/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/x86/Lowering-x86.h" #include "jit/MIR.h" #include "jit/x86/Assembler-x86.h" #include "jit/shared/Lowering-shared-inl.h" using namespace js; using namespace js::jit; LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1, Register reg2, bool useAtStart) { MOZ_ASSERT(mir->type() == MIRType::Value); MOZ_ASSERT(reg1 != reg2); ensureDefined(mir); return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); } LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) { return useFixed(mir, eax); } LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) { return useFixedAtStart(mir, eax); } LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir) { return useFixed(mir, eax); } LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); } void LIRGeneratorX86::visitBox(MBox* box) { MDefinition* inner = box->getOperand(0); // If the box wrapped a double, it needs a new register. if (IsFloatingPointType(inner->type())) { defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()), box); return; } if (box->canEmitAtUses()) { emitAtUses(box); return; } if (inner->isConstant()) { defineBox(new(alloc()) LValue(inner->toConstant()->toJSValue()), box); return; } LBox* lir = new(alloc()) LBox(use(inner), inner->type()); // Otherwise, we should not define a new register for the payload portion // of the output, so bypass defineBox(). uint32_t vreg = getVirtualRegister(); // Note that because we're using BogusTemp(), we do not change the type of // the definition. We also do not define the first output as "TYPE", // because it has no corresponding payload at (vreg + 1). Also note that // although we copy the input's original type for the payload half of the // definition, this is only for clarity. BogusTemp() definitions are // ignored. lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); lir->setDef(1, LDefinition::BogusTemp()); box->setVirtualRegister(vreg); add(lir); } void LIRGeneratorX86::visitUnbox(MUnbox* unbox) { MDefinition* inner = unbox->getOperand(0); if (inner->type() == MIRType::ObjectOrNull) { LUnboxObjectOrNull* lir = new(alloc()) LUnboxObjectOrNull(useRegisterAtStart(inner)); if (unbox->fallible()) assignSnapshot(lir, unbox->bailoutKind()); defineReuseInput(lir, unbox, 0); return; } // An unbox on x86 reads in a type tag (either in memory or a register) and // a payload. Unlike most instructions consuming a box, we ask for the type // second, so that the result can re-use the first input. MOZ_ASSERT(inner->type() == MIRType::Value); ensureDefined(inner); if (IsFloatingPointType(unbox->type())) { LUnboxFloatingPoint* lir = new(alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); if (unbox->fallible()) assignSnapshot(lir, unbox->bailoutKind()); define(lir, unbox); return; } // Swap the order we use the box pieces so we can re-use the payload register. LUnbox* lir = new(alloc()) LUnbox; lir->setOperand(0, usePayloadInRegisterAtStart(inner)); lir->setOperand(1, useType(inner, LUse::ANY)); if (unbox->fallible()) assignSnapshot(lir, unbox->bailoutKind()); // Types and payloads form two separate intervals. If the type becomes dead // before the payload, it could be used as a Value without the type being // recoverable. Unbox's purpose is to eagerly kill the definition of a type // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. // Instead, we create a new virtual register. defineReuseInput(lir, unbox, 0); } void LIRGeneratorX86::visitReturn(MReturn* ret) { MDefinition* opd = ret->getOperand(0); MOZ_ASSERT(opd->type() == MIRType::Value); LReturn* ins = new(alloc()) LReturn; ins->setOperand(0, LUse(JSReturnReg_Type)); ins->setOperand(1, LUse(JSReturnReg_Data)); fillBoxUses(ins, 0, opd); add(ins); } void LIRGeneratorX86::defineUntypedPhi(MPhi* phi, size_t lirIndex) { LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET); LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET); uint32_t typeVreg = getVirtualRegister(); phi->setVirtualRegister(typeVreg); uint32_t payloadVreg = getVirtualRegister(); MOZ_ASSERT(typeVreg + 1 == payloadVreg); type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE)); payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD)); annotate(type); annotate(payload); } void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); } void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) { LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); uint32_t lowVreg = getVirtualRegister(); phi->setVirtualRegister(lowVreg); uint32_t highVreg = getVirtualRegister(); MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); annotate(high); annotate(low); } void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); low->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); high->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); } void LIRGeneratorX86::lowerForALUInt64(LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); defineInt64ReuseInput(ins, mir, 0); } void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs) { bool needsTemp = true; if (rhs->isConstant()) { int64_t constant = rhs->toConstant()->toInt64(); int32_t shift = mozilla::FloorLog2(constant); // See special cases in CodeGeneratorX86Shared::visitMulI64. if (constant >= -1 && constant <= 2) needsTemp = false; if (int64_t(1) << shift == constant) needsTemp = false; } // MulI64 on x86 needs output to be in edx, eax; ins->setInt64Operand(0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true)); ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); if (needsTemp) ins->setTemp(0, temp()); defineInt64Fixed(ins, mir, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); } void LIRGeneratorX86::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins) { lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true); } void LIRGeneratorX86::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins) { lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/ true); } void LIRGeneratorX86::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins) { lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true); } void LIRGeneratorX86::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToDouble* lir = new(alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp()); define(lir, ins); } void LIRGeneratorX86::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToFloat32* lir = new(alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp()); define(lir, ins); } void LIRGeneratorX86::visitWasmLoad(MWasmLoad* ins) { if (ins->type() != MIRType::Int64) { lowerWasmLoad(ins); return; } MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); auto* lir = new(alloc()) LWasmLoadI64(useRegisterOrZeroAtStart(base)); Scalar::Type accessType = ins->access().type(); if (accessType == Scalar::Int8 || accessType == Scalar::Int16 || accessType == Scalar::Int32) { // We use cdq to sign-extend the result and cdq demands these registers. defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } defineInt64(lir, ins); } void LIRGeneratorX86::visitWasmStore(MWasmStore* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); LAllocation baseAlloc = useRegisterOrZeroAtStart(base); LAllocation valueAlloc; switch (ins->access().type()) { case Scalar::Int8: case Scalar::Uint8: // See comment for LIRGeneratorX86::useByteOpRegister. valueAlloc = useFixed(ins->value(), eax); break; case Scalar::Int16: case Scalar::Uint16: case Scalar::Int32: case Scalar::Uint32: case Scalar::Float32: case Scalar::Float64: case Scalar::Float32x4: case Scalar::Int8x16: case Scalar::Int16x8: case Scalar::Int32x4: // For now, don't allow constant values. The immediate operand affects // instruction layout which affects patching. valueAlloc = useRegisterAtStart(ins->value()); break; case Scalar::Int64: { LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value()); auto* lir = new(alloc()) LWasmStoreI64(baseAlloc, valueAlloc); add(lir, ins); return; } case Scalar::Uint8Clamped: case Scalar::MaxTypedArrayViewType: MOZ_CRASH("unexpected array type"); } auto* lir = new(alloc()) LWasmStore(baseAlloc, valueAlloc); add(lir, ins); } void LIRGeneratorX86::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); // For simplicity, require a register if we're going to emit a bounds-check // branch, so that we don't have special cases for constants. LAllocation baseAlloc = ins->needsBoundsCheck() ? useRegisterAtStart(base) : useRegisterOrZeroAtStart(base); define(new(alloc()) LAsmJSLoadHeap(baseAlloc), ins); } void LIRGeneratorX86::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); // For simplicity, require a register if we're going to emit a bounds-check // branch, so that we don't have special cases for constants. LAllocation baseAlloc = ins->needsBoundsCheck() ? useRegisterAtStart(base) : useRegisterOrZeroAtStart(base); LAsmJSStoreHeap* lir = nullptr; switch (ins->access().type()) { case Scalar::Int8: case Scalar::Uint8: // See comment for LIRGeneratorX86::useByteOpRegister. lir = new(alloc()) LAsmJSStoreHeap(baseAlloc, useFixed(ins->value(), eax)); break; case Scalar::Int16: case Scalar::Uint16: case Scalar::Int32: case Scalar::Uint32: case Scalar::Float32: case Scalar::Float64: case Scalar::Float32x4: case Scalar::Int8x16: case Scalar::Int16x8: case Scalar::Int32x4: // For now, don't allow constant values. The immediate operand affects // instruction layout which affects patching. lir = new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value())); break; case Scalar::Int64: MOZ_CRASH("NYI"); case Scalar::Uint8Clamped: case Scalar::MaxTypedArrayViewType: MOZ_CRASH("unexpected array type"); } add(lir, ins); } void LIRGeneratorX86::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins) { // The code generated for StoreTypedArrayElementStatic is identical to that // for AsmJSStoreHeap, and the same concerns apply. LStoreTypedArrayElementStatic* lir; switch (ins->accessType()) { case Scalar::Int8: case Scalar::Uint8: case Scalar::Uint8Clamped: lir = new(alloc()) LStoreTypedArrayElementStatic(useRegister(ins->ptr()), useFixed(ins->value(), eax)); break; case Scalar::Int16: case Scalar::Uint16: case Scalar::Int32: case Scalar::Uint32: case Scalar::Float32: case Scalar::Float64: lir = new(alloc()) LStoreTypedArrayElementStatic(useRegisterAtStart(ins->ptr()), useRegisterAtStart(ins->value())); break; default: MOZ_CRASH("unexpected array type"); } add(lir, ins); } void LIRGeneratorX86::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins) { MOZ_ASSERT(ins->access().type() < Scalar::Float32); MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); bool byteArray = byteSize(ins->access().type()) == 1; // Register allocation: // // The output may not be used, but eax will be clobbered regardless // so pin the output to eax. // // oldval must be in a register. // // newval must be in a register. If the source is a byte array // then newval must be a register that has a byte size: this must // be ebx, ecx, or edx (eax is taken). // // Bug #1077036 describes some optimization opportunities. const LAllocation oldval = useRegister(ins->oldValue()); const LAllocation newval = byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue()); LAsmJSCompareExchangeHeap* lir = new(alloc()) LAsmJSCompareExchangeHeap(useRegister(base), oldval, newval); lir->setAddrTemp(temp()); defineFixed(lir, ins, LAllocation(AnyRegister(eax))); } void LIRGeneratorX86::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins) { MOZ_ASSERT(ins->base()->type() == MIRType::Int32); const LAllocation base = useRegister(ins->base()); const LAllocation value = useRegister(ins->value()); LAsmJSAtomicExchangeHeap* lir = new(alloc()) LAsmJSAtomicExchangeHeap(base, value); lir->setAddrTemp(temp()); if (byteSize(ins->access().type()) == 1) defineFixed(lir, ins, LAllocation(AnyRegister(eax))); else define(lir, ins); } void LIRGeneratorX86::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins) { MOZ_ASSERT(ins->access().type() < Scalar::Float32); MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); bool byteArray = byteSize(ins->access().type()) == 1; // Case 1: the result of the operation is not used. // // We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND, // LOCK OR, or LOCK XOR. These can all take an immediate. if (!ins->hasUses()) { LAllocation value; if (byteArray && !ins->value()->isConstant()) value = useFixed(ins->value(), ebx); else value = useRegisterOrConstant(ins->value()); LAsmJSAtomicBinopHeapForEffect* lir = new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(base), value); lir->setAddrTemp(temp()); add(lir, ins); return; } // Case 2: the result of the operation is used. // // For ADD and SUB we'll use XADD: // // movl value, output // lock xaddl output, mem // // For the 8-bit variants XADD needs a byte register for the // output only, we can still set up with movl; just pin the output // to eax (or ebx / ecx / edx). // // For AND/OR/XOR we need to use a CMPXCHG loop: // // movl *mem, eax // L: mov eax, temp // andl value, temp // lock cmpxchg temp, mem ; reads eax also // jnz L // ; result in eax // // Note the placement of L, cmpxchg will update eax with *mem if // *mem does not have the expected value, so reloading it at the // top of the loop would be redundant. // // We want to fix eax as the output. We also need a temp for // the intermediate value. // // For the 8-bit variants the temp must have a byte register. // // There are optimization opportunities: // - better 8-bit register allocation and instruction selection, Bug #1077036. bool bitOp = !(ins->operation() == AtomicFetchAddOp || ins->operation() == AtomicFetchSubOp); LDefinition tempDef = LDefinition::BogusTemp(); LAllocation value; if (byteArray) { value = useFixed(ins->value(), ebx); if (bitOp) tempDef = tempFixed(ecx); } else if (bitOp || ins->value()->isConstant()) { value = useRegisterOrConstant(ins->value()); if (bitOp) tempDef = temp(); } else { value = useRegisterAtStart(ins->value()); } LAsmJSAtomicBinopHeap* lir = new(alloc()) LAsmJSAtomicBinopHeap(useRegister(base), value, tempDef); lir->setAddrTemp(temp()); if (byteArray || bitOp) defineFixed(lir, ins, LAllocation(AnyRegister(eax))); else if (ins->value()->isConstant()) define(lir, ins); else defineReuseInput(lir, ins, LAsmJSAtomicBinopHeap::valueOp); } void LIRGeneratorX86::lowerDivI64(MDiv* div) { if (div->isUnsigned()) { lowerUDivI64(div); return; } LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs())); defineReturn(lir, div); } void LIRGeneratorX86::lowerModI64(MMod* mod) { if (mod->isUnsigned()) { lowerUModI64(mod); return; } LDivOrModI64* lir = new(alloc()) LDivOrModI64(useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs())); defineReturn(lir, mod); } void LIRGeneratorX86::lowerUDivI64(MDiv* div) { LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs())); defineReturn(lir, div); } void LIRGeneratorX86::lowerUModI64(MMod* mod) { LUDivOrModI64* lir = new(alloc()) LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs())); defineReturn(lir, mod); } void LIRGeneratorX86::visitSubstr(MSubstr* ins) { // Due to lack of registers on x86, we reuse the string register as // temporary. As a result we only need two temporary registers and take a // bugos temporary as fifth argument. LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()), useRegister(ins->begin()), useRegister(ins->length()), temp(), LDefinition::BogusTemp(), tempByteOpRegister()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorX86::visitRandom(MRandom* ins) { LRandom *lir = new(alloc()) LRandom(temp(), temp(), temp(), temp(), temp()); defineFixed(lir, ins, LFloatReg(ReturnDoubleReg)); } void LIRGeneratorX86::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); LDefinition temp = tempDouble(); defineInt64(new(alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins); } void LIRGeneratorX86::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Int64); MOZ_ASSERT(IsFloatingPointType(ins->type())); LDefinition maybeTemp = (ins->isUnsigned() && AssemblerX86Shared::HasSSE3()) ? temp() : LDefinition::BogusTemp(); define(new(alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp), ins); } void LIRGeneratorX86::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { if (ins->isUnsigned()) { defineInt64(new(alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); } else { LExtendInt32ToInt64* lir = new(alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax)); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); } }