/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jspropertytree.h"

#include "mozilla/DebugOnly.h"

#include "jscntxt.h"
#include "jsgc.h"
#include "jstypes.h"

#include "vm/Shape.h"

#include "vm/NativeObject-inl.h"
#include "vm/Shape-inl.h"

using namespace js;
using namespace js::gc;

using mozilla::DebugOnly;

inline HashNumber
ShapeHasher::hash(const Lookup& l)
{
    return l.hash();
}

inline bool
ShapeHasher::match(const Key k, const Lookup& l)
{
    return k->matches(l);
}

static KidsHash*
HashChildren(Shape* kid1, Shape* kid2)
{
    KidsHash* hash = js_new<KidsHash>();
    if (!hash || !hash->init(2)) {
        js_delete(hash);
        return nullptr;
    }

    hash->putNewInfallible(StackShape(kid1), kid1);
    hash->putNewInfallible(StackShape(kid2), kid2);
    return hash;
}

bool
PropertyTree::insertChild(ExclusiveContext* cx, Shape* parent, Shape* child)
{
    MOZ_ASSERT(!parent->inDictionary());
    MOZ_ASSERT(!child->parent);
    MOZ_ASSERT(!child->inDictionary());
    MOZ_ASSERT(child->zone() == parent->zone());
    MOZ_ASSERT(cx->zone() == zone_);

    KidsPointer* kidp = &parent->kids;

    if (kidp->isNull()) {
        child->setParent(parent);
        kidp->setShape(child);
        return true;
    }

    if (kidp->isShape()) {
        Shape* shape = kidp->toShape();
        MOZ_ASSERT(shape != child);
        MOZ_ASSERT(!shape->matches(child));

        KidsHash* hash = HashChildren(shape, child);
        if (!hash) {
            ReportOutOfMemory(cx);
            return false;
        }
        kidp->setHash(hash);
        child->setParent(parent);
        return true;
    }

    if (!kidp->toHash()->putNew(StackShape(child), child)) {
        ReportOutOfMemory(cx);
        return false;
    }

    child->setParent(parent);
    return true;
}

void
Shape::removeChild(Shape* child)
{
    MOZ_ASSERT(!child->inDictionary());
    MOZ_ASSERT(child->parent == this);

    KidsPointer* kidp = &kids;

    if (kidp->isShape()) {
        MOZ_ASSERT(kidp->toShape() == child);
        kidp->setNull();
        child->parent = nullptr;
        return;
    }

    KidsHash* hash = kidp->toHash();
    MOZ_ASSERT(hash->count() >= 2);      /* otherwise kidp->isShape() should be true */

#ifdef DEBUG
    size_t oldCount = hash->count();
#endif

    hash->remove(StackShape(child));
    child->parent = nullptr;

    MOZ_ASSERT(hash->count() == oldCount - 1);

    if (hash->count() == 1) {
        /* Convert from HASH form back to SHAPE form. */
        KidsHash::Range r = hash->all();
        Shape* otherChild = r.front();
        MOZ_ASSERT((r.popFront(), r.empty()));    /* No more elements! */
        kidp->setShape(otherChild);
        js_delete(hash);
    }
}

Shape*
PropertyTree::getChild(ExclusiveContext* cx, Shape* parentArg, Handle<StackShape> child)
{
    RootedShape parent(cx, parentArg);
    MOZ_ASSERT(parent);

    Shape* existingShape = nullptr;

    /*
     * The property tree has extremely low fan-out below its root in
     * popular embeddings with real-world workloads. Patterns such as
     * defining closures that capture a constructor's environment as
     * getters or setters on the new object that is passed in as
     * |this| can significantly increase fan-out below the property
     * tree root -- see bug 335700 for details.
     */
    KidsPointer* kidp = &parent->kids;
    if (kidp->isShape()) {
        Shape* kid = kidp->toShape();
        if (kid->matches(child))
            existingShape = kid;
    } else if (kidp->isHash()) {
        if (KidsHash::Ptr p = kidp->toHash()->lookup(child))
            existingShape = *p;
    } else {
        /* If kidp->isNull(), we always insert. */
    }

    if (existingShape) {
        JS::Zone* zone = existingShape->zone();
        if (zone->needsIncrementalBarrier()) {
            /*
             * We need a read barrier for the shape tree, since these are weak
             * pointers.
             */
            Shape* tmp = existingShape;
            TraceManuallyBarrieredEdge(zone->barrierTracer(), &tmp, "read barrier");
            MOZ_ASSERT(tmp == existingShape);
        } else if (zone->isGCSweeping() && !existingShape->isMarked() &&
                   !existingShape->arena()->allocatedDuringIncremental)
        {
            /*
             * The shape we've found is unreachable and due to be finalized, so
             * remove our weak reference to it and don't use it.
             */
            MOZ_ASSERT(parent->isMarked());
            parent->removeChild(existingShape);
            existingShape = nullptr;
        } else if (existingShape->isMarked(gc::GRAY)) {
            UnmarkGrayShapeRecursively(existingShape);
        }
    }

    if (existingShape)
        return existingShape;

    Shape* shape = Shape::new_(cx, child, parent->numFixedSlots());
    if (!shape)
        return nullptr;

    if (!insertChild(cx, parent, shape))
        return nullptr;

    return shape;
}

void
Shape::sweep()
{
    /*
     * We detach the child from the parent if the parent is reachable.
     *
     * This test depends on shape arenas not being freed until after we finish
     * incrementally sweeping them. If that were not the case the parent pointer
     * could point to a marked cell that had been deallocated and then
     * reallocated, since allocating a cell in a zone that is being marked will
     * set the mark bit for that cell.
     */
    if (parent && parent->isMarked()) {
        if (inDictionary()) {
            if (parent->listp == &parent)
                parent->listp = nullptr;
        } else {
            parent->removeChild(this);
        }
    }
}

void
Shape::finalize(FreeOp* fop)
{
    if (!inDictionary() && kids.isHash())
        fop->delete_(kids.toHash());
}

void
Shape::fixupDictionaryShapeAfterMovingGC()
{
    if (!listp)
        return;

    // The listp field either points to the parent field of the next shape in
    // the list if there is one.  Otherwise if this shape is the last in the
    // list then it points to the shape_ field of the object the list is for.
    // We can tell which it is because the base shape is owned if this is the
    // last property and not otherwise.
    bool listpPointsIntoShape = !MaybeForwarded(base())->isOwned();

#ifdef DEBUG
    // Check that we got this right by interrogating the arena.
    // We use a fake cell pointer for this: it might not point to the beginning
    // of a cell, but will point into the right arena and will have the right
    // alignment.
    Cell* cell = reinterpret_cast<Cell*>(uintptr_t(listp) & ~CellMask);
    AllocKind kind = TenuredCell::fromPointer(cell)->getAllocKind();
    MOZ_ASSERT_IF(listpPointsIntoShape, IsShapeAllocKind(kind));
    MOZ_ASSERT_IF(!listpPointsIntoShape, IsObjectAllocKind(kind));
#endif

    if (listpPointsIntoShape) {
        // listp points to the parent field of the next shape.
        Shape* next = reinterpret_cast<Shape*>(uintptr_t(listp) - offsetof(Shape, parent));
        if (gc::IsForwarded(next))
            listp = &gc::Forwarded(next)->parent;
    } else {
        // listp points to the shape_ field of an object.
        JSObject* last = reinterpret_cast<JSObject*>(uintptr_t(listp) - ShapedObject::offsetOfShape());
        if (gc::IsForwarded(last))
            listp = &gc::Forwarded(last)->as<NativeObject>().shape_;
    }
}

void
Shape::fixupShapeTreeAfterMovingGC()
{
    if (kids.isNull())
        return;

    if (kids.isShape()) {
        if (gc::IsForwarded(kids.toShape()))
            kids.setShape(gc::Forwarded(kids.toShape()));
        return;
    }

    MOZ_ASSERT(kids.isHash());
    KidsHash* kh = kids.toHash();
    for (KidsHash::Enum e(*kh); !e.empty(); e.popFront()) {
        Shape* key = e.front();
        if (IsForwarded(key))
            key = Forwarded(key);

        BaseShape* base = key->base();
        if (IsForwarded(base))
            base = Forwarded(base);
        UnownedBaseShape* unowned = base->unowned();
        if (IsForwarded(unowned))
            unowned = Forwarded(unowned);

        GetterOp getter = key->getter();
        if (key->hasGetterObject())
            getter = GetterOp(MaybeForwarded(key->getterObject()));

        SetterOp setter = key->setter();
        if (key->hasSetterObject())
            setter = SetterOp(MaybeForwarded(key->setterObject()));

        StackShape lookup(unowned,
                          const_cast<Shape*>(key)->propidRef(),
                          key->slotInfo & Shape::SLOT_MASK,
                          key->attrs,
                          key->flags);
        lookup.updateGetterSetter(getter, setter);
        e.rekeyFront(lookup, key);
    }
}

void
Shape::fixupAfterMovingGC()
{
    if (inDictionary())
        fixupDictionaryShapeAfterMovingGC();
    else
        fixupShapeTreeAfterMovingGC();
}

void
Shape::fixupGetterSetterForBarrier(JSTracer* trc)
{
    if (!hasGetterValue() && !hasSetterValue())
        return;

    JSObject* priorGetter = asAccessorShape().getterObj;
    JSObject* priorSetter = asAccessorShape().setterObj;
    if (!priorGetter && !priorSetter)
        return;

    JSObject* postGetter = priorGetter;
    JSObject* postSetter = priorSetter;
    if (priorGetter)
        TraceManuallyBarrieredEdge(trc, &postGetter, "getterObj");
    if (priorSetter)
        TraceManuallyBarrieredEdge(trc, &postSetter, "setterObj");
    if (priorGetter == postGetter && priorSetter == postSetter)
        return;

    if (parent && !parent->inDictionary() && parent->kids.isHash()) {
        // Relocating the getterObj or setterObj will have changed our location
        // in our parent's KidsHash, so take care to update it.  We must do this
        // before we update the shape itself, since the shape is used to match
        // the original entry in the hash set.

        StackShape original(this);
        StackShape updated(this);
        updated.rawGetter = reinterpret_cast<GetterOp>(postGetter);
        updated.rawSetter = reinterpret_cast<SetterOp>(postSetter);

        KidsHash* kh = parent->kids.toHash();
        MOZ_ALWAYS_TRUE(kh->rekeyAs(original, updated, this));
    }

    asAccessorShape().getterObj = postGetter;
    asAccessorShape().setterObj = postSetter;

    MOZ_ASSERT_IF(parent && !parent->inDictionary() && parent->kids.isHash(),
                  parent->kids.toHash()->has(StackShape(this)));
}

#ifdef DEBUG

void
KidsPointer::checkConsistency(Shape* aKid) const
{
    if (isShape()) {
        MOZ_ASSERT(toShape() == aKid);
    } else {
        MOZ_ASSERT(isHash());
        KidsHash* hash = toHash();
        KidsHash::Ptr ptr = hash->lookup(StackShape(aKid));
        MOZ_ASSERT(*ptr == aKid);
    }
}

void
Shape::dump(FILE* fp) const
{
    jsid propid = this->propid();

    MOZ_ASSERT(!JSID_IS_VOID(propid));

    if (JSID_IS_INT(propid)) {
        fprintf(fp, "[%ld]", (long) JSID_TO_INT(propid));
    } else if (JSID_IS_ATOM(propid)) {
        if (JSLinearString* str = JSID_TO_ATOM(propid))
            FileEscapedString(fp, str, '"');
        else
            fputs("<error>", fp);
    } else {
        MOZ_ASSERT(JSID_IS_SYMBOL(propid));
        JSID_TO_SYMBOL(propid)->dump(fp);
    }

    fprintf(fp, " g/s %p/%p slot %d attrs %x ",
            JS_FUNC_TO_DATA_PTR(void*, getter()),
            JS_FUNC_TO_DATA_PTR(void*, setter()),
            hasSlot() ? slot() : -1, attrs);

    if (attrs) {
        int first = 1;
        fputs("(", fp);
#define DUMP_ATTR(name, display) if (attrs & JSPROP_##name) fputs(&(" " #display)[first], fp), first = 0
        DUMP_ATTR(ENUMERATE, enumerate);
        DUMP_ATTR(READONLY, readonly);
        DUMP_ATTR(PERMANENT, permanent);
        DUMP_ATTR(GETTER, getter);
        DUMP_ATTR(SETTER, setter);
        DUMP_ATTR(SHARED, shared);
#undef  DUMP_ATTR
        fputs(") ", fp);
    }

    fprintf(fp, "flags %x ", flags);
    if (flags) {
        int first = 1;
        fputs("(", fp);
#define DUMP_FLAG(name, display) if (flags & name) fputs(&(" " #display)[first], fp), first = 0
        DUMP_FLAG(IN_DICTIONARY, in_dictionary);
#undef  DUMP_FLAG
        fputs(") ", fp);
    }
}

void
Shape::dumpSubtree(int level, FILE* fp) const
{
    if (!parent) {
        MOZ_ASSERT(level == 0);
        MOZ_ASSERT(JSID_IS_EMPTY(propid_));
        fprintf(fp, "class %s emptyShape\n", getObjectClass()->name);
    } else {
        fprintf(fp, "%*sid ", level, "");
        dump(fp);
    }

    if (!kids.isNull()) {
        ++level;
        if (kids.isShape()) {
            Shape* kid = kids.toShape();
            MOZ_ASSERT(kid->parent == this);
            kid->dumpSubtree(level, fp);
        } else {
            const KidsHash& hash = *kids.toHash();
            for (KidsHash::Range range = hash.all(); !range.empty(); range.popFront()) {
                Shape* kid = range.front();

                MOZ_ASSERT(kid->parent == this);
                kid->dumpSubtree(level, fp);
            }
        }
    }
}

#endif