/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ArrayUtils.h" #include "jit/IonAnalysis.h" #include "jit/MIRGenerator.h" #include "jit/MIRGraph.h" #include "jit/RangeAnalysis.h" #include "jsapi-tests/testJitMinimalFunc.h" #include "jsapi-tests/tests.h" using namespace js; using namespace js::jit; static bool EquivalentRanges(const Range* a, const Range* b) { if (a->hasInt32UpperBound() != b->hasInt32UpperBound()) return false; if (a->hasInt32LowerBound() != b->hasInt32LowerBound()) return false; if (a->hasInt32UpperBound() && (a->upper() != b->upper())) return false; if (a->hasInt32LowerBound() && (a->lower() != b->lower())) return false; if (a->canHaveFractionalPart() != b->canHaveFractionalPart()) return false; if (a->canBeNegativeZero() != b->canBeNegativeZero()) return false; if (a->canBeNaN() != b->canBeNaN()) return false; if (a->canBeInfiniteOrNaN() != b->canBeInfiniteOrNaN()) return false; if (!a->canBeInfiniteOrNaN() && (a->exponent() != b->exponent())) return false; return true; } BEGIN_TEST(testJitRangeAnalysis_MathSign) { MinimalAlloc func; Range* xnan = new(func.alloc) Range(); Range* ninf = Range::NewDoubleSingletonRange(func.alloc, mozilla::NegativeInfinity<double>()); Range* n1_5 = Range::NewDoubleSingletonRange(func.alloc, -1.5); Range* n1_0 = Range::NewDoubleSingletonRange(func.alloc, -1); Range* n0_5 = Range::NewDoubleSingletonRange(func.alloc, -0.5); Range* n0_0 = Range::NewDoubleSingletonRange(func.alloc, -0.0); Range* p0_0 = Range::NewDoubleSingletonRange(func.alloc, 0.0); Range* p0_5 = Range::NewDoubleSingletonRange(func.alloc, 0.5); Range* p1_0 = Range::NewDoubleSingletonRange(func.alloc, 1.0); Range* p1_5 = Range::NewDoubleSingletonRange(func.alloc, 1.5); Range* pinf = Range::NewDoubleSingletonRange(func.alloc, mozilla::PositiveInfinity<double>()); Range* xnanSign = Range::sign(func.alloc, xnan); Range* ninfSign = Range::sign(func.alloc, ninf); Range* n1_5Sign = Range::sign(func.alloc, n1_5); Range* n1_0Sign = Range::sign(func.alloc, n1_0); Range* n0_5Sign = Range::sign(func.alloc, n0_5); Range* n0_0Sign = Range::sign(func.alloc, n0_0); Range* p0_0Sign = Range::sign(func.alloc, p0_0); Range* p0_5Sign = Range::sign(func.alloc, p0_5); Range* p1_0Sign = Range::sign(func.alloc, p1_0); Range* p1_5Sign = Range::sign(func.alloc, p1_5); Range* pinfSign = Range::sign(func.alloc, pinf); CHECK(!xnanSign); CHECK(EquivalentRanges(ninfSign, Range::NewInt32SingletonRange(func.alloc, -1))); CHECK(EquivalentRanges(n1_5Sign, Range::NewInt32SingletonRange(func.alloc, -1))); CHECK(EquivalentRanges(n1_0Sign, Range::NewInt32SingletonRange(func.alloc, -1))); // This should ideally be just -1, but range analysis can't represent the // specific fractional range of the constant. CHECK(EquivalentRanges(n0_5Sign, Range::NewInt32Range(func.alloc, -1, 0))); CHECK(EquivalentRanges(n0_0Sign, Range::NewDoubleSingletonRange(func.alloc, -0.0))); CHECK(!n0_0Sign->canHaveFractionalPart()); CHECK(n0_0Sign->canBeNegativeZero()); CHECK(n0_0Sign->lower() == 0); CHECK(n0_0Sign->upper() == 0); CHECK(EquivalentRanges(p0_0Sign, Range::NewInt32SingletonRange(func.alloc, 0))); CHECK(!p0_0Sign->canHaveFractionalPart()); CHECK(!p0_0Sign->canBeNegativeZero()); CHECK(p0_0Sign->lower() == 0); CHECK(p0_0Sign->upper() == 0); // This should ideally be just 1, but range analysis can't represent the // specific fractional range of the constant. CHECK(EquivalentRanges(p0_5Sign, Range::NewInt32Range(func.alloc, 0, 1))); CHECK(EquivalentRanges(p1_0Sign, Range::NewInt32SingletonRange(func.alloc, 1))); CHECK(EquivalentRanges(p1_5Sign, Range::NewInt32SingletonRange(func.alloc, 1))); CHECK(EquivalentRanges(pinfSign, Range::NewInt32SingletonRange(func.alloc, 1))); return true; } END_TEST(testJitRangeAnalysis_MathSign) BEGIN_TEST(testJitRangeAnalysis_MathSignBeta) { MinimalFunc func; MathCache cache; MBasicBlock* entry = func.createEntryBlock(); MBasicBlock* thenBlock = func.createBlock(entry); MBasicBlock* elseBlock = func.createBlock(entry); MBasicBlock* elseThenBlock = func.createBlock(elseBlock); MBasicBlock* elseElseBlock = func.createBlock(elseBlock); // if (p < 0) MParameter* p = func.createParameter(); entry->add(p); MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0)); entry->add(c0); MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0)); entry->add(cm0); MCompare* cmp = MCompare::New(func.alloc, p, c0, JSOP_LT); cmp->setCompareType(MCompare::Compare_Double); entry->add(cmp); entry->end(MTest::New(func.alloc, cmp, thenBlock, elseBlock)); // { // return Math.sign(p + -0); // } MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double); thenBlock->add(thenAdd); MMathFunction* thenSign = MMathFunction::New(func.alloc, thenAdd, MMathFunction::Sign, &cache); thenBlock->add(thenSign); MReturn* thenRet = MReturn::New(func.alloc, thenSign); thenBlock->end(thenRet); // else // { // if (p >= 0) MCompare* elseCmp = MCompare::New(func.alloc, p, c0, JSOP_GE); elseCmp->setCompareType(MCompare::Compare_Double); elseBlock->add(elseCmp); elseBlock->end(MTest::New(func.alloc, elseCmp, elseThenBlock, elseElseBlock)); // { // return Math.sign(p + -0); // } MAdd* elseThenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double); elseThenBlock->add(elseThenAdd); MMathFunction* elseThenSign = MMathFunction::New(func.alloc, elseThenAdd, MMathFunction::Sign, &cache); elseThenBlock->add(elseThenSign); MReturn* elseThenRet = MReturn::New(func.alloc, elseThenSign); elseThenBlock->end(elseThenRet); // else // { // return Math.sign(p + -0); // } // } MAdd* elseElseAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double); elseElseBlock->add(elseElseAdd); MMathFunction* elseElseSign = MMathFunction::New(func.alloc, elseElseAdd, MMathFunction::Sign, &cache); elseElseBlock->add(elseElseSign); MReturn* elseElseRet = MReturn::New(func.alloc, elseElseSign); elseElseBlock->end(elseElseRet); if (!func.runRangeAnalysis()) return false; CHECK(!p->range()); CHECK(EquivalentRanges(c0->range(), Range::NewDoubleSingletonRange(func.alloc, 0.0))); CHECK(EquivalentRanges(cm0->range(), Range::NewDoubleSingletonRange(func.alloc, -0.0))); // On the (p < 0) side, p is negative and not -0 (surprise!) CHECK(EquivalentRanges(thenAdd->range(), new(func.alloc) Range(Range::NoInt32LowerBound, 0, Range::IncludesFractionalParts, Range::ExcludesNegativeZero, Range::IncludesInfinity))); // Consequently, its Math.sign value is not -0 either. CHECK(EquivalentRanges(thenSign->range(), new(func.alloc) Range(-1, 0, Range::ExcludesFractionalParts, Range::ExcludesNegativeZero, 0))); // On the (p >= 0) side, p is not negative and may be -0 (surprise!) CHECK(EquivalentRanges(elseThenAdd->range(), new(func.alloc) Range(0, Range::NoInt32UpperBound, Range::IncludesFractionalParts, Range::IncludesNegativeZero, Range::IncludesInfinity))); // Consequently, its Math.sign value may be -0 too. CHECK(EquivalentRanges(elseThenSign->range(), new(func.alloc) Range(0, 1, Range::ExcludesFractionalParts, Range::IncludesNegativeZero, 0))); // Otherwise, p may be NaN. CHECK(elseElseAdd->range()->isUnknown()); CHECK(!elseElseSign->range()); return true; } END_TEST(testJitRangeAnalysis_MathSignBeta) BEGIN_TEST(testJitRangeAnalysis_StrictCompareBeta) { MinimalFunc func; MBasicBlock* entry = func.createEntryBlock(); MBasicBlock* thenBlock = func.createBlock(entry); MBasicBlock* elseBlock = func.createBlock(entry); // if (p === 0) MParameter* p = func.createParameter(); entry->add(p); MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0)); entry->add(c0); MCompare* cmp = MCompare::New(func.alloc, p, c0, JSOP_STRICTEQ); entry->add(cmp); entry->end(MTest::New(func.alloc, cmp, thenBlock, elseBlock)); // { // return p + -0; // } MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0)); thenBlock->add(cm0); MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double); thenBlock->add(thenAdd); MReturn* thenRet = MReturn::New(func.alloc, thenAdd); thenBlock->end(thenRet); // else // { // return 0; // } MReturn* elseRet = MReturn::New(func.alloc, c0); elseBlock->end(elseRet); // If range analysis inserts a beta node for p, it will be able to compute // a meaningful range for p + -0. // We can't do beta node insertion with STRICTEQ and a non-numeric // comparison though. MCompare::CompareType nonNumerics[] = { MCompare::Compare_Unknown, MCompare::Compare_Object, MCompare::Compare_Bitwise, MCompare::Compare_String }; for (size_t i = 0; i < mozilla::ArrayLength(nonNumerics); ++i) { cmp->setCompareType(nonNumerics[i]); if (!func.runRangeAnalysis()) return false; CHECK(!thenAdd->range() || thenAdd->range()->isUnknown()); ClearDominatorTree(func.graph); } // We can do it with a numeric comparison. cmp->setCompareType(MCompare::Compare_Double); if (!func.runRangeAnalysis()) return false; CHECK(EquivalentRanges(thenAdd->range(), Range::NewDoubleRange(func.alloc, 0.0, 0.0))); return true; } END_TEST(testJitRangeAnalysis_StrictCompareBeta) static void deriveShiftRightRange(int32_t lhsLower, int32_t lhsUpper, int32_t rhsLower, int32_t rhsUpper, int32_t* min, int32_t* max) { // This is the reference algorithm and should be verifiable by inspection. int64_t i, j; *min = INT32_MAX; *max = INT32_MIN; for (i = lhsLower; i <= lhsUpper; i++) { for (j = rhsLower; j <= rhsUpper; j++) { int32_t r = int32_t(i) >> (int32_t(j) & 0x1f); if (r > *max) *max = r; if (r < *min) *min = r; } } } static bool checkShiftRightRange(int32_t lhsLow, int32_t lhsHigh, int32_t lhsInc, int32_t rhsLow, int32_t rhsHigh, int32_t rhsInc) { MinimalAlloc func; int64_t lhsLower, lhsUpper, rhsLower, rhsUpper; for (lhsLower = lhsLow; lhsLower <= lhsHigh; lhsLower += lhsInc) { for (lhsUpper = lhsLower; lhsUpper <= lhsHigh; lhsUpper += lhsInc) { Range* lhsRange = Range::NewInt32Range(func.alloc, lhsLower, lhsUpper); for (rhsLower = rhsLow; rhsLower <= rhsHigh; rhsLower += rhsInc) { for (rhsUpper = rhsLower; rhsUpper <= rhsHigh; rhsUpper += rhsInc) { if (!func.alloc.ensureBallast()) return false; Range* rhsRange = Range::NewInt32Range(func.alloc, rhsLower, rhsUpper); Range* result = Range::rsh(func.alloc, lhsRange, rhsRange); int32_t min, max; deriveShiftRightRange(lhsLower, lhsUpper, rhsLower, rhsUpper, &min, &max); if (!result->isInt32() || result->lower() != min || result->upper() != max) { return false; } } } } } return true; } BEGIN_TEST(testJitRangeAnalysis_shiftRight) { CHECK(checkShiftRightRange(-16, 15, 1, 0, 31, 1)); CHECK(checkShiftRightRange( -8, 7, 1, -64, 63, 1)); return true; } END_TEST(testJitRangeAnalysis_shiftRight)