/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jsarray.h" #include "mozilla/ArrayUtils.h" #include "mozilla/CheckedInt.h" #include "mozilla/DebugOnly.h" #include "mozilla/FloatingPoint.h" #include "mozilla/MathAlgorithms.h" #include #include "jsapi.h" #include "jsatom.h" #include "jscntxt.h" #include "jsfriendapi.h" #include "jsfun.h" #include "jsiter.h" #include "jsnum.h" #include "jsobj.h" #include "jstypes.h" #include "jsutil.h" #include "ds/Sort.h" #include "gc/Heap.h" #include "jit/InlinableNatives.h" #include "js/Class.h" #include "js/Conversions.h" #include "vm/ArgumentsObject.h" #include "vm/Interpreter.h" #include "vm/SelfHosting.h" #include "vm/Shape.h" #include "vm/StringBuffer.h" #include "vm/TypedArrayCommon.h" #include "vm/WrapperObject.h" #include "jsatominlines.h" #include "vm/ArgumentsObject-inl.h" #include "vm/ArrayObject-inl.h" #include "vm/Caches-inl.h" #include "vm/Interpreter-inl.h" #include "vm/NativeObject-inl.h" #include "vm/UnboxedObject-inl.h" using namespace js; using namespace js::gc; using mozilla::Abs; using mozilla::ArrayLength; using mozilla::CeilingLog2; using mozilla::CheckedInt; using mozilla::DebugOnly; using mozilla::IsNaN; using JS::AutoCheckCannotGC; using JS::IsArrayAnswer; using JS::ToUint32; bool JS::IsArray(JSContext* cx, HandleObject obj, IsArrayAnswer* answer) { if (obj->is()) { *answer = IsArrayAnswer::Array; return true; } if (obj->is()) return Proxy::isArray(cx, obj, answer); *answer = IsArrayAnswer::NotArray; return true; } bool JS::IsArray(JSContext* cx, HandleObject obj, bool* isArray) { IsArrayAnswer answer; if (!IsArray(cx, obj, &answer)) return false; if (answer == IsArrayAnswer::RevokedProxy) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROXY_REVOKED); return false; } *isArray = answer == IsArrayAnswer::Array; return true; } bool js::GetLengthProperty(JSContext* cx, HandleObject obj, uint32_t* lengthp) { if (obj->is()) { *lengthp = obj->as().length(); return true; } if (obj->is()) { ArgumentsObject& argsobj = obj->as(); if (!argsobj.hasOverriddenLength()) { *lengthp = argsobj.initialLength(); return true; } } RootedValue value(cx); if (!GetProperty(cx, obj, obj, cx->names().length, &value)) return false; bool overflow; if (!ToLengthClamped(cx, value, lengthp, &overflow)) { if (!overflow) return false; *lengthp = UINT32_MAX; } return true; } /* * Determine if the id represents an array index. * * An id is an array index according to ECMA by (15.4): * * "Array objects give special treatment to a certain class of property names. * A property name P (in the form of a string value) is an array index if and * only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal * to 2^32-1." * * This means the largest allowed index is actually 2^32-2 (4294967294). * * In our implementation, it would be sufficient to check for id.isInt32() * except that by using signed 31-bit integers we miss the top half of the * valid range. This function checks the string representation itself; note * that calling a standard conversion routine might allow strings such as * "08" or "4.0" as array indices, which they are not. * */ template static bool StringIsArrayIndex(const CharT* s, uint32_t length, uint32_t* indexp) { const CharT* end = s + length; if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s)) return false; uint32_t c = 0, previous = 0; uint32_t index = JS7_UNDEC(*s++); /* Don't allow leading zeros. */ if (index == 0 && s != end) return false; for (; s < end; s++) { if (!JS7_ISDEC(*s)) return false; previous = index; c = JS7_UNDEC(*s); index = 10 * index + c; } /* Make sure we didn't overflow. */ if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) && c <= (MAX_ARRAY_INDEX % 10))) { MOZ_ASSERT(index <= MAX_ARRAY_INDEX); *indexp = index; return true; } return false; } JS_FRIEND_API(bool) js::StringIsArrayIndex(JSLinearString* str, uint32_t* indexp) { AutoCheckCannotGC nogc; return str->hasLatin1Chars() ? ::StringIsArrayIndex(str->latin1Chars(nogc), str->length(), indexp) : ::StringIsArrayIndex(str->twoByteChars(nogc), str->length(), indexp); } static bool ToId(JSContext* cx, double index, MutableHandleId id) { if (index == uint32_t(index)) return IndexToId(cx, uint32_t(index), id); Value tmp = DoubleValue(index); return ValueToId(cx, HandleValue::fromMarkedLocation(&tmp), id); } static bool ToId(JSContext* cx, uint32_t index, MutableHandleId id) { return IndexToId(cx, index, id); } /* * If the property at the given index exists, get its value into location * pointed by vp and set *hole to false. Otherwise set *hole to true and *vp * to JSVAL_VOID. This function assumes that the location pointed by vp is * properly rooted and can be used as GC-protected storage for temporaries. */ template static inline bool DoGetElement(JSContext* cx, HandleObject obj, HandleObject receiver, IndexType index, bool* hole, MutableHandleValue vp) { RootedId id(cx); if (!ToId(cx, index, &id)) return false; bool found; if (!HasProperty(cx, obj, id, &found)) return false; if (found) { if (!GetProperty(cx, obj, receiver, id, vp)) return false; } else { vp.setUndefined(); } *hole = !found; return true; } template static void AssertGreaterThanZero(IndexType index) { MOZ_ASSERT(index >= 0); MOZ_ASSERT(index == floor(index)); } template<> void AssertGreaterThanZero(uint32_t index) { } static bool GetElement(JSContext* cx, HandleObject obj, HandleObject receiver, uint32_t index, bool* hole, MutableHandleValue vp) { if (obj->isNative()) { NativeObject* nobj = &obj->as(); if (index < nobj->getDenseInitializedLength()) { vp.set(nobj->getDenseElement(size_t(index))); if (!vp.isMagic(JS_ELEMENTS_HOLE)) { *hole = false; return true; } } if (nobj->is() && index <= UINT32_MAX) { if (nobj->as().maybeGetElement(uint32_t(index), vp)) { *hole = false; return true; } } } return DoGetElement(cx, obj, receiver, index, hole, vp); } template static inline bool GetElement(JSContext* cx, HandleObject obj, IndexType index, bool* hole, MutableHandleValue vp) { return GetElement(cx, obj, obj, index, hole, vp); } bool ElementAdder::append(JSContext* cx, HandleValue v) { MOZ_ASSERT(index_ < length_); if (resObj_) { DenseElementResult result = SetOrExtendBoxedOrUnboxedDenseElements(cx, resObj_, index_, v.address(), 1); if (result == DenseElementResult::Failure) return false; if (result == DenseElementResult::Incomplete) { if (!DefineElement(cx, resObj_, index_, v)) return false; } } else { vp_[index_] = v; } index_++; return true; } void ElementAdder::appendHole() { MOZ_ASSERT(getBehavior_ == ElementAdder::CheckHasElemPreserveHoles); MOZ_ASSERT(index_ < length_); if (!resObj_) vp_[index_].setMagic(JS_ELEMENTS_HOLE); index_++; } bool js::GetElementsWithAdder(JSContext* cx, HandleObject obj, HandleObject receiver, uint32_t begin, uint32_t end, ElementAdder* adder) { MOZ_ASSERT(begin <= end); RootedValue val(cx); for (uint32_t i = begin; i < end; i++) { if (adder->getBehavior() == ElementAdder::CheckHasElemPreserveHoles) { bool hole; if (!GetElement(cx, obj, receiver, i, &hole, &val)) return false; if (hole) { adder->appendHole(); continue; } } else { MOZ_ASSERT(adder->getBehavior() == ElementAdder::GetElement); if (!GetElement(cx, obj, receiver, i, &val)) return false; } if (!adder->append(cx, val)) return false; } return true; } static bool GetDenseElements(NativeObject* aobj, uint32_t length, Value* vp) { MOZ_ASSERT(!ObjectMayHaveExtraIndexedProperties(aobj)); if (length > aobj->getDenseInitializedLength()) return false; for (size_t i = 0; i < length; i++) { vp[i] = aobj->getDenseElement(i); // No other indexed properties so hole => undefined. if (vp[i].isMagic(JS_ELEMENTS_HOLE)) vp[i] = UndefinedValue(); } return true; } bool js::GetElements(JSContext* cx, HandleObject aobj, uint32_t length, Value* vp) { if (!ObjectMayHaveExtraIndexedProperties(aobj)) { if (GetDenseElements(&aobj->as(), length, vp)) return true; } if (aobj->is()) { ArgumentsObject& argsobj = aobj->as(); if (!argsobj.hasOverriddenLength()) { if (argsobj.maybeGetElements(0, length, vp)) return true; } } if (js::GetElementsOp op = aobj->getOpsGetElements()) { ElementAdder adder(cx, vp, length, ElementAdder::GetElement); return op(cx, aobj, 0, length, &adder); } for (uint32_t i = 0; i < length; i++) { if (!GetElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i]))) return false; } return true; } // Set the value of the property at the given index to v. The behavior of this // function is currently incoherent and it sometimes defines the property // instead. See bug 1163091. static bool SetArrayElement(JSContext* cx, HandleObject obj, double index, HandleValue v) { MOZ_ASSERT(index >= 0); if (obj->is() && !obj->isIndexed() && index <= UINT32_MAX) { DenseElementResult result = SetOrExtendBoxedOrUnboxedDenseElements(cx, obj, uint32_t(index), v.address(), 1); if (result != DenseElementResult::Incomplete) return result == DenseElementResult::Success; } RootedId id(cx); if (!ToId(cx, index, &id)) return false; return SetProperty(cx, obj, id, v); } /* * Attempt to delete the element |index| from |obj| as if by * |obj.[[Delete]](index)|. * * If an error occurs while attempting to delete the element (that is, the call * to [[Delete]] threw), return false. * * Otherwise call result.succeed() or result.fail() to indicate whether the * deletion attempt succeeded (that is, whether the call to [[Delete]] returned * true or false). (Deletes generally fail only when the property is * non-configurable, but proxies may implement different semantics.) */ static bool DeleteArrayElement(JSContext* cx, HandleObject obj, double index, ObjectOpResult& result) { MOZ_ASSERT(index >= 0); MOZ_ASSERT(floor(index) == index); if (obj->is() && !obj->isIndexed() && !obj->as().denseElementsAreFrozen()) { ArrayObject* aobj = &obj->as(); if (index <= UINT32_MAX) { uint32_t idx = uint32_t(index); if (idx < aobj->getDenseInitializedLength()) { if (!aobj->maybeCopyElementsForWrite(cx)) return false; if (idx+1 == aobj->getDenseInitializedLength()) { aobj->setDenseInitializedLength(idx); } else { aobj->markDenseElementsNotPacked(cx); aobj->setDenseElement(idx, MagicValue(JS_ELEMENTS_HOLE)); } if (!SuppressDeletedElement(cx, obj, idx)) return false; } } return result.succeed(); } RootedId id(cx); if (!ToId(cx, index, &id)) return false; return DeleteProperty(cx, obj, id, result); } /* ES6 draft rev 32 (2 Febr 2015) 7.3.7 */ static bool DeletePropertyOrThrow(JSContext* cx, HandleObject obj, double index) { ObjectOpResult success; if (!DeleteArrayElement(cx, obj, index, success)) return false; if (!success) { RootedId id(cx); RootedValue indexv(cx, NumberValue(index)); if (!ValueToId(cx, indexv, &id)) return false; return success.reportError(cx, obj, id); } return true; } bool js::SetLengthProperty(JSContext* cx, HandleObject obj, double length) { RootedValue v(cx, NumberValue(length)); return SetProperty(cx, obj, cx->names().length, v); } static bool array_length_getter(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp) { vp.setNumber(obj->as().length()); return true; } static bool array_length_setter(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp, ObjectOpResult& result) { if (!obj->is()) { // This array .length property was found on the prototype // chain. Ideally the setter should not have been called, but since // we're here, do an impression of SetPropertyByDefining. const Class* clasp = obj->getClass(); return DefineProperty(cx, obj, cx->names().length, vp, clasp->getGetProperty(), clasp->getSetProperty(), JSPROP_ENUMERATE, result); } Rooted arr(cx, &obj->as()); MOZ_ASSERT(arr->lengthIsWritable(), "setter shouldn't be called if property is non-writable"); return ArraySetLength(cx, arr, id, JSPROP_PERMANENT, vp, result); } struct ReverseIndexComparator { bool operator()(const uint32_t& a, const uint32_t& b, bool* lessOrEqualp) { MOZ_ASSERT(a != b, "how'd we get duplicate indexes?"); *lessOrEqualp = b <= a; return true; } }; bool js::CanonicalizeArrayLengthValue(JSContext* cx, HandleValue v, uint32_t* newLen) { double d; if (!ToUint32(cx, v, newLen)) return false; if (!ToNumber(cx, v, &d)) return false; if (d == *newLen) return true; JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } /* ES6 draft rev 34 (2015 Feb 20) 9.4.2.4 ArraySetLength */ bool js::ArraySetLength(JSContext* cx, Handle arr, HandleId id, unsigned attrs, HandleValue value, ObjectOpResult& result) { MOZ_ASSERT(id == NameToId(cx->names().length)); if (!arr->maybeCopyElementsForWrite(cx)) return false; // Step 1. uint32_t newLen; if (attrs & JSPROP_IGNORE_VALUE) { // The spec has us calling OrdinaryDefineOwnProperty if // Desc.[[Value]] is absent, but our implementation is so different that // this is impossible. Instead, set newLen to the current length and // proceed to step 9. newLen = arr->length(); } else { // Step 2 is irrelevant in our implementation. // Steps 3-7. MOZ_ASSERT_IF(attrs & JSPROP_IGNORE_VALUE, value.isUndefined()); if (!CanonicalizeArrayLengthValue(cx, value, &newLen)) return false; // Step 8 is irrelevant in our implementation. } // Steps 9-11. bool lengthIsWritable = arr->lengthIsWritable(); #ifdef DEBUG { RootedShape lengthShape(cx, arr->lookupPure(id)); MOZ_ASSERT(lengthShape); MOZ_ASSERT(lengthShape->writable() == lengthIsWritable); } #endif uint32_t oldLen = arr->length(); // Part of steps 1.a, 12.a, and 16: Fail if we're being asked to change // enumerability or configurability, or otherwise break the object // invariants. (ES6 checks these by calling OrdinaryDefineOwnProperty, but // in SM, the array length property is hardly ordinary.) if ((attrs & (JSPROP_PERMANENT | JSPROP_IGNORE_PERMANENT)) == 0 || (attrs & (JSPROP_ENUMERATE | JSPROP_IGNORE_ENUMERATE)) == JSPROP_ENUMERATE || (attrs & (JSPROP_GETTER | JSPROP_SETTER)) != 0 || (!lengthIsWritable && (attrs & (JSPROP_READONLY | JSPROP_IGNORE_READONLY)) == 0)) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } // Steps 12-13 for arrays with non-writable length. if (!lengthIsWritable) { if (newLen == oldLen) return result.succeed(); return result.fail(JSMSG_CANT_REDEFINE_ARRAY_LENGTH); } // Step 19. bool succeeded = true; do { // The initialized length and capacity of an array only need updating // when non-hole elements are added or removed, which doesn't happen // when array length stays the same or increases. if (newLen >= oldLen) break; // Attempt to propagate dense-element optimization tricks, if possible, // and avoid the generic (and accordingly slow) deletion code below. // We can only do this if there are only densely-indexed elements. // Once there's a sparse indexed element, there's no good way to know, // save by enumerating all the properties to find it. But we *have* to // know in case that sparse indexed element is non-configurable, as // that element must prevent any deletions below it. Bug 586842 should // fix this inefficiency by moving indexed storage to be entirely // separate from non-indexed storage. // A second reason for this optimization to be invalid is an active // for..in iteration over the array. Keys deleted before being reached // during the iteration must not be visited, and suppressing them here // would be too costly. ObjectGroup* arrGroup = arr->getGroup(cx); if (MOZ_UNLIKELY(!arrGroup)) return false; if (!arr->isIndexed() && !MOZ_UNLIKELY(arrGroup->hasAllFlags(OBJECT_FLAG_ITERATED))) { if (!arr->maybeCopyElementsForWrite(cx)) return false; uint32_t oldCapacity = arr->getDenseCapacity(); uint32_t oldInitializedLength = arr->getDenseInitializedLength(); MOZ_ASSERT(oldCapacity >= oldInitializedLength); if (oldInitializedLength > newLen) arr->setDenseInitializedLength(newLen); if (oldCapacity > newLen) arr->shrinkElements(cx, newLen); // We've done the work of deleting any dense elements needing // deletion, and there are no sparse elements. Thus we can skip // straight to defining the length. break; } // Step 15. // // Attempt to delete all elements above the new length, from greatest // to least. If any of these deletions fails, we're supposed to define // the length to one greater than the index that couldn't be deleted, // *with the property attributes specified*. This might convert the // length to be not the value specified, yet non-writable. (You may be // forgiven for thinking these are interesting semantics.) Example: // // var arr = // Object.defineProperty([0, 1, 2, 3], 1, { writable: false }); // Object.defineProperty(arr, "length", // { value: 0, writable: false }); // // will convert |arr| to an array of non-writable length two, then // throw a TypeError. // // We implement this behavior, in the relevant lops below, by setting // |succeeded| to false. Then we exit the loop, define the length // appropriately, and only then throw a TypeError, if necessary. uint32_t gap = oldLen - newLen; const uint32_t RemoveElementsFastLimit = 1 << 24; if (gap < RemoveElementsFastLimit) { // If we're removing a relatively small number of elements, just do // it exactly by the spec. while (newLen < oldLen) { // Step 15a. oldLen--; // Steps 15b-d. ObjectOpResult deleteSucceeded; if (!DeleteElement(cx, arr, oldLen, deleteSucceeded)) return false; if (!deleteSucceeded) { newLen = oldLen + 1; succeeded = false; break; } } } else { // If we're removing a large number of elements from an array // that's probably sparse, try a different tack. Get all the own // property names, sift out the indexes in the deletion range into // a vector, sort the vector greatest to least, then delete the // indexes greatest to least using that vector. See bug 322135. // // This heuristic's kind of a huge guess -- "large number of // elements" and "probably sparse" are completely unprincipled // predictions. In the long run, bug 586842 will support the right // fix: store sparse elements in a sorted data structure that // permits fast in-reverse-order traversal and concurrent removals. Vector indexes(cx); { AutoIdVector props(cx); if (!GetPropertyKeys(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props)) return false; for (size_t i = 0; i < props.length(); i++) { if (!CheckForInterrupt(cx)) return false; uint32_t index; if (!IdIsIndex(props[i], &index)) continue; if (index >= newLen && index < oldLen) { if (!indexes.append(index)) return false; } } } uint32_t count = indexes.length(); { // We should use radix sort to be O(n), but this is uncommon // enough that we'll punt til someone complains. Vector scratch(cx); if (!scratch.resize(count)) return false; MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(), ReverseIndexComparator())); } uint32_t index = UINT32_MAX; for (uint32_t i = 0; i < count; i++) { MOZ_ASSERT(indexes[i] < index, "indexes should never repeat"); index = indexes[i]; // Steps 15b-d. ObjectOpResult deleteSucceeded; if (!DeleteElement(cx, arr, index, deleteSucceeded)) return false; if (!deleteSucceeded) { newLen = index + 1; succeeded = false; break; } } } } while (false); // Update array length. Technically we should have been doing this // throughout the loop, in step 19.d.iii. arr->setLength(cx, newLen); // Step 20. if (attrs & JSPROP_READONLY) { // Yes, we totally drop a non-stub getter/setter from a defineProperty // API call on the floor here. Given that getter/setter will go away in // the long run, with accessors replacing them both internally and at the // API level, just run with this. RootedShape lengthShape(cx, arr->lookup(cx, id)); if (!NativeObject::changeProperty(cx, arr, lengthShape, lengthShape->attributes() | JSPROP_READONLY, array_length_getter, array_length_setter)) { return false; } } // All operations past here until the |!succeeded| code must be infallible, // so that all element fields remain properly synchronized. // Trim the initialized length, if needed, to preserve the <= length // invariant. (Capacity was already reduced during element deletion, if // necessary.) ObjectElements* header = arr->getElementsHeader(); header->initializedLength = Min(header->initializedLength, newLen); if (attrs & JSPROP_READONLY) { header->setNonwritableArrayLength(); // When an array's length becomes non-writable, writes to indexes // greater than or equal to the length don't change the array. We // handle this with a check for non-writable length in most places. // But in JIT code every check counts -- so we piggyback the check on // the already-required range check for |index < capacity| by making // capacity of arrays with non-writable length never exceed the length. if (arr->getDenseCapacity() > newLen) { arr->shrinkElements(cx, newLen); arr->getElementsHeader()->capacity = newLen; } } if (!succeeded) return result.fail(JSMSG_CANT_TRUNCATE_ARRAY); return result.succeed(); } bool js::WouldDefinePastNonwritableLength(HandleNativeObject obj, uint32_t index) { if (!obj->is()) return false; ArrayObject* arr = &obj->as(); return !arr->lengthIsWritable() && index >= arr->length(); } static bool array_addProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v) { Rooted arr(cx, &obj->as()); uint32_t index; if (!IdIsIndex(id, &index)) return true; uint32_t length = arr->length(); if (index >= length) { MOZ_ASSERT(arr->lengthIsWritable(), "how'd this element get added if length is non-writable?"); arr->setLength(cx, index + 1); } return true; } static inline bool ObjectMayHaveExtraIndexedOwnProperties(JSObject* obj) { return !obj->isNative() || obj->isIndexed() || obj->is() || ClassMayResolveId(*obj->runtimeFromAnyThread()->commonNames, obj->getClass(), INT_TO_JSID(0), obj); } /* * Whether obj may have indexed properties anywhere besides its dense * elements. This includes other indexed properties in its shape hierarchy, and * indexed properties or elements along its prototype chain. */ bool js::ObjectMayHaveExtraIndexedProperties(JSObject* obj) { MOZ_ASSERT_IF(obj->hasDynamicPrototype(), !obj->isNative()); if (ObjectMayHaveExtraIndexedOwnProperties(obj)) return true; do { MOZ_ASSERT(obj->hasStaticPrototype(), "dynamic-prototype objects must be non-native, ergo must " "have failed ObjectMayHaveExtraIndexedOwnProperties"); obj = obj->staticPrototype(); if (!obj) return false; // no extra indexed properties found if (ObjectMayHaveExtraIndexedOwnProperties(obj)) return true; if (obj->as().getDenseInitializedLength() != 0) return true; } while (true); } static bool AddLengthProperty(ExclusiveContext* cx, HandleArrayObject obj) { /* * Add the 'length' property for a newly created array, * and update the elements to be an empty array owned by the object. * The shared emptyObjectElements singleton cannot be used for slow arrays, * as accesses to 'length' will use the elements header. */ RootedId lengthId(cx, NameToId(cx->names().length)); MOZ_ASSERT(!obj->lookup(cx, lengthId)); return NativeObject::addProperty(cx, obj, lengthId, array_length_getter, array_length_setter, SHAPE_INVALID_SLOT, JSPROP_PERMANENT | JSPROP_SHARED | JSPROP_SHADOWABLE, 0, /* allowDictionary = */ false); } static bool IsArrayConstructor(const JSObject* obj) { // This must only return true if v is *the* Array constructor for the // current compartment; we rely on the fact that any other Array // constructor would be represented as a wrapper. return obj->is() && obj->as().isNative() && obj->as().native() == ArrayConstructor; } static bool IsArrayConstructor(const Value& v) { return v.isObject() && IsArrayConstructor(&v.toObject()); } bool js::IsWrappedArrayConstructor(JSContext* cx, const Value& v, bool* result) { if (!v.isObject()) { *result = false; return true; } if (v.toObject().is()) { JSObject* obj = CheckedUnwrap(&v.toObject()); if (!obj) { JS_ReportErrorASCII(cx, "Permission denied to access object"); return false; } *result = IsArrayConstructor(obj); } else { *result = false; } return true; } static bool IsArraySpecies(JSContext* cx, HandleObject origArray) { RootedValue ctor(cx); if (!GetPropertyPure(cx, origArray, NameToId(cx->names().constructor), ctor.address())) return false; if (!IsArrayConstructor(ctor)) return false; RootedObject ctorObj(cx, &ctor.toObject()); RootedId speciesId(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().species)); JSFunction* getter; if (!GetGetterPure(cx, ctorObj, speciesId, &getter)) return false; if (!getter) return false; return IsSelfHostedFunctionWithName(getter, cx->names().ArraySpecies); } static bool ArraySpeciesCreate(JSContext* cx, HandleObject origArray, uint32_t length, MutableHandleObject arr) { RootedId createId(cx, NameToId(cx->names().ArraySpeciesCreate)); RootedFunction create(cx, JS::GetSelfHostedFunction(cx, "ArraySpeciesCreate", createId, 2)); if (!create) return false; FixedInvokeArgs<2> args(cx); args[0].setObject(*origArray); args[1].set(NumberValue(length)); RootedValue callee(cx, ObjectValue(*create)); RootedValue rval(cx); if (!Call(cx, callee, UndefinedHandleValue, args, &rval)) return false; MOZ_ASSERT(rval.isObject()); arr.set(&rval.toObject()); return true; } #if JS_HAS_TOSOURCE static bool array_toSource(JSContext* cx, unsigned argc, Value* vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); if (!args.thisv().isObject()) { ReportIncompatible(cx, args); return false; } Rooted obj(cx, &args.thisv().toObject()); RootedValue elt(cx); AutoCycleDetector detector(cx, obj); if (!detector.init()) return false; StringBuffer sb(cx); if (detector.foundCycle()) { if (!sb.append("[]")) return false; goto make_string; } if (!sb.append('[')) return false; uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; for (uint32_t index = 0; index < length; index++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, index, &hole, &elt)) { return false; } /* Get element's character string. */ JSString* str; if (hole) { str = cx->runtime()->emptyString; } else { str = ValueToSource(cx, elt); if (!str) return false; } /* Append element to buffer. */ if (!sb.append(str)) return false; if (index + 1 != length) { if (!sb.append(", ")) return false; } else if (hole) { if (!sb.append(',')) return false; } } /* Finalize the buffer. */ if (!sb.append(']')) return false; make_string: JSString* str = sb.finishString(); if (!str) return false; args.rval().setString(str); return true; } #endif struct EmptySeparatorOp { bool operator()(JSContext*, StringBuffer& sb) { return true; } }; template struct CharSeparatorOp { const CharT sep; explicit CharSeparatorOp(CharT sep) : sep(sep) {} bool operator()(JSContext*, StringBuffer& sb) { return sb.append(sep); } }; struct StringSeparatorOp { HandleLinearString sep; explicit StringSeparatorOp(HandleLinearString sep) : sep(sep) {} bool operator()(JSContext* cx, StringBuffer& sb) { return sb.append(sep); } }; template static bool ArrayJoinDenseKernel(JSContext* cx, SeparatorOp sepOp, HandleNativeObject obj, uint64_t length, StringBuffer& sb, uint32_t* numProcessed) { // This loop handles all elements up to initializedLength. If // length > initLength we rely on the second loop to add the // other elements. MOZ_ASSERT(*numProcessed == 0); uint32_t initLength = Min(obj->getDenseInitializedLength(), length); while (*numProcessed < initLength) { if (!CheckForInterrupt(cx)) return false; Value elem = obj->as().getDenseElement(*numProcessed); if (elem.isString()) { if (!sb.append(elem.toString())) return false; } else if (elem.isNumber()) { if (!NumberValueToStringBuffer(cx, elem, sb)) return false; } else if (elem.isBoolean()) { if (!BooleanToStringBuffer(elem.toBoolean(), sb)) return false; } else if (elem.isObject() || elem.isSymbol()) { /* * Object stringifying could modify the initialized length or make * the array sparse. Delegate it to a separate loop to keep this * one tight. * * Symbol stringifying is a TypeError, so into the slow path * with those as well. */ break; } else { MOZ_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined()); } if (++(*numProcessed) != length && !sepOp(cx, sb)) return false; } return true; } template static bool ArrayJoinKernel(JSContext* cx, SeparatorOp sepOp, HandleObject obj, uint32_t length, StringBuffer& sb) { uint32_t i = 0; if (!ObjectMayHaveExtraIndexedProperties(obj)) { if (!ArrayJoinDenseKernel(cx, sepOp, obj.as(), length, sb, &i)) { return false; } } if (i != length) { RootedValue v(cx); while (i < length) { if (!CheckForInterrupt(cx)) return false; bool hole; if (!GetElement(cx, obj, i, &hole, &v)) return false; if (!hole && !v.isNullOrUndefined()) { if (!ValueToStringBuffer(cx, v, sb)) return false; } if (++i != length && !sepOp(cx, sb)) return false; } } return true; } /* ES5 15.4.4.5 */ bool js::array_join(JSContext* cx, unsigned argc, Value* vp) { JS_CHECK_RECURSION(cx, return false); AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.join"); CallArgs args = CallArgsFromVp(argc, vp); // Step 1 RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; AutoCycleDetector detector(cx, obj); if (!detector.init()) return false; if (detector.foundCycle()) { args.rval().setString(cx->names().empty); return true; } // Steps 2 and 3 uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; // Steps 4 and 5 RootedLinearString sepstr(cx); if (args.hasDefined(0)) { JSString *s = ToString(cx, args[0]); if (!s) return false; sepstr = s->ensureLinear(cx); if (!sepstr) return false; } else { sepstr = cx->names().comma; } // Step 6 is implicit in the loops below. // An optimized version of a special case of steps 7-11: when length==1 and // the 0th element is a string, ToString() of that element is a no-op and // so it can be immediately returned as the result. if (length == 1 && obj->isNative()) { NativeObject* nobj = &obj->as(); if (nobj->getDenseInitializedLength() == 1) { Value elem0 = nobj->getDenseElement(0); if (elem0.isString()) { args.rval().set(elem0); return true; } } } StringBuffer sb(cx); if (sepstr->hasTwoByteChars() && !sb.ensureTwoByteChars()) return false; // The separator will be added |length - 1| times, reserve space for that // so that we don't have to unnecessarily grow the buffer. size_t seplen = sepstr->length(); CheckedInt res = CheckedInt(seplen) * (length - 1); if (length > 0 && !res.isValid()) { ReportAllocationOverflow(cx); return false; } if (length > 0 && !sb.reserve(res.value())) return false; // Various optimized versions of steps 7-10. if (seplen == 0) { EmptySeparatorOp op; if (!ArrayJoinKernel(cx, op, obj, length, sb)) return false; } else if (seplen == 1) { char16_t c = sepstr->latin1OrTwoByteChar(0); if (c <= JSString::MAX_LATIN1_CHAR) { CharSeparatorOp op(c); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return false; } else { CharSeparatorOp op(c); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return false; } } else { StringSeparatorOp op(sepstr); if (!ArrayJoinKernel(cx, op, obj, length, sb)) return false; } // Step 11 JSString* str = sb.finishString(); if (!str) return false; args.rval().setString(str); return true; } // ES2017 draft rev f8a9be8ea4bd97237d176907a1e3080dce20c68f // 22.1.3.27 Array.prototype.toLocaleString ([ reserved1 [ , reserved2 ] ]) // ES2017 Intl draft rev 78bbe7d1095f5ff3760ac4017ed366026e4cb276 // 13.4.1 Array.prototype.toLocaleString ([ locales [ , options ]]) static bool array_toLocaleString(JSContext* cx, unsigned argc, Value* vp) { JS_CHECK_RECURSION(cx, return false); CallArgs args = CallArgsFromVp(argc, vp); // Step 1 RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; // Avoid calling into self-hosted code if the array is empty. if (obj->is() && obj->as().length() == 0) { args.rval().setString(cx->names().empty); return true; } AutoCycleDetector detector(cx, obj); if (!detector.init()) return false; if (detector.foundCycle()) { args.rval().setString(cx->names().empty); return true; } FixedInvokeArgs<2> args2(cx); args2[0].set(args.get(0)); args2[1].set(args.get(1)); // Steps 2-10. RootedValue thisv(cx, ObjectValue(*obj)); return CallSelfHostedFunction(cx, cx->names().ArrayToLocaleString, thisv, args2, args.rval()); } /* vector must point to rooted memory. */ static bool InitArrayElements(JSContext* cx, HandleObject obj, uint32_t start, uint32_t count, const Value* vector, ShouldUpdateTypes updateTypes = ShouldUpdateTypes::Update) { MOZ_ASSERT(count <= MAX_ARRAY_INDEX); if (count == 0) return true; ObjectGroup* group = obj->getGroup(cx); if (!group) return false; if (!ObjectMayHaveExtraIndexedProperties(obj)) { DenseElementResult result = SetOrExtendBoxedOrUnboxedDenseElements(cx, obj, start, vector, count, updateTypes); if (result != DenseElementResult::Incomplete) return result == DenseElementResult::Success; } const Value* end = vector + count; while (vector < end && start <= MAX_ARRAY_INDEX) { if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, start++, HandleValue::fromMarkedLocation(vector++))) { return false; } } if (vector == end) return true; MOZ_ASSERT(start == MAX_ARRAY_INDEX + 1); RootedValue value(cx); RootedId id(cx); RootedValue indexv(cx); double index = MAX_ARRAY_INDEX + 1; do { value = *vector++; indexv = DoubleValue(index); if (!ValueToId(cx, indexv, &id)) return false; if (!SetProperty(cx, obj, id, value)) return false; index += 1; } while (vector != end); return true; } static DenseElementResult ArrayReverseDenseKernel(JSContext* cx, HandleNativeObject obj, uint32_t length) { /* An empty array or an array with no elements is already reversed. */ if (length == 0 || obj->getDenseInitializedLength() == 0) return DenseElementResult::Success; if (obj->denseElementsAreFrozen()) return DenseElementResult::Incomplete; /* * It's actually surprisingly complicated to reverse an array due to the * orthogonality of array length and array capacity while handling * leading and trailing holes correctly. Reversing seems less likely to * be a common operation than other array mass-mutation methods, so for * now just take a probably-small memory hit (in the absence of too many * holes in the array at its start) and ensure that the capacity is * sufficient to hold all the elements in the array if it were full. */ DenseElementResult result = obj->ensureDenseElements(cx, length, 0); if (result != DenseElementResult::Success) return result; /* Fill out the array's initialized length to its proper length. */ obj->ensureDenseInitializedLength(cx, length, 0); RootedValue origlo(cx), orighi(cx); uint32_t lo = 0, hi = length - 1; for (; lo < hi; lo++, hi--) { origlo = obj->getDenseElement(lo); orighi = obj->getDenseElement(hi); obj->setDenseElement(lo, orighi); if (orighi.isMagic(JS_ELEMENTS_HOLE) && !SuppressDeletedProperty(cx, obj, INT_TO_JSID(lo))) { return DenseElementResult::Failure; } obj->setDenseElement(hi, origlo); if (origlo.isMagic(JS_ELEMENTS_HOLE) && !SuppressDeletedProperty(cx, obj, INT_TO_JSID(hi))) { return DenseElementResult::Failure; } } return DenseElementResult::Success; } bool js::array_reverse(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.reverse"); CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; if (!ObjectMayHaveExtraIndexedProperties(obj)) { DenseElementResult result = ArrayReverseDenseKernel(cx, obj.as(), uint32_t(len)); if (result != DenseElementResult::Incomplete) { /* * Per ECMA-262, don't update the length of the array, even if the new * array has trailing holes (and thus the original array began with * holes). */ args.rval().setObject(*obj); return result == DenseElementResult::Success; } } RootedValue lowval(cx), hival(cx); for (uint32_t i = 0, half = len / 2; i < half; i++) { bool hole, hole2; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, i, &hole, &lowval) || !GetElement(cx, obj, len - i - 1, &hole2, &hival)) { return false; } if (!hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) return false; if (!SetArrayElement(cx, obj, len - i - 1, lowval)) return false; } else if (hole && !hole2) { if (!SetArrayElement(cx, obj, i, hival)) return false; if (!DeletePropertyOrThrow(cx, obj, len - i - 1)) return false; } else if (!hole && hole2) { if (!DeletePropertyOrThrow(cx, obj, i)) return false; if (!SetArrayElement(cx, obj, len - i - 1, lowval)) return false; } else { // No action required. } } args.rval().setObject(*obj); return true; } static inline bool CompareStringValues(JSContext* cx, const Value& a, const Value& b, bool* lessOrEqualp) { if (!CheckForInterrupt(cx)) return false; JSString* astr = a.toString(); JSString* bstr = b.toString(); int32_t result; if (!CompareStrings(cx, astr, bstr, &result)) return false; *lessOrEqualp = (result <= 0); return true; } static const uint64_t powersOf10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL }; static inline unsigned NumDigitsBase10(uint32_t n) { /* * This is just floor_log10(n) + 1 * Algorithm taken from * http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 */ uint32_t log2 = CeilingLog2(n); uint32_t t = log2 * 1233 >> 12; return t - (n < powersOf10[t]) + 1; } static inline bool CompareLexicographicInt32(const Value& a, const Value& b, bool* lessOrEqualp) { int32_t aint = a.toInt32(); int32_t bint = b.toInt32(); /* * If both numbers are equal ... trivial * If only one of both is negative --> arithmetic comparison as char code * of '-' is always less than any other digit * If both numbers are negative convert them to positive and continue * handling ... */ if (aint == bint) { *lessOrEqualp = true; } else if ((aint < 0) && (bint >= 0)) { *lessOrEqualp = true; } else if ((aint >= 0) && (bint < 0)) { *lessOrEqualp = false; } else { uint32_t auint = Abs(aint); uint32_t buint = Abs(bint); /* * ... get number of digits of both integers. * If they have the same number of digits --> arithmetic comparison. * If digits_a > digits_b: a < b*10e(digits_a - digits_b). * If digits_b > digits_a: a*10e(digits_b - digits_a) <= b. */ unsigned digitsa = NumDigitsBase10(auint); unsigned digitsb = NumDigitsBase10(buint); if (digitsa == digitsb) { *lessOrEqualp = (auint <= buint); } else if (digitsa > digitsb) { MOZ_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10)); *lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]); } else { /* if (digitsb > digitsa) */ MOZ_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10)); *lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint)); } } return true; } template static inline bool CompareSubStringValues(JSContext* cx, const Char1* s1, size_t len1, const Char2* s2, size_t len2, bool* lessOrEqualp) { if (!CheckForInterrupt(cx)) return false; if (!s1 || !s2) return false; int32_t result = CompareChars(s1, len1, s2, len2); *lessOrEqualp = (result <= 0); return true; } namespace { struct SortComparatorStrings { JSContext* const cx; explicit SortComparatorStrings(JSContext* cx) : cx(cx) {} bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { return CompareStringValues(cx, a, b, lessOrEqualp); } }; struct SortComparatorLexicographicInt32 { bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { return CompareLexicographicInt32(a, b, lessOrEqualp); } }; struct StringifiedElement { size_t charsBegin; size_t charsEnd; size_t elementIndex; }; struct SortComparatorStringifiedElements { JSContext* const cx; const StringBuffer& sb; SortComparatorStringifiedElements(JSContext* cx, const StringBuffer& sb) : cx(cx), sb(sb) {} bool operator()(const StringifiedElement& a, const StringifiedElement& b, bool* lessOrEqualp) { size_t lenA = a.charsEnd - a.charsBegin; size_t lenB = b.charsEnd - b.charsBegin; if (sb.isUnderlyingBufferLatin1()) { return CompareSubStringValues(cx, sb.rawLatin1Begin() + a.charsBegin, lenA, sb.rawLatin1Begin() + b.charsBegin, lenB, lessOrEqualp); } return CompareSubStringValues(cx, sb.rawTwoByteBegin() + a.charsBegin, lenA, sb.rawTwoByteBegin() + b.charsBegin, lenB, lessOrEqualp); } }; struct NumericElement { double dv; size_t elementIndex; }; static bool ComparatorNumericLeftMinusRight(const NumericElement& a, const NumericElement& b, bool* lessOrEqualp) { *lessOrEqualp = (a.dv <= b.dv); return true; } static bool ComparatorNumericRightMinusLeft(const NumericElement& a, const NumericElement& b, bool* lessOrEqualp) { *lessOrEqualp = (b.dv <= a.dv); return true; } typedef bool (*ComparatorNumeric)(const NumericElement& a, const NumericElement& b, bool* lessOrEqualp); static const ComparatorNumeric SortComparatorNumerics[] = { nullptr, nullptr, ComparatorNumericLeftMinusRight, ComparatorNumericRightMinusLeft }; static bool ComparatorInt32LeftMinusRight(const Value& a, const Value& b, bool* lessOrEqualp) { *lessOrEqualp = (a.toInt32() <= b.toInt32()); return true; } static bool ComparatorInt32RightMinusLeft(const Value& a, const Value& b, bool* lessOrEqualp) { *lessOrEqualp = (b.toInt32() <= a.toInt32()); return true; } typedef bool (*ComparatorInt32)(const Value& a, const Value& b, bool* lessOrEqualp); static const ComparatorInt32 SortComparatorInt32s[] = { nullptr, nullptr, ComparatorInt32LeftMinusRight, ComparatorInt32RightMinusLeft }; // Note: Values for this enum must match up with SortComparatorNumerics // and SortComparatorInt32s. enum ComparatorMatchResult { Match_Failure = 0, Match_None, Match_LeftMinusRight, Match_RightMinusLeft }; } // namespace /* * Specialize behavior for comparator functions with particular common bytecode * patterns: namely, |return x - y| and |return y - x|. */ static ComparatorMatchResult MatchNumericComparator(JSContext* cx, const Value& v) { if (!v.isObject()) return Match_None; JSObject& obj = v.toObject(); if (!obj.is()) return Match_None; JSFunction* fun = &obj.as(); if (!fun->isInterpreted() || fun->isClassConstructor()) return Match_None; JSScript* script = fun->getOrCreateScript(cx); if (!script) return Match_Failure; jsbytecode* pc = script->code(); uint16_t arg0, arg1; if (JSOp(*pc) != JSOP_GETARG) return Match_None; arg0 = GET_ARGNO(pc); pc += JSOP_GETARG_LENGTH; if (JSOp(*pc) != JSOP_GETARG) return Match_None; arg1 = GET_ARGNO(pc); pc += JSOP_GETARG_LENGTH; if (JSOp(*pc) != JSOP_SUB) return Match_None; pc += JSOP_SUB_LENGTH; if (JSOp(*pc) != JSOP_RETURN) return Match_None; if (arg0 == 0 && arg1 == 1) return Match_LeftMinusRight; if (arg0 == 1 && arg1 == 0) return Match_RightMinusLeft; return Match_None; } template static inline bool MergeSortByKey(K keys, size_t len, K scratch, C comparator, MutableHandle> vec) { MOZ_ASSERT(vec.length() >= len); /* Sort keys. */ if (!MergeSort(keys, len, scratch, comparator)) return false; /* * Reorder vec by keys in-place, going element by element. When an out-of- * place element is encountered, move that element to its proper position, * displacing whatever element was at *that* point to its proper position, * and so on until an element must be moved to the current position. * * At each outer iteration all elements up to |i| are sorted. If * necessary each inner iteration moves some number of unsorted elements * (including |i|) directly to sorted position. Thus on completion |*vec| * is sorted, and out-of-position elements have moved once. Complexity is * Θ(len) + O(len) == O(2*len), with each element visited at most twice. */ for (size_t i = 0; i < len; i++) { size_t j = keys[i].elementIndex; if (i == j) continue; // fixed point MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!"); Value tv = vec[j]; do { size_t k = keys[j].elementIndex; keys[j].elementIndex = j; vec[j].set(vec[k]); j = k; } while (j != i); // We could assert the loop invariant that |i == keys[i].elementIndex| // here if we synced |keys[i].elementIndex|. But doing so would render // the assertion vacuous, so don't bother, even in debug builds. vec[i].set(tv); } return true; } /* * Sort Values as strings. * * To minimize #conversions, SortLexicographically() first converts all Values * to strings at once, then sorts the elements by these cached strings. */ static bool SortLexicographically(JSContext* cx, MutableHandle> vec, size_t len) { MOZ_ASSERT(vec.length() >= len); StringBuffer sb(cx); Vector strElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!strElements.resize(2 * len)) return false; /* Convert Values to strings. */ size_t cursor = 0; for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; if (!ValueToStringBuffer(cx, vec[i], sb)) return false; strElements[i] = { cursor, sb.length(), i }; cursor = sb.length(); } /* Sort Values in vec alphabetically. */ return MergeSortByKey(strElements.begin(), len, strElements.begin() + len, SortComparatorStringifiedElements(cx, sb), vec); } /* * Sort Values as numbers. * * To minimize #conversions, SortNumerically first converts all Values to * numerics at once, then sorts the elements by these cached numerics. */ static bool SortNumerically(JSContext* cx, MutableHandle> vec, size_t len, ComparatorMatchResult comp) { MOZ_ASSERT(vec.length() >= len); Vector numElements(cx); /* MergeSort uses the upper half as scratch space. */ if (!numElements.resize(2 * len)) return false; /* Convert Values to numerics. */ for (size_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; double dv; if (!ToNumber(cx, vec[i], &dv)) return false; numElements[i] = { dv, i }; } /* Sort Values in vec numerically. */ return MergeSortByKey(numElements.begin(), len, numElements.begin() + len, SortComparatorNumerics[comp], vec); } bool js::array_sort(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedValue fval(cx); if (args.hasDefined(0)) { if (args[0].isPrimitive()) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_SORT_ARG); return false; } fval = args[0]; /* non-default compare function */ } else { fval.setNull(); } RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; ComparatorMatchResult comp = MatchNumericComparator(cx, fval); if (comp == Match_Failure) return false; if (!fval.isNull() && comp == Match_None) { /* * Non-optimized user supplied comparators perform much better when * called from within a self-hosted sorting function. */ RootedAtom selfHostedSortAtom(cx, Atomize(cx, "ArraySort", 9)); RootedPropertyName selfHostedSortName(cx, selfHostedSortAtom->asPropertyName()); RootedValue selfHostedSortValue(cx); if (!GlobalObject::getIntrinsicValue(cx, cx->global(), selfHostedSortName, &selfHostedSortValue)) { return false; } MOZ_ASSERT(selfHostedSortValue.isObject()); MOZ_ASSERT(selfHostedSortValue.toObject().is()); return Call(cx, selfHostedSortValue, args.thisv(), fval, args.rval()); } uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; if (len < 2) { /* [] and [a] remain unchanged when sorted. */ args.rval().setObject(*obj); return true; } /* * We need a temporary array of 2 * len Value to hold the array elements * and the scratch space for merge sort. Check that its size does not * overflow size_t, which would allow for indexing beyond the end of the * malloc'd vector. */ #if JS_BITS_PER_WORD == 32 if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) { ReportAllocationOverflow(cx); return false; } #endif /* * Initialize vec as a root. We will clear elements of vec one by * one while increasing the rooted amount of vec when we know that the * property at the corresponding index exists and its value must be rooted. * * In this way when sorting a huge mostly sparse array we will not * access the tail of vec corresponding to properties that do not * exist, allowing OS to avoiding committing RAM. See bug 330812. */ size_t n, undefs; { Rooted> vec(cx, GCVector(cx)); if (!vec.reserve(2 * size_t(len))) return false; /* * By ECMA 262, 15.4.4.11, a property that does not exist (which we * call a "hole") is always greater than an existing property with * value undefined and that is always greater than any other property. * Thus to sort holes and undefs we simply count them, sort the rest * of elements, append undefs after them and then make holes after * undefs. */ undefs = 0; bool allStrings = true; bool allInts = true; bool extraIndexed = ObjectMayHaveExtraIndexedProperties(obj); RootedValue v(cx); for (uint32_t i = 0; i < len; i++) { if (!CheckForInterrupt(cx)) return false; /* Clear vec[newlen] before including it in the rooted set. */ bool hole; if (!GetElement(cx, obj, i, &hole, &v)) return false; if (hole) continue; if (v.isUndefined()) { ++undefs; continue; } vec.infallibleAppend(v); allStrings = allStrings && v.isString(); allInts = allInts && v.isInt32(); } /* * If the array only contains holes, we're done. But if it contains * undefs, those must be sorted to the front of the array. */ n = vec.length(); if (n == 0 && undefs == 0) { args.rval().setObject(*obj); return true; } /* Here len == n + undefs + number_of_holes. */ if (fval.isNull()) { /* * Sort using the default comparator converting all elements to * strings. */ if (allStrings) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx))) return false; } else if (allInts) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorLexicographicInt32())) { return false; } } else { if (!SortLexicographically(cx, &vec, n)) return false; } } else { if (allInts) { JS_ALWAYS_TRUE(vec.resize(n * 2)); if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp])) return false; } else { if (!SortNumerically(cx, &vec, n, comp)) return false; } } ShouldUpdateTypes updateTypes = !extraIndexed && (allStrings || allInts) ? ShouldUpdateTypes::DontUpdate : ShouldUpdateTypes::Update; if (!InitArrayElements(cx, obj, 0, uint32_t(n), vec.begin(), updateTypes)) return false; } /* Set undefs that sorted after the rest of elements. */ while (undefs != 0) { --undefs; if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, n++, UndefinedHandleValue)) return false; } /* Re-create any holes that sorted to the end of the array. */ while (len > n) { if (!CheckForInterrupt(cx) || !DeletePropertyOrThrow(cx, obj, --len)) return false; } args.rval().setObject(*obj); return true; } bool js::NewbornArrayPush(JSContext* cx, HandleObject obj, const Value& v) { Rooted arr(cx, &obj->as()); MOZ_ASSERT(!v.isMagic()); MOZ_ASSERT(arr->lengthIsWritable()); uint32_t length = arr->length(); MOZ_ASSERT(length <= arr->getDenseCapacity()); if (!arr->ensureElements(cx, length + 1)) return false; arr->setDenseInitializedLength(length + 1); arr->setLengthInt32(length + 1); arr->initDenseElementWithType(cx, length, v); return true; } /* ES5 15.4.4.7 */ bool js::array_push(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.push"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; if (!ObjectMayHaveExtraIndexedProperties(obj)) { DenseElementResult result = SetOrExtendBoxedOrUnboxedDenseElements(cx, obj, length, args.array(), args.length()); if (result != DenseElementResult::Incomplete) { if (result == DenseElementResult::Failure) return false; uint32_t newlength = length + args.length(); args.rval().setNumber(newlength); // Handle updates to the length of non-arrays here. if (!obj->is()) return SetLengthProperty(cx, obj, newlength); return true; } } /* Steps 4-5. */ if (!InitArrayElements(cx, obj, length, args.length(), args.array())) return false; /* Steps 6-7. */ double newlength = length + double(args.length()); args.rval().setNumber(newlength); return SetLengthProperty(cx, obj, newlength); } /* ES6 20130308 draft 15.4.4.6. */ bool js::array_pop(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.pop"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t index; if (!GetLengthProperty(cx, obj, &index)) return false; /* Steps 4-5. */ if (index == 0) { /* Step 4b. */ args.rval().setUndefined(); } else { /* Step 5a. */ index--; /* Step 5b, 5e. */ bool hole; if (!GetElement(cx, obj, index, &hole, args.rval())) return false; /* Step 5c. */ if (!hole && !DeletePropertyOrThrow(cx, obj, index)) return false; } /* Steps 4a, 5d. */ return SetLengthProperty(cx, obj, index); } void js::ArrayShiftMoveElements(NativeObject* obj) { MOZ_ASSERT_IF(obj->is(), obj->as().lengthIsWritable()); size_t initlen = obj->getDenseInitializedLength(); MOZ_ASSERT(initlen > 0); /* * At this point the length and initialized length have already been * decremented and the result fetched, so just shift the array elements * themselves. */ obj->moveDenseElementsNoPreBarrier(0, 1, initlen); } static inline void SetInitializedLength(JSContext* cx, NativeObject* obj, size_t initlen) { size_t oldInitlen = obj->getDenseInitializedLength(); obj->setDenseInitializedLength(initlen); if (initlen < oldInitlen) obj->shrinkElements(cx, initlen); } static DenseElementResult MoveDenseElements(JSContext* cx, NativeObject* obj, uint32_t dstStart, uint32_t srcStart, uint32_t length) { if (obj->denseElementsAreFrozen()) return DenseElementResult::Incomplete; if (!obj->maybeCopyElementsForWrite(cx)) return DenseElementResult::Failure; obj->moveDenseElements(dstStart, srcStart, length); return DenseElementResult::Success; } static DenseElementResult ArrayShiftDenseKernel(JSContext* cx, HandleObject obj, MutableHandleValue rval) { if (ObjectMayHaveExtraIndexedProperties(obj)) return DenseElementResult::Incomplete; RootedObjectGroup group(cx, obj->getGroup(cx)); if (MOZ_UNLIKELY(!group)) return DenseElementResult::Failure; if (MOZ_UNLIKELY(group->hasAllFlags(OBJECT_FLAG_ITERATED))) return DenseElementResult::Incomplete; size_t initlen = obj->as().getDenseInitializedLength(); if (initlen == 0) return DenseElementResult::Incomplete; rval.set(obj->as().getDenseElement(0)); if (rval.isMagic(JS_ELEMENTS_HOLE)) rval.setUndefined(); DenseElementResult result = MoveDenseElements(cx, &obj->as(), 0, 1, initlen - 1); if (result != DenseElementResult::Success) return result; SetInitializedLength(cx, obj.as(), initlen - 1); return DenseElementResult::Success; } /* ES5 15.4.4.9 */ bool js::array_shift(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.shift"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Steps 2-3. */ uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; /* Step 4. */ if (len == 0) { /* Step 4a. */ if (!SetLengthProperty(cx, obj, 0)) return false; /* Step 4b. */ args.rval().setUndefined(); return true; } uint32_t newlen = len - 1; /* Fast paths. */ DenseElementResult result = ArrayShiftDenseKernel(cx, obj, args.rval()); if (result != DenseElementResult::Incomplete) { if (result == DenseElementResult::Failure) return false; return SetLengthProperty(cx, obj, newlen); } /* Steps 5, 10. */ bool hole; if (!GetElement(cx, obj, uint32_t(0), &hole, args.rval())) return false; /* Steps 6-7. */ RootedValue value(cx); for (uint32_t i = 0; i < newlen; i++) { if (!CheckForInterrupt(cx)) return false; if (!GetElement(cx, obj, i + 1, &hole, &value)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, i)) return false; } else { if (!SetArrayElement(cx, obj, i, value)) return false; } } /* Step 8. */ if (!DeletePropertyOrThrow(cx, obj, newlen)) return false; /* Step 9. */ return SetLengthProperty(cx, obj, newlen); } bool js::array_unshift(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.unshift"); CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; double newlen = length; if (args.length() > 0) { /* Slide up the array to make room for all args at the bottom. */ if (length > 0) { // Only include a fast path for boxed arrays. Unboxed arrays can'nt // be optimized here because unshifting temporarily places holes at // the start of the array. bool optimized = false; do { if (!obj->is()) break; if (ObjectMayHaveExtraIndexedProperties(obj)) break; ArrayObject* aobj = &obj->as(); if (!aobj->lengthIsWritable()) break; DenseElementResult result = aobj->ensureDenseElements(cx, length, args.length()); if (result != DenseElementResult::Success) { if (result == DenseElementResult::Failure) return false; MOZ_ASSERT(result == DenseElementResult::Incomplete); break; } aobj->moveDenseElements(args.length(), 0, length); for (uint32_t i = 0; i < args.length(); i++) aobj->setDenseElement(i, MagicValue(JS_ELEMENTS_HOLE)); optimized = true; } while (false); if (!optimized) { double last = length; double upperIndex = last + args.length(); RootedValue value(cx); do { --last, --upperIndex; bool hole; if (!CheckForInterrupt(cx)) return false; if (!GetElement(cx, obj, last, &hole, &value)) return false; if (hole) { if (!DeletePropertyOrThrow(cx, obj, upperIndex)) return false; } else { if (!SetArrayElement(cx, obj, upperIndex, value)) return false; } } while (last != 0); } } /* Copy from args to the bottom of the array. */ if (!InitArrayElements(cx, obj, 0, args.length(), args.array())) return false; newlen += args.length(); } if (!SetLengthProperty(cx, obj, newlen)) return false; /* Follow Perl by returning the new array length. */ args.rval().setNumber(newlen); return true; } /* * Returns true if this is a dense or unboxed array whose |count| properties * starting from |startingIndex| may be accessed (get, set, delete) directly * through its contiguous vector of elements without fear of getters, setters, * etc. along the prototype chain, or of enumerators requiring notification of * modifications. */ static inline bool CanOptimizeForDenseStorage(HandleObject arr, uint32_t startingIndex, uint32_t count, JSContext* cx) { /* If the desired properties overflow dense storage, we can't optimize. */ if (UINT32_MAX - startingIndex < count) return false; /* There's no optimizing possible if it's not an array. */ if (!arr->is()) return false; /* If it's a frozen array, always pick the slow path */ if (arr->as().denseElementsAreFrozen()) return false; /* * Don't optimize if the array might be in the midst of iteration. We * rely on this to be able to safely move dense array elements around with * just a memmove (see NativeObject::moveDenseArrayElements), without worrying * about updating any in-progress enumerators for properties implicitly * deleted if a hole is moved from one location to another location not yet * visited. See bug 690622. */ ObjectGroup* arrGroup = arr->getGroup(cx); if (!arrGroup) { cx->recoverFromOutOfMemory(); return false; } if (MOZ_UNLIKELY(arrGroup->hasAllFlags(OBJECT_FLAG_ITERATED))) return false; /* * Another potential wrinkle: what if the enumeration is happening on an * object which merely has |arr| on its prototype chain? */ if (arr->isDelegate()) return false; /* * Now watch out for getters and setters along the prototype chain or in * other indexed properties on the object. (Note that non-writable length * is subsumed by the initializedLength comparison.) */ return !ObjectMayHaveExtraIndexedProperties(arr) && startingIndex + count <= arr->as().getDenseInitializedLength(); } static inline DenseElementResult CopyDenseElements(JSContext* cx, NativeObject* dst, NativeObject* src, uint32_t dstStart, uint32_t srcStart, uint32_t length) { MOZ_ASSERT(dst->getDenseInitializedLength() == dstStart); MOZ_ASSERT(src->getDenseInitializedLength() >= srcStart + length); MOZ_ASSERT(dst->getDenseCapacity() >= dstStart + length); dst->setDenseInitializedLength(dstStart + length); const Value* vp = src->getDenseElements() + srcStart; dst->initDenseElements(dstStart, vp, length); return DenseElementResult::Success; } /* ES 2016 draft Mar 25, 2016 22.1.3.26. */ bool js::array_splice(JSContext* cx, unsigned argc, Value* vp) { return array_splice_impl(cx, argc, vp, true); } static inline bool ArraySpliceCopy(JSContext* cx, HandleObject arr, HandleObject obj, uint32_t actualStart, uint32_t actualDeleteCount) { /* Steps 14, 15, 15.e. */ RootedValue fromValue(cx); for (uint32_t k = 0; k < actualDeleteCount; k++) { /* Step 15.a (implicit). */ if (!CheckForInterrupt(cx)) return false; /* Steps 15.b-c, 15.d.i-ii. */ bool hole; if (!GetElement(cx, obj, actualStart + k, &hole, &fromValue)) return false; /* Step 15.d. */ if (!hole) { /* Step 15.d.iii-iv. */ if (!DefineElement(cx, arr, k, fromValue)) return false; } } /* Steps 16-17. */ return SetLengthProperty(cx, arr, actualDeleteCount); } bool js::array_splice_impl(JSContext* cx, unsigned argc, Value* vp, bool returnValueIsUsed) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.splice"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Step 2. */ uint32_t len; if (!GetLengthProperty(cx, obj, &len)) return false; /* Step 3. */ double relativeStart; if (!ToInteger(cx, args.get(0), &relativeStart)) return false; /* Step 4. */ uint32_t actualStart; if (relativeStart < 0) actualStart = Max(len + relativeStart, 0.0); else actualStart = Min(relativeStart, double(len)); /* Step 5. */ uint32_t actualDeleteCount; if (args.length() == 0) { /* Step 5.b. */ actualDeleteCount = 0; } else if (args.length() == 1) { /* Step 6.b. */ actualDeleteCount = len - actualStart; } else { /* Steps 7.b. */ double deleteCountDouble; RootedValue cnt(cx, args[1]); if (!ToInteger(cx, cnt, &deleteCountDouble)) return false; /* Step 7.c. */ actualDeleteCount = Min(Max(deleteCountDouble, 0.0), double(len - actualStart)); } /* Step 8 (implicit). */ MOZ_ASSERT(len - actualStart >= actualDeleteCount); RootedObject arr(cx); if (IsArraySpecies(cx, obj)) { if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) { if (returnValueIsUsed) { /* Step 9. */ arr = NewFullyAllocatedArrayTryReuseGroup(cx, obj, actualDeleteCount); if (!arr) return false; /* Steps 10-11. */ DebugOnly result = CopyDenseElements(cx, &arr->as(), &obj->as(), 0, actualStart, actualDeleteCount); MOZ_ASSERT(result.value == DenseElementResult::Success); /* Step 12 (implicit). */ } } else { /* Step 9. */ arr = NewFullyAllocatedArrayTryReuseGroup(cx, obj, actualDeleteCount); if (!arr) return false; /* Steps 10-12. */ if (!ArraySpliceCopy(cx, arr, obj, actualStart, actualDeleteCount)) return false; } } else { /* Steps 9. */ if (!ArraySpeciesCreate(cx, obj, actualDeleteCount, &arr)) return false; /* Steps 10-12. */ if (!ArraySpliceCopy(cx, arr, obj, actualStart, actualDeleteCount)) return false; } /* Step 14. */ uint32_t itemCount = (args.length() >= 2) ? (args.length() - 2) : 0; if (itemCount < actualDeleteCount) { /* Step 15: the array is being shrunk. */ uint32_t sourceIndex = actualStart + actualDeleteCount; uint32_t targetIndex = actualStart + itemCount; uint32_t finalLength = len - actualDeleteCount + itemCount; if (CanOptimizeForDenseStorage(obj, 0, len, cx)) { /* Steps 15.a-b. */ DenseElementResult result = MoveDenseElements(cx, &obj->as(), targetIndex, sourceIndex, len - sourceIndex); MOZ_ASSERT(result != DenseElementResult::Incomplete); if (result == DenseElementResult::Failure) return false; /* Steps 15.c-d. */ SetInitializedLength(cx, obj.as(), finalLength); } else { /* * This is all very slow if the length is very large. We don't yet * have the ability to iterate in sorted order, so we just do the * pessimistic thing and let CheckForInterrupt handle the * fallout. */ /* Steps 15.a-b. */ RootedValue fromValue(cx); for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) { /* Steps 15.b.i-ii (implicit). */ if (!CheckForInterrupt(cx)) return false; /* Steps 15.b.iii, 15.b.iv.1. */ bool hole; if (!GetElement(cx, obj, from, &hole, &fromValue)) return false; /* Steps 15.b.iv. */ if (hole) { /* Steps 15.b.v.1. */ if (!DeletePropertyOrThrow(cx, obj, to)) return false; } else { /* Step 15.b.iv.2. */ if (!SetArrayElement(cx, obj, to, fromValue)) return false; } } /* Steps 15.c-d. */ for (uint32_t k = len; k > finalLength; k--) { /* Steps 15.d.i-ii. */ if (!DeletePropertyOrThrow(cx, obj, k - 1)) return false; } } } else if (itemCount > actualDeleteCount) { /* Step 16. */ /* * Optimize only if the array is already dense and we can extend it to * its new length. It would be wrong to extend the elements here for a * number of reasons. * * First, this could cause us to fall into the fast-path below. This * would cause elements to be moved into places past the non-writable * length. And when the dense initialized length is updated, that'll * cause the |in| operator to think that those elements actually exist, * even though, properly, setting them must fail. * * Second, extending the elements here will trigger assertions inside * ensureDenseElements that the elements aren't being extended past the * length of a non-writable array. This is because extending elements * will extend capacity -- which might extend them past a non-writable * length, violating the |capacity <= length| invariant for such * arrays. And that would make the various JITted fast-path method * implementations of [].push, [].unshift, and so on wrong. * * If the array length is non-writable, this method *will* throw. For * simplicity, have the slow-path code do it. (Also note that the slow * path may validly *not* throw -- if all the elements being moved are * holes.) */ if (obj->is()) { Rooted arr(cx, &obj->as()); if (arr->lengthIsWritable()) { DenseElementResult result = arr->ensureDenseElements(cx, len, itemCount - actualDeleteCount); if (result == DenseElementResult::Failure) return false; } } if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) { DenseElementResult result = MoveDenseElements(cx, &obj->as(), actualStart + itemCount, actualStart + actualDeleteCount, len - (actualStart + actualDeleteCount)); MOZ_ASSERT(result != DenseElementResult::Incomplete); if (result == DenseElementResult::Failure) return false; /* Steps 16.a-b. */ SetInitializedLength(cx, obj.as(), len + itemCount - actualDeleteCount); } else { RootedValue fromValue(cx); for (double k = len - actualDeleteCount; k > actualStart; k--) { if (!CheckForInterrupt(cx)) return false; /* Step 16.b.i. */ double from = k + actualDeleteCount - 1; /* Step 16.b.ii. */ double to = k + itemCount - 1; /* Steps 16.b.iii, 16.b.iv.1. */ bool hole; if (!GetElement(cx, obj, from, &hole, &fromValue)) return false; /* Steps 16.b.iv. */ if (hole) { /* Step 16.b.v.1. */ if (!DeletePropertyOrThrow(cx, obj, to)) return false; } else { /* Step 16.b.iv.2. */ if (!SetArrayElement(cx, obj, to, fromValue)) return false; } } } } /* Step 13 (reordered). */ Value* items = args.array() + 2; /* Steps 17-18. */ for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) { /* Step 18.a (implicit). */ /* Step 18.b. */ if (!SetArrayElement(cx, obj, k, HandleValue::fromMarkedLocation(&items[i]))) return false; } /* Step 19. */ double finalLength = double(len) - actualDeleteCount + itemCount; if (!SetLengthProperty(cx, obj, finalLength)) return false; /* Step 20. */ if (returnValueIsUsed) args.rval().setObject(*arr); return true; } struct SortComparatorIndexes { bool operator()(uint32_t a, uint32_t b, bool* lessOrEqualp) { *lessOrEqualp = (a <= b); return true; } }; // Returns all indexed properties in the range [begin, end) found on |obj| or // its proto chain. This function does not handle proxies, objects with // resolve/lookupProperty hooks or indexed getters, as those can introduce // new properties. In those cases, *success is set to |false|. static bool GetIndexedPropertiesInRange(JSContext* cx, HandleObject obj, uint32_t begin, uint32_t end, Vector& indexes, bool* success) { *success = false; // First, look for proxies or class hooks that can introduce extra // properties. JSObject* pobj = obj; do { if (!pobj->isNative() || pobj->getClass()->getResolve() || pobj->getOpsLookupProperty()) return true; } while ((pobj = pobj->staticPrototype())); // Collect indexed property names. pobj = obj; do { // Append dense elements. NativeObject* nativeObj = &pobj->as(); uint32_t initLen = nativeObj->getDenseInitializedLength(); for (uint32_t i = begin; i < initLen && i < end; i++) { if (nativeObj->getDenseElement(i).isMagic(JS_ELEMENTS_HOLE)) continue; if (!indexes.append(i)) return false; } // Append typed array elements. if (pobj->is()) { uint32_t len = pobj->as().length(); for (uint32_t i = begin; i < len && i < end; i++) { if (!indexes.append(i)) return false; } } // Append sparse elements. if (pobj->isIndexed()) { Shape::Range r(pobj->as().lastProperty()); for (; !r.empty(); r.popFront()) { Shape& shape = r.front(); jsid id = shape.propid(); if (!JSID_IS_INT(id)) continue; uint32_t i = uint32_t(JSID_TO_INT(id)); if (!(begin <= i && i < end)) continue; // Watch out for getters, they can add new properties. if (!shape.hasDefaultGetter()) return true; if (!indexes.append(i)) return false; } } } while ((pobj = pobj->staticPrototype())); // Sort the indexes. Vector tmp(cx); size_t n = indexes.length(); if (!tmp.resize(n)) return false; if (!MergeSort(indexes.begin(), n, tmp.begin(), SortComparatorIndexes())) return false; // Remove duplicates. if (!indexes.empty()) { uint32_t last = 0; for (size_t i = 1, len = indexes.length(); i < len; i++) { uint32_t elem = indexes[i]; if (indexes[last] != elem) { last++; indexes[last] = elem; } } if (!indexes.resize(last + 1)) return false; } *success = true; return true; } static bool SliceSlowly(JSContext* cx, HandleObject obj, HandleObject receiver, uint32_t begin, uint32_t end, HandleObject result) { RootedValue value(cx); for (uint32_t slot = begin; slot < end; slot++) { bool hole; if (!CheckForInterrupt(cx) || !GetElement(cx, obj, receiver, slot, &hole, &value)) { return false; } if (!hole && !DefineElement(cx, result, slot - begin, value)) return false; } return true; } static bool SliceSparse(JSContext* cx, HandleObject obj, uint32_t begin, uint32_t end, HandleArrayObject result) { MOZ_ASSERT(begin <= end); Vector indexes(cx); bool success; if (!GetIndexedPropertiesInRange(cx, obj, begin, end, indexes, &success)) return false; if (!success) return SliceSlowly(cx, obj, obj, begin, end, result); RootedValue value(cx); for (size_t i = 0, len = indexes.length(); i < len; i++) { uint32_t index = indexes[i]; MOZ_ASSERT(begin <= index && index < end); bool hole; if (!GetElement(cx, obj, obj, index, &hole, &value)) return false; if (!hole && !DefineElement(cx, result, index - begin, value)) return false; } return true; } template static inline uint32_t NormalizeSliceTerm(T value, uint32_t length) { if (value < 0) { value += length; if (value < 0) return 0; } else if (double(value) > double(length)) { return length; } return uint32_t(value); } static bool ArraySliceOrdinary(JSContext* cx, HandleObject obj, uint32_t length, uint32_t begin, uint32_t end, MutableHandleObject arr) { if (begin > end) begin = end; if (!ObjectMayHaveExtraIndexedProperties(obj)) { size_t initlen = obj->as().getDenseInitializedLength(); size_t count = 0; if (initlen > begin) count = Min(initlen - begin, end - begin); RootedArrayObject narr(cx, NewFullyAllocatedArrayTryReuseGroup(cx, obj, count)); if (!narr) return false; MOZ_ASSERT(count >= narr->as().length()); narr->as().setLength(cx, count); if (count) { DebugOnly result = CopyDenseElements(cx, &narr->as(), &obj->as(), 0, begin, count); MOZ_ASSERT(result.value == DenseElementResult::Success); } arr.set(narr); return true; } RootedArrayObject narr(cx, NewPartlyAllocatedArrayTryReuseGroup(cx, obj, end - begin)); if (!narr) return false; if (js::GetElementsOp op = obj->getOpsGetElements()) { ElementAdder adder(cx, narr, end - begin, ElementAdder::CheckHasElemPreserveHoles); if (!op(cx, obj, begin, end, &adder)) return false; arr.set(narr); return true; } if (obj->isNative() && obj->isIndexed() && end - begin > 1000) { if (!SliceSparse(cx, obj, begin, end, narr)) return false; } else { if (!SliceSlowly(cx, obj, obj, begin, end, narr)) return false; } arr.set(narr); return true; } /* ES 2016 draft Mar 25, 2016 22.1.3.23. */ bool js::array_slice(JSContext* cx, unsigned argc, Value* vp) { AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.slice"); CallArgs args = CallArgsFromVp(argc, vp); /* Step 1. */ RootedObject obj(cx, ToObject(cx, args.thisv())); if (!obj) return false; /* Step 2. */ uint32_t length; if (!GetLengthProperty(cx, obj, &length)) return false; uint32_t k = 0; uint32_t final = length; if (args.length() > 0) { double d; /* Step 3. */ if (!ToInteger(cx, args[0], &d)) return false; /* Step 4. */ k = NormalizeSliceTerm(d, length); if (args.hasDefined(1)) { /* Step 5. */ if (!ToInteger(cx, args[1], &d)) return false; /* Step 6. */ final = NormalizeSliceTerm(d, length); } } /* Step 7. */ uint32_t count = final > k ? final - k : 0; RootedObject arr(cx); if (IsArraySpecies(cx, obj)) { /* Steps 8-11: Optimized for ordinary array. */ if (!ArraySliceOrdinary(cx, obj, length, k, final, &arr)) return false; /* Step 12. */ args.rval().setObject(*arr); return true; } /* Step 8. */ if (!ArraySpeciesCreate(cx, obj, count, &arr)) return false; /* Step 9. */ uint32_t n = 0; /* Step 10. */ RootedValue kValue(cx); while (k < final) { if (!CheckForInterrupt(cx)) return false; /* Steps 10.a-b, and 10.c.i. */ bool kNotPresent; if (!GetElement(cx, obj, k, &kNotPresent, &kValue)) return false; /* Step 10.c. */ if (!kNotPresent) { /* Steps 10.c.ii. */ if (!DefineElement(cx, arr, n, kValue)) return false; } /* Step 10.d. */ k++; /* Step 10.e. */ n++; } /* Step 11. */ if (!SetLengthProperty(cx, arr, n)) return false; /* Step 12. */ args.rval().setObject(*arr); return true; } static bool ArraySliceDenseKernel(JSContext* cx, ArrayObject* arr, int32_t beginArg, int32_t endArg, ArrayObject* result) { int32_t length = arr->length(); uint32_t begin = NormalizeSliceTerm(beginArg, length); uint32_t end = NormalizeSliceTerm(endArg, length); if (begin > end) begin = end; size_t initlen = arr->getDenseInitializedLength(); size_t count = Min(initlen - begin, end - begin); if (initlen > begin) { if (count) { if (!result->ensureElements(cx, count)) return false; CopyDenseElements(cx, &result->as(), &arr->as(), 0, begin, count); } } MOZ_ASSERT(count >= result->length()); result->setLength(cx, count); return true; } JSObject* js::array_slice_dense(JSContext* cx, HandleObject obj, int32_t begin, int32_t end, HandleObject result) { if (result && IsArraySpecies(cx, obj)) { if (!ArraySliceDenseKernel(cx, &obj->as(), begin, end, &result->as())) { return nullptr; } return result; } // Slower path if the JIT wasn't able to allocate an object inline. JS::AutoValueArray<4> argv(cx); argv[0].setUndefined(); argv[1].setObject(*obj); argv[2].setInt32(begin); argv[3].setInt32(end); if (!array_slice(cx, 2, argv.begin())) return nullptr; return &argv[0].toObject(); } static bool array_isArray(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); bool isArray = false; if (args.get(0).isObject()) { RootedObject obj(cx, &args[0].toObject()); if (!IsArray(cx, obj, &isArray)) return false; } args.rval().setBoolean(isArray); return true; } static bool ArrayFromCallArgs(JSContext* cx, CallArgs& args, HandleObject proto = nullptr) { ArrayObject* obj = NewCopiedArrayForCallingAllocationSite(cx, args.array(), args.length(), proto); if (!obj) return false; args.rval().setObject(*obj); return true; } static bool array_of(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (IsArrayConstructor(args.thisv()) || !IsConstructor(args.thisv())) { // IsArrayConstructor(this) will usually be true in practice. This is // the most common path. return ArrayFromCallArgs(cx, args); } // Step 4. RootedObject obj(cx); { FixedConstructArgs<1> cargs(cx); cargs[0].setNumber(args.length()); if (!Construct(cx, args.thisv(), cargs, args.thisv(), &obj)) return false; } // Step 8. for (unsigned k = 0; k < args.length(); k++) { if (!DefineElement(cx, obj, k, args[k])) return false; } // Steps 9-10. if (!SetLengthProperty(cx, obj, args.length())) return false; // Step 11. args.rval().setObject(*obj); return true; } static const JSFunctionSpec array_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, array_toSource, 0,0), #endif JS_SELF_HOSTED_FN(js_toString_str, "ArrayToString", 0,0), JS_FN(js_toLocaleString_str, array_toLocaleString, 0,0), /* Perl-ish methods. */ JS_INLINABLE_FN("join", array_join, 1,0, ArrayJoin), JS_FN("reverse", array_reverse, 0,0), JS_FN("sort", array_sort, 1,0), JS_INLINABLE_FN("push", array_push, 1,0, ArrayPush), JS_INLINABLE_FN("pop", array_pop, 0,0, ArrayPop), JS_INLINABLE_FN("shift", array_shift, 0,0, ArrayShift), JS_FN("unshift", array_unshift, 1,0), JS_INLINABLE_FN("splice", array_splice, 2,0, ArraySplice), /* Pythonic sequence methods. */ JS_SELF_HOSTED_FN("concat", "ArrayConcat", 1,0), JS_INLINABLE_FN("slice", array_slice, 2,0, ArraySlice), JS_SELF_HOSTED_FN("lastIndexOf", "ArrayLastIndexOf", 1,0), JS_SELF_HOSTED_FN("indexOf", "ArrayIndexOf", 1,0), JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1,0), JS_SELF_HOSTED_FN("map", "ArrayMap", 1,0), JS_SELF_HOSTED_FN("filter", "ArrayFilter", 1,0), JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1,0), JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1,0), JS_SELF_HOSTED_FN("some", "ArraySome", 1,0), JS_SELF_HOSTED_FN("every", "ArrayEvery", 1,0), /* ES6 additions */ JS_SELF_HOSTED_FN("find", "ArrayFind", 1,0), JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1,0), JS_SELF_HOSTED_FN("copyWithin", "ArrayCopyWithin", 3,0), JS_SELF_HOSTED_FN("fill", "ArrayFill", 3,0), JS_SELF_HOSTED_SYM_FN(iterator, "ArrayValues", 0,0), JS_SELF_HOSTED_FN("entries", "ArrayEntries", 0,0), JS_SELF_HOSTED_FN("keys", "ArrayKeys", 0,0), JS_SELF_HOSTED_FN("values", "ArrayValues", 0,0), /* ES7 additions */ JS_SELF_HOSTED_FN("includes", "ArrayIncludes", 2,0), /* ES2019 additions */ JS_SELF_HOSTED_FN("flat", "ArrayFlat", 0,0), JS_SELF_HOSTED_FN("flatMap", "ArrayFlatMap", 1,0), JS_FS_END }; static const JSFunctionSpec array_static_methods[] = { JS_INLINABLE_FN("isArray", array_isArray, 1,0, ArrayIsArray), JS_SELF_HOSTED_FN("concat", "ArrayStaticConcat", 2,0), JS_SELF_HOSTED_FN("lastIndexOf", "ArrayStaticLastIndexOf", 2,0), JS_SELF_HOSTED_FN("indexOf", "ArrayStaticIndexOf", 2,0), JS_SELF_HOSTED_FN("forEach", "ArrayStaticForEach", 2,0), JS_SELF_HOSTED_FN("map", "ArrayStaticMap", 2,0), JS_SELF_HOSTED_FN("filter", "ArrayStaticFilter", 2,0), JS_SELF_HOSTED_FN("every", "ArrayStaticEvery", 2,0), JS_SELF_HOSTED_FN("some", "ArrayStaticSome", 2,0), JS_SELF_HOSTED_FN("reduce", "ArrayStaticReduce", 2,0), JS_SELF_HOSTED_FN("reduceRight", "ArrayStaticReduceRight", 2,0), JS_SELF_HOSTED_FN("join", "ArrayStaticJoin", 2,0), JS_SELF_HOSTED_FN("reverse", "ArrayStaticReverse", 1,0), JS_SELF_HOSTED_FN("sort", "ArrayStaticSort", 2,0), JS_SELF_HOSTED_FN("push", "ArrayStaticPush", 2,0), JS_SELF_HOSTED_FN("pop", "ArrayStaticPop", 1,0), JS_SELF_HOSTED_FN("shift", "ArrayStaticShift", 1,0), JS_SELF_HOSTED_FN("unshift", "ArrayStaticUnshift", 2,0), JS_SELF_HOSTED_FN("splice", "ArrayStaticSplice", 3,0), JS_SELF_HOSTED_FN("slice", "ArrayStaticSlice", 3,0), JS_SELF_HOSTED_FN("from", "ArrayFrom", 3,0), JS_FN("of", array_of, 0,0), JS_FS_END }; const JSPropertySpec array_static_props[] = { JS_SELF_HOSTED_SYM_GET(species, "ArraySpecies", 0), JS_PS_END }; static inline bool ArrayConstructorImpl(JSContext* cx, CallArgs& args, bool isConstructor) { RootedObject proto(cx); if (isConstructor) { if (!GetPrototypeFromCallableConstructor(cx, args, &proto)) return false; } else { // We're emulating |new Array(n)| with |std_Array(n)| in self-hosted JS, // and the proto should be %ArrayPrototype% regardless of the callee. proto = GlobalObject::getOrCreateArrayPrototype(cx, cx->global()); if (!proto) return false; } if (args.length() != 1 || !args[0].isNumber()) return ArrayFromCallArgs(cx, args, proto); uint32_t length; if (args[0].isInt32()) { int32_t i = args[0].toInt32(); if (i < 0) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } length = uint32_t(i); } else { double d = args[0].toDouble(); length = ToUint32(d); if (d != double(length)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return false; } } ArrayObject* obj = NewPartlyAllocatedArrayForCallingAllocationSite(cx, length, proto); if (!obj) return false; args.rval().setObject(*obj); return true; } /* ES5 15.4.2 */ bool js::ArrayConstructor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return ArrayConstructorImpl(cx, args, /* isConstructor = */ true); } bool js::array_construct(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(!args.isConstructing()); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isNumber()); return ArrayConstructorImpl(cx, args, /* isConstructor = */ false); } ArrayObject* js::ArrayConstructorOneArg(JSContext* cx, HandleObjectGroup group, int32_t lengthInt) { if (lengthInt < 0) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); return nullptr; } uint32_t length = uint32_t(lengthInt); return NewPartlyAllocatedArrayTryUseGroup(cx, group, length); } static JSObject* CreateArrayPrototype(JSContext* cx, JSProtoKey key) { MOZ_ASSERT(key == JSProto_Array); RootedObject proto(cx, cx->global()->getOrCreateObjectPrototype(cx)); if (!proto) return nullptr; RootedObjectGroup group(cx, ObjectGroup::defaultNewGroup(cx, &ArrayObject::class_, TaggedProto(proto))); if (!group) return nullptr; RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayObject::class_, TaggedProto(proto), gc::AllocKind::OBJECT0)); if (!shape) return nullptr; AutoSetNewObjectMetadata metadata(cx); RootedArrayObject arrayProto(cx, ArrayObject::createArray(cx, gc::AllocKind::OBJECT4, gc::TenuredHeap, shape, group, 0, metadata)); if (!arrayProto || !JSObject::setSingleton(cx, arrayProto) || !arrayProto->setDelegate(cx) || !AddLengthProperty(cx, arrayProto)) { return nullptr; } /* * The default 'new' group of Array.prototype is required by type inference * to have unknown properties, to simplify handling of e.g. heterogenous * arrays in JSON and script literals and allows setDenseArrayElement to * be used without updating the indexed type set for such default arrays. */ if (!JSObject::setNewGroupUnknown(cx, &ArrayObject::class_, arrayProto)) return nullptr; return arrayProto; } static bool array_proto_finish(JSContext* cx, JS::HandleObject ctor, JS::HandleObject proto) { // Add Array.prototype[@@unscopables]. ECMA-262 draft (2016 Mar 19) 22.1.3.32. RootedObject unscopables(cx, NewObjectWithGivenProto(cx, nullptr, TenuredObject)); if (!unscopables) return false; RootedValue value(cx, BooleanValue(true)); if (!DefineProperty(cx, unscopables, cx->names().copyWithin, value) || !DefineProperty(cx, unscopables, cx->names().entries, value) || !DefineProperty(cx, unscopables, cx->names().fill, value) || !DefineProperty(cx, unscopables, cx->names().find, value) || !DefineProperty(cx, unscopables, cx->names().findIndex, value) || !DefineProperty(cx, unscopables, cx->names().flat, value) || !DefineProperty(cx, unscopables, cx->names().flatMap, value) || !DefineProperty(cx, unscopables, cx->names().includes, value) || !DefineProperty(cx, unscopables, cx->names().keys, value) || !DefineProperty(cx, unscopables, cx->names().values, value)) { return false; } RootedId id(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().get(JS::SymbolCode::unscopables))); value.setObject(*unscopables); return DefineProperty(cx, proto, id, value, nullptr, nullptr, JSPROP_READONLY); } static const ClassOps ArrayObjectClassOps = { array_addProperty, nullptr, /* delProperty */ nullptr, /* getProperty */ nullptr, /* setProperty */ nullptr, /* enumerate */ nullptr, /* resolve */ nullptr, /* mayResolve */ nullptr, /* finalize */ nullptr, /* call */ nullptr, /* hasInstance */ nullptr, /* construct */ nullptr, /* trace */ }; static const ClassSpec ArrayObjectClassSpec = { GenericCreateConstructor, CreateArrayPrototype, array_static_methods, array_static_props, array_methods, nullptr, array_proto_finish }; const Class ArrayObject::class_ = { "Array", JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_DELAY_METADATA_BUILDER, &ArrayObjectClassOps, &ArrayObjectClassSpec }; /* * Array allocation functions. */ static inline bool EnsureNewArrayElements(ExclusiveContext* cx, ArrayObject* obj, uint32_t length) { /* * If ensureElements creates dynamically allocated slots, then having * fixedSlots is a waste. */ DebugOnly cap = obj->getDenseCapacity(); if (!obj->ensureElements(cx, length)) return false; MOZ_ASSERT_IF(cap, !obj->hasDynamicElements()); return true; } template static MOZ_ALWAYS_INLINE ArrayObject* NewArray(ExclusiveContext* cxArg, uint32_t length, HandleObject protoArg, NewObjectKind newKind = GenericObject) { gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); allocKind = GetBackgroundAllocKind(allocKind); RootedObject proto(cxArg, protoArg); if (!proto && !GetBuiltinPrototype(cxArg, JSProto_Array, &proto)) return nullptr; Rooted taggedProto(cxArg, TaggedProto(proto)); bool isCachable = NewObjectWithTaggedProtoIsCachable(cxArg, taggedProto, newKind, &ArrayObject::class_); if (isCachable) { JSContext* cx = cxArg->asJSContext(); NewObjectCache& cache = cx->caches.newObjectCache; NewObjectCache::EntryIndex entry = -1; if (cache.lookupProto(&ArrayObject::class_, proto, allocKind, &entry)) { gc::InitialHeap heap = GetInitialHeap(newKind, &ArrayObject::class_); AutoSetNewObjectMetadata metadata(cx); JSObject* obj = cache.newObjectFromHit(cx, entry, heap); if (obj) { /* Fixup the elements pointer and length, which may be incorrect. */ ArrayObject* arr = &obj->as(); arr->setFixedElements(); arr->setLength(cx, length); if (maxLength > 0 && !EnsureNewArrayElements(cx, arr, std::min(maxLength, length))) { return nullptr; } return arr; } } } RootedObjectGroup group(cxArg, ObjectGroup::defaultNewGroup(cxArg, &ArrayObject::class_, TaggedProto(proto))); if (!group) return nullptr; /* * Get a shape with zero fixed slots, regardless of the size class. * See JSObject::createArray. */ RootedShape shape(cxArg, EmptyShape::getInitialShape(cxArg, &ArrayObject::class_, TaggedProto(proto), gc::AllocKind::OBJECT0)); if (!shape) return nullptr; AutoSetNewObjectMetadata metadata(cxArg); RootedArrayObject arr(cxArg, ArrayObject::createArray(cxArg, allocKind, GetInitialHeap(newKind, &ArrayObject::class_), shape, group, length, metadata)); if (!arr) return nullptr; if (shape->isEmptyShape()) { if (!AddLengthProperty(cxArg, arr)) return nullptr; shape = arr->lastProperty(); EmptyShape::insertInitialShape(cxArg, shape, proto); } if (newKind == SingletonObject && !JSObject::setSingleton(cxArg, arr)) return nullptr; if (isCachable) { NewObjectCache& cache = cxArg->asJSContext()->caches.newObjectCache; NewObjectCache::EntryIndex entry = -1; cache.lookupProto(&ArrayObject::class_, proto, allocKind, &entry); cache.fillProto(entry, &ArrayObject::class_, taggedProto, allocKind, arr); } if (maxLength > 0 && !EnsureNewArrayElements(cxArg, arr, std::min(maxLength, length))) return nullptr; probes::CreateObject(cxArg, arr); return arr; } ArrayObject * JS_FASTCALL js::NewDenseEmptyArray(JSContext* cx, HandleObject proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray<0>(cx, 0, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDenseFullyAllocatedArray(ExclusiveContext* cx, uint32_t length, HandleObject proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray(cx, length, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDensePartlyAllocatedArray(ExclusiveContext* cx, uint32_t length, HandleObject proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray(cx, length, proto, newKind); } ArrayObject * JS_FASTCALL js::NewDenseUnallocatedArray(ExclusiveContext* cx, uint32_t length, HandleObject proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { return NewArray<0>(cx, length, proto, newKind); } // values must point at already-rooted Value objects ArrayObject* js::NewDenseCopiedArray(ExclusiveContext* cx, uint32_t length, const Value* values, HandleObject proto /* = nullptr */, NewObjectKind newKind /* = GenericObject */) { ArrayObject* arr = NewArray(cx, length, proto, newKind); if (!arr) return nullptr; MOZ_ASSERT(arr->getDenseCapacity() >= length); arr->setDenseInitializedLength(values ? length : 0); if (values) arr->initDenseElements(0, values, length); return arr; } ArrayObject* js::NewDenseFullyAllocatedArrayWithTemplate(JSContext* cx, uint32_t length, JSObject* templateObject) { AutoSetNewObjectMetadata metadata(cx); gc::AllocKind allocKind = GuessArrayGCKind(length); MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); allocKind = GetBackgroundAllocKind(allocKind); RootedObjectGroup group(cx, templateObject->group()); RootedShape shape(cx, templateObject->as().lastProperty()); gc::InitialHeap heap = GetInitialHeap(GenericObject, &ArrayObject::class_); Rooted arr(cx, ArrayObject::createArray(cx, allocKind, heap, shape, group, length, metadata)); if (!arr) return nullptr; if (!EnsureNewArrayElements(cx, arr, length)) return nullptr; probes::CreateObject(cx, arr); return arr; } ArrayObject* js::NewDenseCopyOnWriteArray(JSContext* cx, HandleArrayObject templateObject, gc::InitialHeap heap) { MOZ_ASSERT(!gc::IsInsideNursery(templateObject)); ArrayObject* arr = ArrayObject::createCopyOnWriteArray(cx, heap, templateObject); if (!arr) return nullptr; probes::CreateObject(cx, arr); return arr; } // Return a new boxed or unboxed array with the specified length and allocated // capacity (up to maxLength), using the specified group if possible. If the // specified group cannot be used, ensure that the created array at least has // the given [[Prototype]]. template static inline ArrayObject* NewArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length, NewObjectKind newKind = GenericObject) { MOZ_ASSERT(newKind != SingletonObject); if (group->maybePreliminaryObjects()) group->maybePreliminaryObjects()->maybeAnalyze(cx, group); if (group->shouldPreTenure() || group->maybePreliminaryObjects()) newKind = TenuredObject; RootedObject proto(cx, group->proto().toObject()); ArrayObject* res = NewArray(cx, length, proto, newKind); if (!res) return nullptr; res->setGroup(group); // If the length calculation overflowed, make sure that is marked for the // new group. if (res->length() > INT32_MAX) res->setLength(cx, res->length()); if (PreliminaryObjectArray* preliminaryObjects = group->maybePreliminaryObjects()) preliminaryObjects->registerNewObject(res); return res; } ArrayObject* js::NewFullyAllocatedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length, NewObjectKind newKind) { return NewArrayTryUseGroup(cx, group, length, newKind); } ArrayObject* js::NewPartlyAllocatedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length) { return NewArrayTryUseGroup(cx, group, length); } // Return a new array with the default prototype and specified allocated // capacity and length. If possible, try to reuse the group of the input // object. The resulting array will either reuse the input object's group or // will have unknown property types. Additionally, the result will have the // same boxed/unboxed elements representation as the input object, unless // |length| is larger than the input object's initialized length (in which case // UnboxedArrayObject::MaximumCapacity might be exceeded). template static inline ArrayObject* NewArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length, NewObjectKind newKind = GenericObject) { if (!obj->is()) return NewArray(cx, length, nullptr, newKind); if (obj->staticPrototype() != cx->global()->maybeGetArrayPrototype()) return NewArray(cx, length, nullptr, newKind); RootedObjectGroup group(cx, obj->getGroup(cx)); if (!group) return nullptr; return NewArrayTryUseGroup(cx, group, length, newKind); } ArrayObject* js::NewFullyAllocatedArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length, NewObjectKind newKind) { return NewArrayTryReuseGroup(cx, obj, length, newKind); } ArrayObject* js::NewPartlyAllocatedArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length) { return NewArrayTryReuseGroup(cx, obj, length); } ArrayObject* js::NewFullyAllocatedArrayForCallingAllocationSite(JSContext* cx, size_t length, NewObjectKind newKind) { RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array)); if (!group) return nullptr; return NewArrayTryUseGroup(cx, group, length, newKind); } ArrayObject* js::NewPartlyAllocatedArrayForCallingAllocationSite(JSContext* cx, size_t length, HandleObject proto) { RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array, proto)); if (!group) return nullptr; return NewArrayTryUseGroup(cx, group, length); } ArrayObject* js::NewCopiedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, const Value* vp, size_t length, NewObjectKind newKind, ShouldUpdateTypes updateTypes) { ArrayObject* obj = NewFullyAllocatedArrayTryUseGroup(cx, group, length, newKind); if (!obj) return nullptr; DenseElementResult result = SetOrExtendBoxedOrUnboxedDenseElements(cx, obj, 0, vp, length, updateTypes); if (result == DenseElementResult::Failure) return nullptr; MOZ_ASSERT(result == DenseElementResult::Success); return obj; } ArrayObject* js::NewCopiedArrayForCallingAllocationSite(JSContext* cx, const Value* vp, size_t length, HandleObject proto /* = nullptr */) { RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array, proto)); if (!group) return nullptr; return NewCopiedArrayTryUseGroup(cx, group, vp, length); } bool js::NewValuePair(JSContext* cx, const Value& val1, const Value& val2, MutableHandleValue rval) { JS::AutoValueArray<2> vec(cx); vec[0].set(val1); vec[1].set(val2); JSObject* aobj = js::NewDenseCopiedArray(cx, 2, vec.begin()); if (!aobj) return false; rval.setObject(*aobj); return true; } #ifdef DEBUG bool js::ArrayInfo(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedObject obj(cx); for (unsigned i = 0; i < args.length(); i++) { HandleValue arg = args[i]; UniqueChars bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, nullptr); if (!bytes) return false; if (arg.isPrimitive() || !(obj = arg.toObjectOrNull())->is()) { fprintf(stderr, "%s: not array\n", bytes.get()); continue; } fprintf(stderr, "%s: (len %u", bytes.get(), obj->as().length()); fprintf(stderr, ", capacity %u", obj->as().getDenseCapacity()); fputs(")\n", stderr); } args.rval().setUndefined(); return true; } #endif