there is no need, because the code it generates cannot backtrack, and // we always arrive here with a trivial trace (since it's the entry to a // loop. That also implies that there are no preloaded characters, which is // good, because it means we won't be violating any assumptions by // overwriting those characters with new load instructions. DCHECK(trace->is_trivial()); RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); Isolate* isolate = macro_assembler->isolate(); // At this point we know that we are at a non-greedy loop that will eat // any character one at a time. Any non-anchored regexp has such a // loop prepended to it in order to find where it starts. We look for // a pattern of the form ...abc... where we can look 6 characters ahead // and step forwards 3 if the character is not one of abc. Abc need // not be atoms, they can be any reasonably limited character class or // small alternation. BoyerMooreLookahead* bm = bm_info(false); if (bm == nullptr) { eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(false)); if (eats_at_least >= 1) { bm = new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); GuardedAlternative alt0 = alternatives_->at(0); alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false); } } if (bm != nullptr) { bm->EmitSkipInstructions(macro_assembler); } return eats_at_least; } void ChoiceNode::EmitChoices(RegExpCompiler* compiler, AlternativeGenerationList* alt_gens, int first_choice, Trace* trace, PreloadState* preload) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); SetUpPreLoad(compiler, trace, preload); // For now we just call all choices one after the other. The idea ultimately // is to use the Dispatch table to try only the relevant ones. int choice_count = alternatives_->length(); int new_flush_budget = trace->flush_budget() / choice_count; for (int i = first_choice; i < choice_count; i++) { bool is_last = i == choice_count - 1; bool fall_through_on_failure = !is_last; GuardedAlternative alternative = alternatives_->at(i); AlternativeGeneration* alt_gen = alt_gens->at(i); alt_gen->quick_check_details.set_characters(preload->preload_characters_); ZoneList* guards = alternative.guards(); int guard_count = (guards == nullptr) ? 0 : guards->length(); Trace new_trace(*trace); new_trace.set_characters_preloaded( preload->preload_is_current_ ? preload->preload_characters_ : 0); if (preload->preload_has_checked_bounds_) { new_trace.set_bound_checked_up_to(preload->preload_characters_); } new_trace.quick_check_performed()->Clear(); if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); if (!is_last) { new_trace.set_backtrack(&alt_gen->after); } alt_gen->expects_preload = preload->preload_is_current_; bool generate_full_check_inline = false; if (compiler->optimize() && try_to_emit_quick_check_for_alternative(i == 0) && alternative.node()->EmitQuickCheck( compiler, trace, &new_trace, preload->preload_has_checked_bounds_, &alt_gen->possible_success, &alt_gen->quick_check_details, fall_through_on_failure, this)) { // Quick check was generated for this choice. preload->preload_is_current_ = true; preload->preload_has_checked_bounds_ = true; // If we generated the quick check to fall through on possible success, // we now need to generate the full check inline. if (!fall_through_on_failure) { macro_assembler->Bind(&alt_gen->possible_success); new_trace.set_quick_check_performed(&alt_gen->quick_check_details); new_trace.set_characters_preloaded(preload->preload_characters_); new_trace.set_bound_checked_up_to(preload->preload_characters_); generate_full_check_inline = true; } } else if (alt_gen->quick_check_details.cannot_match()) { if (!fall_through_on_failure) { macro_assembler->GoTo(trace->backtrack()); } continue; } else { // No quick check was generated. Put the full code here. // If this is not the first choice then there could be slow checks from // previous cases that go here when they fail. There's no reason to // insist that they preload characters since the slow check we are about // to generate probably can't use it. if (i != first_choice) { alt_gen->expects_preload = false; new_trace.InvalidateCurrentCharacter(); } generate_full_check_inline = true; } if (generate_full_check_inline) { if (new_trace.actions() != nullptr) { new_trace.set_flush_budget(new_flush_budget); } for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &new_trace); } alternative.node()->Emit(compiler, &new_trace); preload->preload_is_current_ = false; } macro_assembler->Bind(&alt_gen->after); } } void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, GuardedAlternative alternative, AlternativeGeneration* alt_gen, int preload_characters, bool next_expects_preload) { if (!alt_gen->possible_success.is_linked()) return; RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); macro_assembler->Bind(&alt_gen->possible_success); Trace out_of_line_trace(*trace); out_of_line_trace.set_characters_preloaded(preload_characters); out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); ZoneList* guards = alternative.guards(); int guard_count = (guards == nullptr) ? 0 : guards->length(); if (next_expects_preload) { Label reload_current_char; out_of_line_trace.set_backtrack(&reload_current_char); for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); macro_assembler->Bind(&reload_current_char); // Reload the current character, since the next quick check expects that. // We don't need to check bounds here because we only get into this // code through a quick check which already did the checked load. macro_assembler->LoadCurrentCharacter(trace->cp_offset(), nullptr, false, preload_characters); macro_assembler->GoTo(&(alt_gen->after)); } else { out_of_line_trace.set_backtrack(&(alt_gen->after)); for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); } } void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); RecursionCheck rc(compiler); switch (action_type_) { case STORE_POSITION: { Trace::DeferredCapture new_capture(data_.u_position_register.reg, data_.u_position_register.is_capture, trace); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case INCREMENT_REGISTER: { Trace::DeferredIncrementRegister new_increment( data_.u_increment_register.reg); Trace new_trace = *trace; new_trace.add_action(&new_increment); on_success()->Emit(compiler, &new_trace); break; } case SET_REGISTER_FOR_LOOP: { Trace::DeferredSetRegisterForLoop new_set(data_.u_store_register.reg, data_.u_store_register.value); Trace new_trace = *trace; new_trace.add_action(&new_set); on_success()->Emit(compiler, &new_trace); break; } case CLEAR_CAPTURES: { Trace::DeferredClearCaptures new_capture(Interval( data_.u_clear_captures.range_from, data_.u_clear_captures.range_to)); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case BEGIN_SUBMATCH: if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { assembler->WriteCurrentPositionToRegister( data_.u_submatch.current_position_register, 0); assembler->WriteStackPointerToRegister( data_.u_submatch.stack_pointer_register); on_success()->Emit(compiler, trace); } break; case EMPTY_MATCH_CHECK: { int start_pos_reg = data_.u_empty_match_check.start_register; int stored_pos = 0; int rep_reg = data_.u_empty_match_check.repetition_register; bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { // If we know we haven't advanced and there is no minimum we // can just backtrack immediately. assembler->GoTo(trace->backtrack()); } else if (know_dist && stored_pos < trace->cp_offset()) { // If we know we've advanced we can generate the continuation // immediately. on_success()->Emit(compiler, trace); } else if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { Label skip_empty_check; // If we have a minimum number of repetitions we check the current // number first and skip the empty check if it's not enough. if (has_minimum) { int limit = data_.u_empty_match_check.repetition_limit; assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); } // If the match is empty we bail out, otherwise we fall through // to the on-success continuation. assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, trace->backtrack()); assembler->Bind(&skip_empty_check); on_success()->Emit(compiler, trace); } break; } case POSITIVE_SUBMATCH_SUCCESS: { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } assembler->ReadCurrentPositionFromRegister( data_.u_submatch.current_position_register); assembler->ReadStackPointerFromRegister( data_.u_submatch.stack_pointer_register); int clear_register_count = data_.u_submatch.clear_register_count; if (clear_register_count == 0) { on_success()->Emit(compiler, trace); return; } int clear_registers_from = data_.u_submatch.clear_register_from; Label clear_registers_backtrack; Trace new_trace = *trace; new_trace.set_backtrack(&clear_registers_backtrack); on_success()->Emit(compiler, &new_trace); assembler->Bind(&clear_registers_backtrack); int clear_registers_to = clear_registers_from + clear_register_count - 1; assembler->ClearRegisters(clear_registers_from, clear_registers_to); DCHECK(trace->backtrack() == nullptr); assembler->Backtrack(); return; } default: UNREACHABLE(); } } void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); RecursionCheck rc(compiler); DCHECK_EQ(start_reg_ + 1, end_reg_); if (IgnoreCase(flags_)) { assembler->CheckNotBackReferenceIgnoreCase(start_reg_, read_backward(), trace->backtrack()); } else { assembler->CheckNotBackReference(start_reg_, read_backward(), trace->backtrack()); } // We are going to advance backward, so we may end up at the start. if (read_backward()) trace->set_at_start(Trace::UNKNOWN); // Check that the back reference does not end inside a surrogate pair. if (IsUnicode(flags_) && !compiler->one_byte()) { assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack()); } on_success()->Emit(compiler, trace); } void TextNode::CalculateOffsets() { int element_count = elements()->length(); // Set up the offsets of the elements relative to the start. This is a fixed // quantity since a TextNode can only contain fixed-width things. int cp_offset = 0; for (int i = 0; i < element_count; i++) { TextElement& elm = elements()->at(i); elm.set_cp_offset(cp_offset); cp_offset += elm.length(); } } namespace { // Assertion propagation moves information about assertions such as // \b to the affected nodes. For instance, in /.\b./ information must // be propagated to the first '.' that whatever follows needs to know // if it matched a word or a non-word, and to the second '.' that it // has to check if it succeeds a word or non-word. In this case the // result will be something like: // // +-------+ +------------+ // | . | | . | // +-------+ ---> +------------+ // | word? | | check word | // +-------+ +------------+ class AssertionPropagator : public AllStatic { public: static void VisitText(TextNode* that) {} static void VisitAction(ActionNode* that) { // If the next node is interested in what it follows then this node // has to be interested too so it can pass the information on. that->info()->AddFromFollowing(that->on_success()->info()); } static void VisitChoice(ChoiceNode* that, int i) { // Anything the following nodes need to know has to be known by // this node also, so it can pass it on. that->info()->AddFromFollowing(that->alternatives()->at(i).node()->info()); } static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) { that->info()->AddFromFollowing(that->continue_node()->info()); } static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) { that->info()->AddFromFollowing(that->loop_node()->info()); } static void VisitNegativeLookaroundChoiceLookaroundNode( NegativeLookaroundChoiceNode* that) { VisitChoice(that, NegativeLookaroundChoiceNode::kLookaroundIndex); } static void VisitNegativeLookaroundChoiceContinueNode( NegativeLookaroundChoiceNode* that) { VisitChoice(that, NegativeLookaroundChoiceNode::kContinueIndex); } static void VisitBackReference(BackReferenceNode* that) {} static void VisitAssertion(AssertionNode* that) {} }; // Propagates information about the minimum size of successful matches from // successor nodes to their predecessors. Note that all eats_at_least values // are initialized to zero before analysis. class EatsAtLeastPropagator : public AllStatic { public: static void VisitText(TextNode* that) { // The eats_at_least value is not used if reading backward. if (!that->read_backward()) { // We are not at the start after this node, and thus we can use the // successor's eats_at_least_from_not_start value. uint8_t eats_at_least = base::saturated_cast( that->Length() + that->on_success() ->eats_at_least_info() ->eats_at_least_from_not_start); that->set_eats_at_least_info(EatsAtLeastInfo(eats_at_least)); } } static void VisitAction(ActionNode* that) { // POSITIVE_SUBMATCH_SUCCESS rewinds input, so we must not consider // successor nodes for eats_at_least. SET_REGISTER_FOR_LOOP indicates a loop // entry point, which means the loop body will run at least the minimum // number of times before the continuation case can run. Otherwise the // current node eats at least as much as its successor. switch (that->action_type()) { case ActionNode::POSITIVE_SUBMATCH_SUCCESS: break; // Was already initialized to zero. case ActionNode::SET_REGISTER_FOR_LOOP: that->set_eats_at_least_info( that->on_success()->EatsAtLeastFromLoopEntry()); break; default: that->set_eats_at_least_info(*that->on_success()->eats_at_least_info()); break; } } static void VisitChoice(ChoiceNode* that, int i) { // The minimum possible match from a choice node is the minimum of its // successors. EatsAtLeastInfo eats_at_least = i == 0 ? EatsAtLeastInfo(UINT8_MAX) : *that->eats_at_least_info(); eats_at_least.SetMin( *that->alternatives()->at(i).node()->eats_at_least_info()); that->set_eats_at_least_info(eats_at_least); } static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) { that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info()); } static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) {} static void VisitNegativeLookaroundChoiceLookaroundNode( NegativeLookaroundChoiceNode* that) {} static void VisitNegativeLookaroundChoiceContinueNode( NegativeLookaroundChoiceNode* that) { that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info()); } static void VisitBackReference(BackReferenceNode* that) { if (!that->read_backward()) { that->set_eats_at_least_info(*that->on_success()->eats_at_least_info()); } } static void VisitAssertion(AssertionNode* that) { EatsAtLeastInfo eats_at_least = *that->on_success()->eats_at_least_info(); if (that->assertion_type() == AssertionNode::AT_START) { // If we know we are not at the start and we are asked "how many // characters will you match if you succeed?" then we can answer anything // since false implies false. So let's just set the max answer // (UINT8_MAX) since that won't prevent us from preloading a lot of // characters for the other branches in the node graph. eats_at_least.eats_at_least_from_not_start = UINT8_MAX; } that->set_eats_at_least_info(eats_at_least); } }; } // namespace // ------------------------------------------------------------------- // Analysis // Iterates the node graph and provides the opportunity for propagators to set // values that depend on successor nodes. template class Analysis : public NodeVisitor { public: Analysis(Isolate* isolate, bool is_one_byte) : isolate_(isolate), is_one_byte_(is_one_byte), error_(RegExpError::kNone) {} void EnsureAnalyzed(RegExpNode* that) { StackLimitCheck check(isolate()); if (check.HasOverflowed()) { if (FLAG_correctness_fuzzer_suppressions) { FATAL("Analysis: Aborting on stack overflow"); } fail(RegExpError::kAnalysisStackOverflow); return; } if (that->info()->been_analyzed || that->info()->being_analyzed) return; that->info()->being_analyzed = true; that->Accept(this); that->info()->being_analyzed = false; that->info()->been_analyzed = true; } bool has_failed() { return error_ != RegExpError::kNone; } RegExpError error() { DCHECK(error_ != RegExpError::kNone); return error_; } void fail(RegExpError error) { error_ = error; } Isolate* isolate() const { return isolate_; } void VisitEnd(EndNode* that) override { // nothing to do } // Used to call the given static function on each propagator / variadic template // argument. #define STATIC_FOR_EACH(expr) \ do { \ int dummy[] = {((expr), 0)...}; \ USE(dummy); \ } while (false) void VisitText(TextNode* that) override { that->MakeCaseIndependent(isolate(), is_one_byte_); EnsureAnalyzed(that->on_success()); if (has_failed()) return; that->CalculateOffsets(); STATIC_FOR_EACH(Propagators::VisitText(that)); } void VisitAction(ActionNode* that) override { EnsureAnalyzed(that->on_success()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitAction(that)); } void VisitChoice(ChoiceNode* that) override { for (int i = 0; i < that->alternatives()->length(); i++) { EnsureAnalyzed(that->alternatives()->at(i).node()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitChoice(that, i)); } } void VisitLoopChoice(LoopChoiceNode* that) override { DCHECK_EQ(that->alternatives()->length(), 2); // Just loop and continue. // First propagate all information from the continuation node. EnsureAnalyzed(that->continue_node()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitLoopChoiceContinueNode(that)); // Check the loop last since it may need the value of this node // to get a correct result. EnsureAnalyzed(that->loop_node()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitLoopChoiceLoopNode(that)); } void VisitNegativeLookaroundChoice( NegativeLookaroundChoiceNode* that) override { DCHECK_EQ(that->alternatives()->length(), 2); // Lookaround and continue. EnsureAnalyzed(that->lookaround_node()); if (has_failed()) return; STATIC_FOR_EACH( Propagators::VisitNegativeLookaroundChoiceLookaroundNode(that)); EnsureAnalyzed(that->continue_node()); if (has_failed()) return; STATIC_FOR_EACH( Propagators::VisitNegativeLookaroundChoiceContinueNode(that)); } void VisitBackReference(BackReferenceNode* that) override { EnsureAnalyzed(that->on_success()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitBackReference(that)); } void VisitAssertion(AssertionNode* that) override { EnsureAnalyzed(that->on_success()); if (has_failed()) return; STATIC_FOR_EACH(Propagators::VisitAssertion(that)); } #undef STATIC_FOR_EACH private: Isolate* isolate_; bool is_one_byte_; RegExpError error_; DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); }; RegExpError AnalyzeRegExp(Isolate* isolate, bool is_one_byte, RegExpNode* node) { Analysis analysis(isolate, is_one_byte); DCHECK_EQ(node->info()->been_analyzed, false); analysis.EnsureAnalyzed(node); DCHECK_IMPLIES(analysis.has_failed(), analysis.error() != RegExpError::kNone); return analysis.has_failed() ? analysis.error() : RegExpError::kNone; } void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Working out the set of characters that a backreference can match is too // hard, so we just say that any character can match. bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); } STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == RegExpMacroAssembler::kTableSize); void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { ZoneList* alts = alternatives(); budget = (budget - 1) / alts->length(); for (int i = 0; i < alts->length(); i++) { GuardedAlternative& alt = alts->at(i); if (alt.guards() != nullptr && alt.guards()->length() != 0) { bm->SetRest(offset); // Give up trying to fill in info. SaveBMInfo(bm, not_at_start, offset); return; } alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start); } SaveBMInfo(bm, not_at_start, offset); } void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (initial_offset >= bm->length()) return; int offset = initial_offset; int max_char = bm->max_char(); for (int i = 0; i < elements()->length(); i++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } TextElement text = elements()->at(i); if (text.text_type() == TextElement::ATOM) { RegExpAtom* atom = text.atom(); for (int j = 0; j < atom->length(); j++, offset++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } uc16 character = atom->data()[j]; if (IgnoreCase(atom->flags())) { unibrow::uchar chars[4]; int length = GetCaseIndependentLetters( isolate, character, bm->max_char() == String::kMaxOneByteCharCode, chars, 4); for (int j = 0; j < length; j++) { bm->Set(offset, chars[j]); } } else { if (character <= max_char) bm->Set(offset, character); } } } else { DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); RegExpCharacterClass* char_class = text.char_class(); ZoneList* ranges = char_class->ranges(zone()); if (char_class->is_negated()) { bm->SetAll(offset); } else { for (int k = 0; k < ranges->length(); k++) { CharacterRange& range = ranges->at(k); if (range.from() > max_char) continue; int to = Min(max_char, static_cast(range.to())); bm->SetInterval(offset, Interval(range.from(), to)); } } offset++; } } if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, true); // Not at start after a text node. if (initial_offset == 0) set_bm_info(not_at_start, bm); } // static RegExpNode* RegExpCompiler::OptionallyStepBackToLeadSurrogate( RegExpCompiler* compiler, RegExpNode* on_success, JSRegExp::Flags flags) { DCHECK(!compiler->read_backward()); Zone* zone = compiler->zone(); ZoneList* lead_surrogates = CharacterRange::List( zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd)); ZoneList* trail_surrogates = CharacterRange::List( zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd)); ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone); int stack_register = compiler->UnicodeLookaroundStackRegister(); int position_register = compiler->UnicodeLookaroundPositionRegister(); RegExpNode* step_back = TextNode::CreateForCharacterRanges( zone, lead_surrogates, true, on_success, flags); RegExpLookaround::Builder builder(true, step_back, stack_register, position_register); RegExpNode* match_trail = TextNode::CreateForCharacterRanges( zone, trail_surrogates, false, builder.on_match_success(), flags); optional_step_back->AddAlternative( GuardedAlternative(builder.ForMatch(match_trail))); optional_step_back->AddAlternative(GuardedAlternative(on_success)); return optional_step_back; } } // namespace internal } // namespace v8