/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/x86-shared/CodeGenerator-x86-shared.h" #include "mozilla/DebugOnly.h" #include "mozilla/MathAlgorithms.h" #include "jsmath.h" #include "jit/JitCompartment.h" #include "jit/JitFrames.h" #include "jit/Linker.h" #include "jit/RangeAnalysis.h" #include "vm/TraceLogging.h" #include "jit/MacroAssembler-inl.h" #include "jit/shared/CodeGenerator-shared-inl.h" using namespace js; using namespace js::jit; using mozilla::Abs; using mozilla::BitwiseCast; using mozilla::DebugOnly; using mozilla::FloatingPoint; using mozilla::FloorLog2; using mozilla::NegativeInfinity; using mozilla::SpecificNaN; using JS::GenericNaN; namespace js { namespace jit { CodeGeneratorX86Shared::CodeGeneratorX86Shared(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masm) : CodeGeneratorShared(gen, graph, masm) { } #ifdef JS_PUNBOX64 Operand CodeGeneratorX86Shared::ToOperandOrRegister64(const LInt64Allocation input) { return ToOperand(input.value()); } #else Register64 CodeGeneratorX86Shared::ToOperandOrRegister64(const LInt64Allocation input) { return ToRegister64(input); } #endif void OutOfLineBailout::accept(CodeGeneratorX86Shared* codegen) { codegen->visitOutOfLineBailout(this); } void CodeGeneratorX86Shared::emitBranch(Assembler::Condition cond, MBasicBlock* mirTrue, MBasicBlock* mirFalse, Assembler::NaNCond ifNaN) { if (ifNaN == Assembler::NaN_IsFalse) jumpToBlock(mirFalse, Assembler::Parity); else if (ifNaN == Assembler::NaN_IsTrue) jumpToBlock(mirTrue, Assembler::Parity); if (isNextBlock(mirFalse->lir())) { jumpToBlock(mirTrue, cond); } else { jumpToBlock(mirFalse, Assembler::InvertCondition(cond)); jumpToBlock(mirTrue); } } void CodeGeneratorX86Shared::visitDouble(LDouble* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantDouble(ins->getDouble(), ToFloatRegister(out)); } void CodeGeneratorX86Shared::visitFloat32(LFloat32* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantFloat32(ins->getFloat(), ToFloatRegister(out)); } void CodeGeneratorX86Shared::visitTestIAndBranch(LTestIAndBranch* test) { Register input = ToRegister(test->input()); masm.test32(input, input); emitBranch(Assembler::NonZero, test->ifTrue(), test->ifFalse()); } void CodeGeneratorX86Shared::visitTestDAndBranch(LTestDAndBranch* test) { const LAllocation* opd = test->input(); // vucomisd flags: // Z P C // --------- // NaN 1 1 1 // > 0 0 0 // < 0 0 1 // = 1 0 0 // // NaN is falsey, so comparing against 0 and then using the Z flag is // enough to determine which branch to take. ScratchDoubleScope scratch(masm); masm.zeroDouble(scratch); masm.vucomisd(scratch, ToFloatRegister(opd)); emitBranch(Assembler::NotEqual, test->ifTrue(), test->ifFalse()); } void CodeGeneratorX86Shared::visitTestFAndBranch(LTestFAndBranch* test) { const LAllocation* opd = test->input(); // vucomiss flags are the same as doubles; see comment above { ScratchFloat32Scope scratch(masm); masm.zeroFloat32(scratch); masm.vucomiss(scratch, ToFloatRegister(opd)); } emitBranch(Assembler::NotEqual, test->ifTrue(), test->ifFalse()); } void CodeGeneratorX86Shared::visitBitAndAndBranch(LBitAndAndBranch* baab) { if (baab->right()->isConstant()) masm.test32(ToRegister(baab->left()), Imm32(ToInt32(baab->right()))); else masm.test32(ToRegister(baab->left()), ToRegister(baab->right())); emitBranch(Assembler::NonZero, baab->ifTrue(), baab->ifFalse()); } void CodeGeneratorX86Shared::emitCompare(MCompare::CompareType type, const LAllocation* left, const LAllocation* right) { #ifdef JS_CODEGEN_X64 if (type == MCompare::Compare_Object) { masm.cmpPtr(ToRegister(left), ToOperand(right)); return; } #endif if (right->isConstant()) masm.cmp32(ToRegister(left), Imm32(ToInt32(right))); else masm.cmp32(ToRegister(left), ToOperand(right)); } void CodeGeneratorX86Shared::visitCompare(LCompare* comp) { MCompare* mir = comp->mir(); emitCompare(mir->compareType(), comp->left(), comp->right()); masm.emitSet(JSOpToCondition(mir->compareType(), comp->jsop()), ToRegister(comp->output())); } void CodeGeneratorX86Shared::visitCompareAndBranch(LCompareAndBranch* comp) { MCompare* mir = comp->cmpMir(); emitCompare(mir->compareType(), comp->left(), comp->right()); Assembler::Condition cond = JSOpToCondition(mir->compareType(), comp->jsop()); emitBranch(cond, comp->ifTrue(), comp->ifFalse()); } void CodeGeneratorX86Shared::visitCompareD(LCompareD* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); Assembler::NaNCond nanCond = Assembler::NaNCondFromDoubleCondition(cond); if (comp->mir()->operandsAreNeverNaN()) nanCond = Assembler::NaN_HandledByCond; masm.compareDouble(cond, lhs, rhs); masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), ToRegister(comp->output()), nanCond); } void CodeGeneratorX86Shared::visitCompareF(LCompareF* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); Assembler::NaNCond nanCond = Assembler::NaNCondFromDoubleCondition(cond); if (comp->mir()->operandsAreNeverNaN()) nanCond = Assembler::NaN_HandledByCond; masm.compareFloat(cond, lhs, rhs); masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), ToRegister(comp->output()), nanCond); } void CodeGeneratorX86Shared::visitNotI(LNotI* ins) { masm.cmp32(ToRegister(ins->input()), Imm32(0)); masm.emitSet(Assembler::Equal, ToRegister(ins->output())); } void CodeGeneratorX86Shared::visitNotD(LNotD* ins) { FloatRegister opd = ToFloatRegister(ins->input()); // Not returns true if the input is a NaN. We don't have to worry about // it if we know the input is never NaN though. Assembler::NaNCond nanCond = Assembler::NaN_IsTrue; if (ins->mir()->operandIsNeverNaN()) nanCond = Assembler::NaN_HandledByCond; ScratchDoubleScope scratch(masm); masm.zeroDouble(scratch); masm.compareDouble(Assembler::DoubleEqualOrUnordered, opd, scratch); masm.emitSet(Assembler::Equal, ToRegister(ins->output()), nanCond); } void CodeGeneratorX86Shared::visitNotF(LNotF* ins) { FloatRegister opd = ToFloatRegister(ins->input()); // Not returns true if the input is a NaN. We don't have to worry about // it if we know the input is never NaN though. Assembler::NaNCond nanCond = Assembler::NaN_IsTrue; if (ins->mir()->operandIsNeverNaN()) nanCond = Assembler::NaN_HandledByCond; ScratchFloat32Scope scratch(masm); masm.zeroFloat32(scratch); masm.compareFloat(Assembler::DoubleEqualOrUnordered, opd, scratch); masm.emitSet(Assembler::Equal, ToRegister(ins->output()), nanCond); } void CodeGeneratorX86Shared::visitCompareDAndBranch(LCompareDAndBranch* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->cmpMir()->jsop()); Assembler::NaNCond nanCond = Assembler::NaNCondFromDoubleCondition(cond); if (comp->cmpMir()->operandsAreNeverNaN()) nanCond = Assembler::NaN_HandledByCond; masm.compareDouble(cond, lhs, rhs); emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), comp->ifFalse(), nanCond); } void CodeGeneratorX86Shared::visitCompareFAndBranch(LCompareFAndBranch* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->cmpMir()->jsop()); Assembler::NaNCond nanCond = Assembler::NaNCondFromDoubleCondition(cond); if (comp->cmpMir()->operandsAreNeverNaN()) nanCond = Assembler::NaN_HandledByCond; masm.compareFloat(cond, lhs, rhs); emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), comp->ifFalse(), nanCond); } void CodeGeneratorX86Shared::visitWasmStackArg(LWasmStackArg* ins) { const MWasmStackArg* mir = ins->mir(); Address dst(StackPointer, mir->spOffset()); if (ins->arg()->isConstant()) { masm.storePtr(ImmWord(ToInt32(ins->arg())), dst); } else if (ins->arg()->isGeneralReg()) { masm.storePtr(ToRegister(ins->arg()), dst); } else { switch (mir->input()->type()) { case MIRType::Double: masm.storeDouble(ToFloatRegister(ins->arg()), dst); return; case MIRType::Float32: masm.storeFloat32(ToFloatRegister(ins->arg()), dst); return; // StackPointer is SIMD-aligned and ABIArgGenerator guarantees // stack offsets are SIMD-aligned. case MIRType::Int32x4: case MIRType::Bool32x4: masm.storeAlignedSimd128Int(ToFloatRegister(ins->arg()), dst); return; case MIRType::Float32x4: masm.storeAlignedSimd128Float(ToFloatRegister(ins->arg()), dst); return; default: break; } MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("unexpected mir type in WasmStackArg"); } } void CodeGeneratorX86Shared::visitWasmStackArgI64(LWasmStackArgI64* ins) { const MWasmStackArg* mir = ins->mir(); Address dst(StackPointer, mir->spOffset()); if (IsConstant(ins->arg())) masm.store64(Imm64(ToInt64(ins->arg())), dst); else masm.store64(ToRegister64(ins->arg()), dst); } void CodeGeneratorX86Shared::visitWasmSelect(LWasmSelect* ins) { MIRType mirType = ins->mir()->type(); Register cond = ToRegister(ins->condExpr()); Operand falseExpr = ToOperand(ins->falseExpr()); masm.test32(cond, cond); if (mirType == MIRType::Int32) { Register out = ToRegister(ins->output()); MOZ_ASSERT(ToRegister(ins->trueExpr()) == out, "true expr input is reused for output"); masm.cmovz(falseExpr, out); return; } FloatRegister out = ToFloatRegister(ins->output()); MOZ_ASSERT(ToFloatRegister(ins->trueExpr()) == out, "true expr input is reused for output"); Label done; masm.j(Assembler::NonZero, &done); if (mirType == MIRType::Float32) { if (falseExpr.kind() == Operand::FPREG) masm.moveFloat32(ToFloatRegister(ins->falseExpr()), out); else masm.loadFloat32(falseExpr, out); } else if (mirType == MIRType::Double) { if (falseExpr.kind() == Operand::FPREG) masm.moveDouble(ToFloatRegister(ins->falseExpr()), out); else masm.loadDouble(falseExpr, out); } else { MOZ_CRASH("unhandled type in visitWasmSelect!"); } masm.bind(&done); return; } void CodeGeneratorX86Shared::visitWasmReinterpret(LWasmReinterpret* lir) { MOZ_ASSERT(gen->compilingWasm()); MWasmReinterpret* ins = lir->mir(); MIRType to = ins->type(); #ifdef DEBUG MIRType from = ins->input()->type(); #endif switch (to) { case MIRType::Int32: MOZ_ASSERT(from == MIRType::Float32); masm.vmovd(ToFloatRegister(lir->input()), ToRegister(lir->output())); break; case MIRType::Float32: MOZ_ASSERT(from == MIRType::Int32); masm.vmovd(ToRegister(lir->input()), ToFloatRegister(lir->output())); break; case MIRType::Double: case MIRType::Int64: MOZ_CRASH("not handled by this LIR opcode"); default: MOZ_CRASH("unexpected WasmReinterpret"); } } void CodeGeneratorX86Shared::visitOutOfLineLoadTypedArrayOutOfBounds(OutOfLineLoadTypedArrayOutOfBounds* ool) { switch (ool->viewType()) { case Scalar::Int64: case Scalar::Float32x4: case Scalar::Int8x16: case Scalar::Int16x8: case Scalar::Int32x4: case Scalar::MaxTypedArrayViewType: MOZ_CRASH("unexpected array type"); case Scalar::Float32: masm.loadConstantFloat32(float(GenericNaN()), ool->dest().fpu()); break; case Scalar::Float64: masm.loadConstantDouble(GenericNaN(), ool->dest().fpu()); break; case Scalar::Int8: case Scalar::Uint8: case Scalar::Int16: case Scalar::Uint16: case Scalar::Int32: case Scalar::Uint32: case Scalar::Uint8Clamped: Register destReg = ool->dest().gpr(); masm.mov(ImmWord(0), destReg); break; } masm.jmp(ool->rejoin()); } void CodeGeneratorX86Shared::visitWasmAddOffset(LWasmAddOffset* lir) { MWasmAddOffset* mir = lir->mir(); Register base = ToRegister(lir->base()); Register out = ToRegister(lir->output()); if (base != out) masm.move32(base, out); masm.add32(Imm32(mir->offset()), out); masm.j(Assembler::CarrySet, trap(mir, wasm::Trap::OutOfBounds)); } void CodeGeneratorX86Shared::visitWasmTruncateToInt32(LWasmTruncateToInt32* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); MWasmTruncateToInt32* mir = lir->mir(); MIRType inputType = mir->input()->type(); MOZ_ASSERT(inputType == MIRType::Double || inputType == MIRType::Float32); auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input); addOutOfLineCode(ool, mir); Label* oolEntry = ool->entry(); if (mir->isUnsigned()) { if (inputType == MIRType::Double) masm.wasmTruncateDoubleToUInt32(input, output, oolEntry); else if (inputType == MIRType::Float32) masm.wasmTruncateFloat32ToUInt32(input, output, oolEntry); else MOZ_CRASH("unexpected type"); return; } if (inputType == MIRType::Double) masm.wasmTruncateDoubleToInt32(input, output, oolEntry); else if (inputType == MIRType::Float32) masm.wasmTruncateFloat32ToInt32(input, output, oolEntry); else MOZ_CRASH("unexpected type"); masm.bind(ool->rejoin()); } bool CodeGeneratorX86Shared::generateOutOfLineCode() { if (!CodeGeneratorShared::generateOutOfLineCode()) return false; if (deoptLabel_.used()) { // All non-table-based bailouts will go here. masm.bind(&deoptLabel_); // Push the frame size, so the handler can recover the IonScript. masm.push(Imm32(frameSize())); JitCode* handler = gen->jitRuntime()->getGenericBailoutHandler(); masm.jmp(ImmPtr(handler->raw()), Relocation::JITCODE); } return !masm.oom(); } class BailoutJump { Assembler::Condition cond_; public: explicit BailoutJump(Assembler::Condition cond) : cond_(cond) { } #ifdef JS_CODEGEN_X86 void operator()(MacroAssembler& masm, uint8_t* code) const { masm.j(cond_, ImmPtr(code), Relocation::HARDCODED); } #endif void operator()(MacroAssembler& masm, Label* label) const { masm.j(cond_, label); } }; class BailoutLabel { Label* label_; public: explicit BailoutLabel(Label* label) : label_(label) { } #ifdef JS_CODEGEN_X86 void operator()(MacroAssembler& masm, uint8_t* code) const { masm.retarget(label_, ImmPtr(code), Relocation::HARDCODED); } #endif void operator()(MacroAssembler& masm, Label* label) const { masm.retarget(label_, label); } }; template void CodeGeneratorX86Shared::bailout(const T& binder, LSnapshot* snapshot) { encode(snapshot); // Though the assembler doesn't track all frame pushes, at least make sure // the known value makes sense. We can't use bailout tables if the stack // isn't properly aligned to the static frame size. MOZ_ASSERT_IF(frameClass_ != FrameSizeClass::None() && deoptTable_, frameClass_.frameSize() == masm.framePushed()); #ifdef JS_CODEGEN_X86 // On x64, bailout tables are pointless, because 16 extra bytes are // reserved per external jump, whereas it takes only 10 bytes to encode a // a non-table based bailout. if (assignBailoutId(snapshot)) { binder(masm, deoptTable_->raw() + snapshot->bailoutId() * BAILOUT_TABLE_ENTRY_SIZE); return; } #endif // We could not use a jump table, either because all bailout IDs were // reserved, or a jump table is not optimal for this frame size or // platform. Whatever, we will generate a lazy bailout. // // All bailout code is associated with the bytecodeSite of the block we are // bailing out from. InlineScriptTree* tree = snapshot->mir()->block()->trackedTree(); OutOfLineBailout* ool = new(alloc()) OutOfLineBailout(snapshot); addOutOfLineCode(ool, new(alloc()) BytecodeSite(tree, tree->script()->code())); binder(masm, ool->entry()); } void CodeGeneratorX86Shared::bailoutIf(Assembler::Condition condition, LSnapshot* snapshot) { bailout(BailoutJump(condition), snapshot); } void CodeGeneratorX86Shared::bailoutIf(Assembler::DoubleCondition condition, LSnapshot* snapshot) { MOZ_ASSERT(Assembler::NaNCondFromDoubleCondition(condition) == Assembler::NaN_HandledByCond); bailoutIf(Assembler::ConditionFromDoubleCondition(condition), snapshot); } void CodeGeneratorX86Shared::bailoutFrom(Label* label, LSnapshot* snapshot) { MOZ_ASSERT(label->used() && !label->bound()); bailout(BailoutLabel(label), snapshot); } void CodeGeneratorX86Shared::bailout(LSnapshot* snapshot) { Label label; masm.jump(&label); bailoutFrom(&label, snapshot); } void CodeGeneratorX86Shared::visitOutOfLineBailout(OutOfLineBailout* ool) { masm.push(Imm32(ool->snapshot()->snapshotOffset())); masm.jmp(&deoptLabel_); } void CodeGeneratorX86Shared::visitMinMaxD(LMinMaxD* ins) { FloatRegister first = ToFloatRegister(ins->first()); FloatRegister second = ToFloatRegister(ins->second()); #ifdef DEBUG FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT(first == output); #endif bool handleNaN = !ins->mir()->range() || ins->mir()->range()->canBeNaN(); if (ins->mir()->isMax()) masm.maxDouble(second, first, handleNaN); else masm.minDouble(second, first, handleNaN); } void CodeGeneratorX86Shared::visitMinMaxF(LMinMaxF* ins) { FloatRegister first = ToFloatRegister(ins->first()); FloatRegister second = ToFloatRegister(ins->second()); #ifdef DEBUG FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT(first == output); #endif bool handleNaN = !ins->mir()->range() || ins->mir()->range()->canBeNaN(); if (ins->mir()->isMax()) masm.maxFloat32(second, first, handleNaN); else masm.minFloat32(second, first, handleNaN); } void CodeGeneratorX86Shared::visitAbsD(LAbsD* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); // Load a value which is all ones except for the sign bit. ScratchDoubleScope scratch(masm); masm.loadConstantDouble(SpecificNaN(0, FloatingPoint::kSignificandBits), scratch); masm.vandpd(scratch, input, input); } void CodeGeneratorX86Shared::visitAbsF(LAbsF* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); // Same trick as visitAbsD above. ScratchFloat32Scope scratch(masm); masm.loadConstantFloat32(SpecificNaN(0, FloatingPoint::kSignificandBits), scratch); masm.vandps(scratch, input, input); } void CodeGeneratorX86Shared::visitClzI(LClzI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); bool knownNotZero = ins->mir()->operandIsNeverZero(); masm.clz32(input, output, knownNotZero); } void CodeGeneratorX86Shared::visitCtzI(LCtzI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); bool knownNotZero = ins->mir()->operandIsNeverZero(); masm.ctz32(input, output, knownNotZero); } void CodeGeneratorX86Shared::visitPopcntI(LPopcntI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); Register temp = ins->temp()->isBogusTemp() ? InvalidReg : ToRegister(ins->temp()); masm.popcnt32(input, output, temp); } void CodeGeneratorX86Shared::visitSqrtD(LSqrtD* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); masm.vsqrtsd(input, output, output); } void CodeGeneratorX86Shared::visitSqrtF(LSqrtF* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); masm.vsqrtss(input, output, output); } void CodeGeneratorX86Shared::visitPowHalfD(LPowHalfD* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); ScratchDoubleScope scratch(masm); Label done, sqrt; if (!ins->mir()->operandIsNeverNegativeInfinity()) { // Branch if not -Infinity. masm.loadConstantDouble(NegativeInfinity(), scratch); Assembler::DoubleCondition cond = Assembler::DoubleNotEqualOrUnordered; if (ins->mir()->operandIsNeverNaN()) cond = Assembler::DoubleNotEqual; masm.branchDouble(cond, input, scratch, &sqrt); // Math.pow(-Infinity, 0.5) == Infinity. masm.zeroDouble(output); masm.subDouble(scratch, output); masm.jump(&done); masm.bind(&sqrt); } if (!ins->mir()->operandIsNeverNegativeZero()) { // Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5). Adding 0 converts any -0 to 0. masm.zeroDouble(scratch); masm.addDouble(input, scratch); masm.vsqrtsd(scratch, output, output); } else { masm.vsqrtsd(input, output, output); } masm.bind(&done); } class OutOfLineUndoALUOperation : public OutOfLineCodeBase { LInstruction* ins_; public: explicit OutOfLineUndoALUOperation(LInstruction* ins) : ins_(ins) { } virtual void accept(CodeGeneratorX86Shared* codegen) { codegen->visitOutOfLineUndoALUOperation(this); } LInstruction* ins() const { return ins_; } }; void CodeGeneratorX86Shared::visitAddI(LAddI* ins) { if (ins->rhs()->isConstant()) masm.addl(Imm32(ToInt32(ins->rhs())), ToOperand(ins->lhs())); else masm.addl(ToOperand(ins->rhs()), ToRegister(ins->lhs())); if (ins->snapshot()) { if (ins->recoversInput()) { OutOfLineUndoALUOperation* ool = new(alloc()) OutOfLineUndoALUOperation(ins); addOutOfLineCode(ool, ins->mir()); masm.j(Assembler::Overflow, ool->entry()); } else { bailoutIf(Assembler::Overflow, ins->snapshot()); } } } void CodeGeneratorX86Shared::visitAddI64(LAddI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LAddI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LAddI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (IsConstant(rhs)) { masm.add64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); return; } masm.add64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); } void CodeGeneratorX86Shared::visitSubI(LSubI* ins) { if (ins->rhs()->isConstant()) masm.subl(Imm32(ToInt32(ins->rhs())), ToOperand(ins->lhs())); else masm.subl(ToOperand(ins->rhs()), ToRegister(ins->lhs())); if (ins->snapshot()) { if (ins->recoversInput()) { OutOfLineUndoALUOperation* ool = new(alloc()) OutOfLineUndoALUOperation(ins); addOutOfLineCode(ool, ins->mir()); masm.j(Assembler::Overflow, ool->entry()); } else { bailoutIf(Assembler::Overflow, ins->snapshot()); } } } void CodeGeneratorX86Shared::visitSubI64(LSubI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LSubI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LSubI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (IsConstant(rhs)) { masm.sub64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); return; } masm.sub64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); } void CodeGeneratorX86Shared::visitOutOfLineUndoALUOperation(OutOfLineUndoALUOperation* ool) { LInstruction* ins = ool->ins(); Register reg = ToRegister(ins->getDef(0)); DebugOnly lhs = ins->getOperand(0); LAllocation* rhs = ins->getOperand(1); MOZ_ASSERT(reg == ToRegister(lhs)); MOZ_ASSERT_IF(rhs->isGeneralReg(), reg != ToRegister(rhs)); // Undo the effect of the ALU operation, which was performed on the output // register and overflowed. Writing to the output register clobbered an // input reg, and the original value of the input needs to be recovered // to satisfy the constraint imposed by any RECOVERED_INPUT operands to // the bailout snapshot. if (rhs->isConstant()) { Imm32 constant(ToInt32(rhs)); if (ins->isAddI()) masm.subl(constant, reg); else masm.addl(constant, reg); } else { if (ins->isAddI()) masm.subl(ToOperand(rhs), reg); else masm.addl(ToOperand(rhs), reg); } bailout(ool->ins()->snapshot()); } class MulNegativeZeroCheck : public OutOfLineCodeBase { LMulI* ins_; public: explicit MulNegativeZeroCheck(LMulI* ins) : ins_(ins) { } virtual void accept(CodeGeneratorX86Shared* codegen) { codegen->visitMulNegativeZeroCheck(this); } LMulI* ins() const { return ins_; } }; void CodeGeneratorX86Shared::visitMulI(LMulI* ins) { const LAllocation* lhs = ins->lhs(); const LAllocation* rhs = ins->rhs(); MMul* mul = ins->mir(); MOZ_ASSERT_IF(mul->mode() == MMul::Integer, !mul->canBeNegativeZero() && !mul->canOverflow()); if (rhs->isConstant()) { // Bailout on -0.0 int32_t constant = ToInt32(rhs); if (mul->canBeNegativeZero() && constant <= 0) { Assembler::Condition bailoutCond = (constant == 0) ? Assembler::Signed : Assembler::Equal; masm.test32(ToRegister(lhs), ToRegister(lhs)); bailoutIf(bailoutCond, ins->snapshot()); } switch (constant) { case -1: masm.negl(ToOperand(lhs)); break; case 0: masm.xorl(ToOperand(lhs), ToRegister(lhs)); return; // escape overflow check; case 1: // nop return; // escape overflow check; case 2: masm.addl(ToOperand(lhs), ToRegister(lhs)); break; default: if (!mul->canOverflow() && constant > 0) { // Use shift if cannot overflow and constant is power of 2 int32_t shift = FloorLog2(constant); if ((1 << shift) == constant) { masm.shll(Imm32(shift), ToRegister(lhs)); return; } } masm.imull(Imm32(ToInt32(rhs)), ToRegister(lhs)); } // Bailout on overflow if (mul->canOverflow()) bailoutIf(Assembler::Overflow, ins->snapshot()); } else { masm.imull(ToOperand(rhs), ToRegister(lhs)); // Bailout on overflow if (mul->canOverflow()) bailoutIf(Assembler::Overflow, ins->snapshot()); if (mul->canBeNegativeZero()) { // Jump to an OOL path if the result is 0. MulNegativeZeroCheck* ool = new(alloc()) MulNegativeZeroCheck(ins); addOutOfLineCode(ool, mul); masm.test32(ToRegister(lhs), ToRegister(lhs)); masm.j(Assembler::Zero, ool->entry()); masm.bind(ool->rejoin()); } } } void CodeGeneratorX86Shared::visitMulI64(LMulI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LMulI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LMulI64::Rhs); MOZ_ASSERT(ToRegister64(lhs) == ToOutRegister64(lir)); if (IsConstant(rhs)) { int64_t constant = ToInt64(rhs); switch (constant) { case -1: masm.neg64(ToRegister64(lhs)); return; case 0: masm.xor64(ToRegister64(lhs), ToRegister64(lhs)); return; case 1: // nop return; case 2: masm.add64(ToRegister64(lhs), ToRegister64(lhs)); return; default: if (constant > 0) { // Use shift if constant is power of 2. int32_t shift = mozilla::FloorLog2(constant); if (int64_t(1) << shift == constant) { masm.lshift64(Imm32(shift), ToRegister64(lhs)); return; } } Register temp = ToTempRegisterOrInvalid(lir->temp()); masm.mul64(Imm64(constant), ToRegister64(lhs), temp); } } else { Register temp = ToTempRegisterOrInvalid(lir->temp()); masm.mul64(ToOperandOrRegister64(rhs), ToRegister64(lhs), temp); } } class ReturnZero : public OutOfLineCodeBase { Register reg_; public: explicit ReturnZero(Register reg) : reg_(reg) { } virtual void accept(CodeGeneratorX86Shared* codegen) { codegen->visitReturnZero(this); } Register reg() const { return reg_; } }; void CodeGeneratorX86Shared::visitReturnZero(ReturnZero* ool) { masm.mov(ImmWord(0), ool->reg()); masm.jmp(ool->rejoin()); } void CodeGeneratorX86Shared::visitUDivOrMod(LUDivOrMod* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); MOZ_ASSERT_IF(lhs != rhs, rhs != eax); MOZ_ASSERT(rhs != edx); MOZ_ASSERT_IF(output == eax, ToRegister(ins->remainder()) == edx); ReturnZero* ool = nullptr; // Put the lhs in eax. if (lhs != eax) masm.mov(lhs, eax); // Prevent divide by zero. if (ins->canBeDivideByZero()) { masm.test32(rhs, rhs); if (ins->mir()->isTruncated()) { if (ins->trapOnError()) { masm.j(Assembler::Zero, trap(ins, wasm::Trap::IntegerDivideByZero)); } else { ool = new(alloc()) ReturnZero(output); masm.j(Assembler::Zero, ool->entry()); } } else { bailoutIf(Assembler::Zero, ins->snapshot()); } } // Zero extend the lhs into edx to make (edx:eax), since udiv is 64-bit. masm.mov(ImmWord(0), edx); masm.udiv(rhs); // If the remainder is > 0, bailout since this must be a double. if (ins->mir()->isDiv() && !ins->mir()->toDiv()->canTruncateRemainder()) { Register remainder = ToRegister(ins->remainder()); masm.test32(remainder, remainder); bailoutIf(Assembler::NonZero, ins->snapshot()); } // Unsigned div or mod can return a value that's not a signed int32. // If our users aren't expecting that, bail. if (!ins->mir()->isTruncated()) { masm.test32(output, output); bailoutIf(Assembler::Signed, ins->snapshot()); } if (ool) { addOutOfLineCode(ool, ins->mir()); masm.bind(ool->rejoin()); } } void CodeGeneratorX86Shared::visitUDivOrModConstant(LUDivOrModConstant *ins) { Register lhs = ToRegister(ins->numerator()); Register output = ToRegister(ins->output()); uint32_t d = ins->denominator(); // This emits the division answer into edx or the modulus answer into eax. MOZ_ASSERT(output == eax || output == edx); MOZ_ASSERT(lhs != eax && lhs != edx); bool isDiv = (output == edx); if (d == 0) { if (ins->mir()->isTruncated()) { if (ins->trapOnError()) masm.jump(trap(ins, wasm::Trap::IntegerDivideByZero)); else masm.xorl(output, output); } else { bailout(ins->snapshot()); } return; } // The denominator isn't a power of 2 (see LDivPowTwoI and LModPowTwoI). MOZ_ASSERT((d & (d - 1)) != 0); ReciprocalMulConstants rmc = computeDivisionConstants(d, /* maxLog = */ 32); // We first compute (M * n) >> 32, where M = rmc.multiplier. masm.movl(Imm32(rmc.multiplier), eax); masm.umull(lhs); if (rmc.multiplier > UINT32_MAX) { // M >= 2^32 and shift == 0 is impossible, as d >= 2 implies that // ((M * n) >> (32 + shift)) >= n > floor(n/d) whenever n >= d, contradicting // the proof of correctness in computeDivisionConstants. MOZ_ASSERT(rmc.shiftAmount > 0); MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 33)); // We actually computed edx = ((uint32_t(M) * n) >> 32) instead. Since // (M * n) >> (32 + shift) is the same as (edx + n) >> shift, we can // correct for the overflow. This case is a bit trickier than the signed // case, though, as the (edx + n) addition itself can overflow; however, // note that (edx + n) >> shift == (((n - edx) >> 1) + edx) >> (shift - 1), // which is overflow-free. See Hacker's Delight, section 10-8 for details. // Compute (n - edx) >> 1 into eax. masm.movl(lhs, eax); masm.subl(edx, eax); masm.shrl(Imm32(1), eax); // Finish the computation. masm.addl(eax, edx); masm.shrl(Imm32(rmc.shiftAmount - 1), edx); } else { masm.shrl(Imm32(rmc.shiftAmount), edx); } // We now have the truncated division value in edx. If we're // computing a modulus or checking whether the division resulted // in an integer, we need to multiply the obtained value by d and // finish the computation/check. if (!isDiv) { masm.imull(Imm32(d), edx, edx); masm.movl(lhs, eax); masm.subl(edx, eax); // The final result of the modulus op, just computed above by the // sub instruction, can be a number in the range [2^31, 2^32). If // this is the case and the modulus is not truncated, we must bail // out. if (!ins->mir()->isTruncated()) bailoutIf(Assembler::Signed, ins->snapshot()); } else if (!ins->mir()->isTruncated()) { masm.imull(Imm32(d), edx, eax); masm.cmpl(lhs, eax); bailoutIf(Assembler::NotEqual, ins->snapshot()); } } void CodeGeneratorX86Shared::visitMulNegativeZeroCheck(MulNegativeZeroCheck* ool) { LMulI* ins = ool->ins(); Register result = ToRegister(ins->output()); Operand lhsCopy = ToOperand(ins->lhsCopy()); Operand rhs = ToOperand(ins->rhs()); MOZ_ASSERT_IF(lhsCopy.kind() == Operand::REG, lhsCopy.reg() != result.code()); // Result is -0 if lhs or rhs is negative. masm.movl(lhsCopy, result); masm.orl(rhs, result); bailoutIf(Assembler::Signed, ins->snapshot()); masm.mov(ImmWord(0), result); masm.jmp(ool->rejoin()); } void CodeGeneratorX86Shared::visitDivPowTwoI(LDivPowTwoI* ins) { Register lhs = ToRegister(ins->numerator()); DebugOnly output = ToRegister(ins->output()); int32_t shift = ins->shift(); bool negativeDivisor = ins->negativeDivisor(); MDiv* mir = ins->mir(); // We use defineReuseInput so these should always be the same, which is // convenient since all of our instructions here are two-address. MOZ_ASSERT(lhs == output); if (!mir->isTruncated() && negativeDivisor) { // 0 divided by a negative number must return a double. masm.test32(lhs, lhs); bailoutIf(Assembler::Zero, ins->snapshot()); } if (shift) { if (!mir->isTruncated()) { // If the remainder is != 0, bailout since this must be a double. masm.test32(lhs, Imm32(UINT32_MAX >> (32 - shift))); bailoutIf(Assembler::NonZero, ins->snapshot()); } if (mir->isUnsigned()) { masm.shrl(Imm32(shift), lhs); } else { // Adjust the value so that shifting produces a correctly // rounded result when the numerator is negative. See 10-1 // "Signed Division by a Known Power of 2" in Henry // S. Warren, Jr.'s Hacker's Delight. if (mir->canBeNegativeDividend()) { Register lhsCopy = ToRegister(ins->numeratorCopy()); MOZ_ASSERT(lhsCopy != lhs); if (shift > 1) masm.sarl(Imm32(31), lhs); masm.shrl(Imm32(32 - shift), lhs); masm.addl(lhsCopy, lhs); } masm.sarl(Imm32(shift), lhs); if (negativeDivisor) masm.negl(lhs); } return; } if (negativeDivisor) { // INT32_MIN / -1 overflows. masm.negl(lhs); if (!mir->isTruncated()) bailoutIf(Assembler::Overflow, ins->snapshot()); else if (mir->trapOnError()) masm.j(Assembler::Overflow, trap(mir, wasm::Trap::IntegerOverflow)); } else if (mir->isUnsigned() && !mir->isTruncated()) { // Unsigned division by 1 can overflow if output is not // truncated. masm.test32(lhs, lhs); bailoutIf(Assembler::Signed, ins->snapshot()); } } void CodeGeneratorX86Shared::visitDivOrModConstantI(LDivOrModConstantI* ins) { Register lhs = ToRegister(ins->numerator()); Register output = ToRegister(ins->output()); int32_t d = ins->denominator(); // This emits the division answer into edx or the modulus answer into eax. MOZ_ASSERT(output == eax || output == edx); MOZ_ASSERT(lhs != eax && lhs != edx); bool isDiv = (output == edx); // The absolute value of the denominator isn't a power of 2 (see LDivPowTwoI // and LModPowTwoI). MOZ_ASSERT((Abs(d) & (Abs(d) - 1)) != 0); // We will first divide by Abs(d), and negate the answer if d is negative. // If desired, this can be avoided by generalizing computeDivisionConstants. ReciprocalMulConstants rmc = computeDivisionConstants(Abs(d), /* maxLog = */ 31); // We first compute (M * n) >> 32, where M = rmc.multiplier. masm.movl(Imm32(rmc.multiplier), eax); masm.imull(lhs); if (rmc.multiplier > INT32_MAX) { MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 32)); // We actually computed edx = ((int32_t(M) * n) >> 32) instead. Since // (M * n) >> 32 is the same as (edx + n), we can correct for the overflow. // (edx + n) can't overflow, as n and edx have opposite signs because int32_t(M) // is negative. masm.addl(lhs, edx); } // (M * n) >> (32 + shift) is the truncated division answer if n is non-negative, // as proved in the comments of computeDivisionConstants. We must add 1 later if n is // negative to get the right answer in all cases. masm.sarl(Imm32(rmc.shiftAmount), edx); // We'll subtract -1 instead of adding 1, because (n < 0 ? -1 : 0) can be // computed with just a sign-extending shift of 31 bits. if (ins->canBeNegativeDividend()) { masm.movl(lhs, eax); masm.sarl(Imm32(31), eax); masm.subl(eax, edx); } // After this, edx contains the correct truncated division result. if (d < 0) masm.negl(edx); if (!isDiv) { masm.imull(Imm32(-d), edx, eax); masm.addl(lhs, eax); } if (!ins->mir()->isTruncated()) { if (isDiv) { // This is a division op. Multiply the obtained value by d to check if // the correct answer is an integer. This cannot overflow, since |d| > 1. masm.imull(Imm32(d), edx, eax); masm.cmp32(lhs, eax); bailoutIf(Assembler::NotEqual, ins->snapshot()); // If lhs is zero and the divisor is negative, the answer should have // been -0. if (d < 0) { masm.test32(lhs, lhs); bailoutIf(Assembler::Zero, ins->snapshot()); } } else if (ins->canBeNegativeDividend()) { // This is a mod op. If the computed value is zero and lhs // is negative, the answer should have been -0. Label done; masm.cmp32(lhs, Imm32(0)); masm.j(Assembler::GreaterThanOrEqual, &done); masm.test32(eax, eax); bailoutIf(Assembler::Zero, ins->snapshot()); masm.bind(&done); } } } void CodeGeneratorX86Shared::visitDivI(LDivI* ins) { Register remainder = ToRegister(ins->remainder()); Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); MDiv* mir = ins->mir(); MOZ_ASSERT_IF(lhs != rhs, rhs != eax); MOZ_ASSERT(rhs != edx); MOZ_ASSERT(remainder == edx); MOZ_ASSERT(output == eax); Label done; ReturnZero* ool = nullptr; // Put the lhs in eax, for either the negative overflow case or the regular // divide case. if (lhs != eax) masm.mov(lhs, eax); // Handle divide by zero. if (mir->canBeDivideByZero()) { masm.test32(rhs, rhs); if (mir->trapOnError()) { masm.j(Assembler::Zero, trap(mir, wasm::Trap::IntegerDivideByZero)); } else if (mir->canTruncateInfinities()) { // Truncated division by zero is zero (Infinity|0 == 0) if (!ool) ool = new(alloc()) ReturnZero(output); masm.j(Assembler::Zero, ool->entry()); } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Zero, ins->snapshot()); } } // Handle an integer overflow exception from -2147483648 / -1. if (mir->canBeNegativeOverflow()) { Label notmin; masm.cmp32(lhs, Imm32(INT32_MIN)); masm.j(Assembler::NotEqual, ¬min); masm.cmp32(rhs, Imm32(-1)); if (mir->trapOnError()) { masm.j(Assembler::Equal, trap(mir, wasm::Trap::IntegerOverflow)); } else if (mir->canTruncateOverflow()) { // (-INT32_MIN)|0 == INT32_MIN and INT32_MIN is already in the // output register (lhs == eax). masm.j(Assembler::Equal, &done); } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, ins->snapshot()); } masm.bind(¬min); } // Handle negative 0. if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) { Label nonzero; masm.test32(lhs, lhs); masm.j(Assembler::NonZero, &nonzero); masm.cmp32(rhs, Imm32(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); masm.bind(&nonzero); } // Sign extend the lhs into edx to make (edx:eax), since idiv is 64-bit. if (lhs != eax) masm.mov(lhs, eax); masm.cdq(); masm.idiv(rhs); if (!mir->canTruncateRemainder()) { // If the remainder is > 0, bailout since this must be a double. masm.test32(remainder, remainder); bailoutIf(Assembler::NonZero, ins->snapshot()); } masm.bind(&done); if (ool) { addOutOfLineCode(ool, mir); masm.bind(ool->rejoin()); } } void CodeGeneratorX86Shared::visitModPowTwoI(LModPowTwoI* ins) { Register lhs = ToRegister(ins->getOperand(0)); int32_t shift = ins->shift(); Label negative; if (!ins->mir()->isUnsigned() && ins->mir()->canBeNegativeDividend()) { // Switch based on sign of the lhs. // Positive numbers are just a bitmask masm.branchTest32(Assembler::Signed, lhs, lhs, &negative); } masm.andl(Imm32((uint32_t(1) << shift) - 1), lhs); if (!ins->mir()->isUnsigned() && ins->mir()->canBeNegativeDividend()) { Label done; masm.jump(&done); // Negative numbers need a negate, bitmask, negate masm.bind(&negative); // Unlike in the visitModI case, we are not computing the mod by means of a // division. Therefore, the divisor = -1 case isn't problematic (the andl // always returns 0, which is what we expect). // // The negl instruction overflows if lhs == INT32_MIN, but this is also not // a problem: shift is at most 31, and so the andl also always returns 0. masm.negl(lhs); masm.andl(Imm32((uint32_t(1) << shift) - 1), lhs); masm.negl(lhs); // Since a%b has the same sign as b, and a is negative in this branch, // an answer of 0 means the correct result is actually -0. Bail out. if (!ins->mir()->isTruncated()) bailoutIf(Assembler::Zero, ins->snapshot()); masm.bind(&done); } } class ModOverflowCheck : public OutOfLineCodeBase { Label done_; LModI* ins_; Register rhs_; public: explicit ModOverflowCheck(LModI* ins, Register rhs) : ins_(ins), rhs_(rhs) { } virtual void accept(CodeGeneratorX86Shared* codegen) { codegen->visitModOverflowCheck(this); } Label* done() { return &done_; } LModI* ins() const { return ins_; } Register rhs() const { return rhs_; } }; void CodeGeneratorX86Shared::visitModOverflowCheck(ModOverflowCheck* ool) { masm.cmp32(ool->rhs(), Imm32(-1)); if (ool->ins()->mir()->isTruncated()) { masm.j(Assembler::NotEqual, ool->rejoin()); masm.mov(ImmWord(0), edx); masm.jmp(ool->done()); } else { bailoutIf(Assembler::Equal, ool->ins()->snapshot()); masm.jmp(ool->rejoin()); } } void CodeGeneratorX86Shared::visitModI(LModI* ins) { Register remainder = ToRegister(ins->remainder()); Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); // Required to use idiv. MOZ_ASSERT_IF(lhs != rhs, rhs != eax); MOZ_ASSERT(rhs != edx); MOZ_ASSERT(remainder == edx); MOZ_ASSERT(ToRegister(ins->getTemp(0)) == eax); Label done; ReturnZero* ool = nullptr; ModOverflowCheck* overflow = nullptr; // Set up eax in preparation for doing a div. if (lhs != eax) masm.mov(lhs, eax); MMod* mir = ins->mir(); // Prevent divide by zero. if (mir->canBeDivideByZero()) { masm.test32(rhs, rhs); if (mir->isTruncated()) { if (mir->trapOnError()) { masm.j(Assembler::Zero, trap(mir, wasm::Trap::IntegerDivideByZero)); } else { if (!ool) ool = new(alloc()) ReturnZero(edx); masm.j(Assembler::Zero, ool->entry()); } } else { bailoutIf(Assembler::Zero, ins->snapshot()); } } Label negative; // Switch based on sign of the lhs. if (mir->canBeNegativeDividend()) masm.branchTest32(Assembler::Signed, lhs, lhs, &negative); // If lhs >= 0 then remainder = lhs % rhs. The remainder must be positive. { // Check if rhs is a power-of-two. if (mir->canBePowerOfTwoDivisor()) { MOZ_ASSERT(rhs != remainder); // Rhs y is a power-of-two if (y & (y-1)) == 0. Note that if // y is any negative number other than INT32_MIN, both y and // y-1 will have the sign bit set so these are never optimized // as powers-of-two. If y is INT32_MIN, y-1 will be INT32_MAX // and because lhs >= 0 at this point, lhs & INT32_MAX returns // the correct value. Label notPowerOfTwo; masm.mov(rhs, remainder); masm.subl(Imm32(1), remainder); masm.branchTest32(Assembler::NonZero, remainder, rhs, ¬PowerOfTwo); { masm.andl(lhs, remainder); masm.jmp(&done); } masm.bind(¬PowerOfTwo); } // Since lhs >= 0, the sign-extension will be 0 masm.mov(ImmWord(0), edx); masm.idiv(rhs); } // Otherwise, we have to beware of two special cases: if (mir->canBeNegativeDividend()) { masm.jump(&done); masm.bind(&negative); // Prevent an integer overflow exception from -2147483648 % -1 Label notmin; masm.cmp32(lhs, Imm32(INT32_MIN)); overflow = new(alloc()) ModOverflowCheck(ins, rhs); masm.j(Assembler::Equal, overflow->entry()); masm.bind(overflow->rejoin()); masm.cdq(); masm.idiv(rhs); if (!mir->isTruncated()) { // A remainder of 0 means that the rval must be -0, which is a double. masm.test32(remainder, remainder); bailoutIf(Assembler::Zero, ins->snapshot()); } } masm.bind(&done); if (overflow) { addOutOfLineCode(overflow, mir); masm.bind(overflow->done()); } if (ool) { addOutOfLineCode(ool, mir); masm.bind(ool->rejoin()); } } void CodeGeneratorX86Shared::visitBitNotI(LBitNotI* ins) { const LAllocation* input = ins->getOperand(0); MOZ_ASSERT(!input->isConstant()); masm.notl(ToOperand(input)); } void CodeGeneratorX86Shared::visitBitOpI(LBitOpI* ins) { const LAllocation* lhs = ins->getOperand(0); const LAllocation* rhs = ins->getOperand(1); switch (ins->bitop()) { case JSOP_BITOR: if (rhs->isConstant()) masm.orl(Imm32(ToInt32(rhs)), ToOperand(lhs)); else masm.orl(ToOperand(rhs), ToRegister(lhs)); break; case JSOP_BITXOR: if (rhs->isConstant()) masm.xorl(Imm32(ToInt32(rhs)), ToOperand(lhs)); else masm.xorl(ToOperand(rhs), ToRegister(lhs)); break; case JSOP_BITAND: if (rhs->isConstant()) masm.andl(Imm32(ToInt32(rhs)), ToOperand(lhs)); else masm.andl(ToOperand(rhs), ToRegister(lhs)); break; default: MOZ_CRASH("unexpected binary opcode"); } } void CodeGeneratorX86Shared::visitBitOpI64(LBitOpI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LBitOpI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LBitOpI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); switch (lir->bitop()) { case JSOP_BITOR: if (IsConstant(rhs)) masm.or64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.or64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; case JSOP_BITXOR: if (IsConstant(rhs)) masm.xor64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.xor64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; case JSOP_BITAND: if (IsConstant(rhs)) masm.and64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.and64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; default: MOZ_CRASH("unexpected binary opcode"); } } void CodeGeneratorX86Shared::visitShiftI(LShiftI* ins) { Register lhs = ToRegister(ins->lhs()); const LAllocation* rhs = ins->rhs(); if (rhs->isConstant()) { int32_t shift = ToInt32(rhs) & 0x1F; switch (ins->bitop()) { case JSOP_LSH: if (shift) masm.shll(Imm32(shift), lhs); break; case JSOP_RSH: if (shift) masm.sarl(Imm32(shift), lhs); break; case JSOP_URSH: if (shift) { masm.shrl(Imm32(shift), lhs); } else if (ins->mir()->toUrsh()->fallible()) { // x >>> 0 can overflow. masm.test32(lhs, lhs); bailoutIf(Assembler::Signed, ins->snapshot()); } break; default: MOZ_CRASH("Unexpected shift op"); } } else { MOZ_ASSERT(ToRegister(rhs) == ecx); switch (ins->bitop()) { case JSOP_LSH: masm.shll_cl(lhs); break; case JSOP_RSH: masm.sarl_cl(lhs); break; case JSOP_URSH: masm.shrl_cl(lhs); if (ins->mir()->toUrsh()->fallible()) { // x >>> 0 can overflow. masm.test32(lhs, lhs); bailoutIf(Assembler::Signed, ins->snapshot()); } break; default: MOZ_CRASH("Unexpected shift op"); } } } void CodeGeneratorX86Shared::visitShiftI64(LShiftI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LShiftI64::Lhs); LAllocation* rhs = lir->getOperand(LShiftI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (rhs->isConstant()) { int32_t shift = int32_t(rhs->toConstant()->toInt64() & 0x3F); switch (lir->bitop()) { case JSOP_LSH: if (shift) masm.lshift64(Imm32(shift), ToRegister64(lhs)); break; case JSOP_RSH: if (shift) masm.rshift64Arithmetic(Imm32(shift), ToRegister64(lhs)); break; case JSOP_URSH: if (shift) masm.rshift64(Imm32(shift), ToRegister64(lhs)); break; default: MOZ_CRASH("Unexpected shift op"); } return; } MOZ_ASSERT(ToRegister(rhs) == ecx); switch (lir->bitop()) { case JSOP_LSH: masm.lshift64(ecx, ToRegister64(lhs)); break; case JSOP_RSH: masm.rshift64Arithmetic(ecx, ToRegister64(lhs)); break; case JSOP_URSH: masm.rshift64(ecx, ToRegister64(lhs)); break; default: MOZ_CRASH("Unexpected shift op"); } } void CodeGeneratorX86Shared::visitUrshD(LUrshD* ins) { Register lhs = ToRegister(ins->lhs()); MOZ_ASSERT(ToRegister(ins->temp()) == lhs); const LAllocation* rhs = ins->rhs(); FloatRegister out = ToFloatRegister(ins->output()); if (rhs->isConstant()) { int32_t shift = ToInt32(rhs) & 0x1F; if (shift) masm.shrl(Imm32(shift), lhs); } else { MOZ_ASSERT(ToRegister(rhs) == ecx); masm.shrl_cl(lhs); } masm.convertUInt32ToDouble(lhs, out); } Operand CodeGeneratorX86Shared::ToOperand(const LAllocation& a) { if (a.isGeneralReg()) return Operand(a.toGeneralReg()->reg()); if (a.isFloatReg()) return Operand(a.toFloatReg()->reg()); return Operand(masm.getStackPointer(), ToStackOffset(&a)); } Operand CodeGeneratorX86Shared::ToOperand(const LAllocation* a) { return ToOperand(*a); } Operand CodeGeneratorX86Shared::ToOperand(const LDefinition* def) { return ToOperand(def->output()); } MoveOperand CodeGeneratorX86Shared::toMoveOperand(LAllocation a) const { if (a.isGeneralReg()) return MoveOperand(ToRegister(a)); if (a.isFloatReg()) return MoveOperand(ToFloatRegister(a)); return MoveOperand(StackPointer, ToStackOffset(a)); } class OutOfLineTableSwitch : public OutOfLineCodeBase { MTableSwitch* mir_; CodeLabel jumpLabel_; void accept(CodeGeneratorX86Shared* codegen) { codegen->visitOutOfLineTableSwitch(this); } public: explicit OutOfLineTableSwitch(MTableSwitch* mir) : mir_(mir) {} MTableSwitch* mir() const { return mir_; } CodeLabel* jumpLabel() { return &jumpLabel_; } }; void CodeGeneratorX86Shared::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) { MTableSwitch* mir = ool->mir(); masm.haltingAlign(sizeof(void*)); masm.use(ool->jumpLabel()->target()); masm.addCodeLabel(*ool->jumpLabel()); for (size_t i = 0; i < mir->numCases(); i++) { LBlock* caseblock = skipTrivialBlocks(mir->getCase(i))->lir(); Label* caseheader = caseblock->label(); uint32_t caseoffset = caseheader->offset(); // The entries of the jump table need to be absolute addresses and thus // must be patched after codegen is finished. CodeLabel cl; masm.writeCodePointer(cl.patchAt()); cl.target()->bind(caseoffset); masm.addCodeLabel(cl); } } void CodeGeneratorX86Shared::emitTableSwitchDispatch(MTableSwitch* mir, Register index, Register base) { Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label(); // Lower value with low value if (mir->low() != 0) masm.subl(Imm32(mir->low()), index); // Jump to default case if input is out of range int32_t cases = mir->numCases(); masm.cmp32(index, Imm32(cases)); masm.j(AssemblerX86Shared::AboveOrEqual, defaultcase); // To fill in the CodeLabels for the case entries, we need to first // generate the case entries (we don't yet know their offsets in the // instruction stream). OutOfLineTableSwitch* ool = new(alloc()) OutOfLineTableSwitch(mir); addOutOfLineCode(ool, mir); // Compute the position where a pointer to the right case stands. masm.mov(ool->jumpLabel()->patchAt(), base); Operand pointer = Operand(base, index, ScalePointer); // Jump to the right case masm.jmp(pointer); } void CodeGeneratorX86Shared::visitMathD(LMathD* math) { FloatRegister lhs = ToFloatRegister(math->lhs()); Operand rhs = ToOperand(math->rhs()); FloatRegister output = ToFloatRegister(math->output()); switch (math->jsop()) { case JSOP_ADD: masm.vaddsd(rhs, lhs, output); break; case JSOP_SUB: masm.vsubsd(rhs, lhs, output); break; case JSOP_MUL: masm.vmulsd(rhs, lhs, output); break; case JSOP_DIV: masm.vdivsd(rhs, lhs, output); break; default: MOZ_CRASH("unexpected opcode"); } } void CodeGeneratorX86Shared::visitMathF(LMathF* math) { FloatRegister lhs = ToFloatRegister(math->lhs()); Operand rhs = ToOperand(math->rhs()); FloatRegister output = ToFloatRegister(math->output()); switch (math->jsop()) { case JSOP_ADD: masm.vaddss(rhs, lhs, output); break; case JSOP_SUB: masm.vsubss(rhs, lhs, output); break; case JSOP_MUL: masm.vmulss(rhs, lhs, output); break; case JSOP_DIV: masm.vdivss(rhs, lhs, output); break; default: MOZ_CRASH("unexpected opcode"); } } void CodeGeneratorX86Shared::visitFloor(LFloor* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bailout; if (AssemblerX86Shared::HasSSE41()) { // Bail on negative-zero. masm.branchNegativeZero(input, output, &bailout); bailoutFrom(&bailout, lir->snapshot()); // Round toward -Infinity. { ScratchDoubleScope scratch(masm); masm.vroundsd(X86Encoding::RoundDown, input, scratch, scratch); bailoutCvttsd2si(scratch, output, lir->snapshot()); } } else { Label negative, end; // Branch to a slow path for negative inputs. Doesn't catch NaN or -0. { ScratchDoubleScope scratch(masm); masm.zeroDouble(scratch); masm.branchDouble(Assembler::DoubleLessThan, input, scratch, &negative); } // Bail on negative-zero. masm.branchNegativeZero(input, output, &bailout); bailoutFrom(&bailout, lir->snapshot()); // Input is non-negative, so truncation correctly rounds. bailoutCvttsd2si(input, output, lir->snapshot()); masm.jump(&end); // Input is negative, but isn't -0. // Negative values go on a comparatively expensive path, since no // native rounding mode matches JS semantics. Still better than callVM. masm.bind(&negative); { // Truncate and round toward zero. // This is off-by-one for everything but integer-valued inputs. bailoutCvttsd2si(input, output, lir->snapshot()); // Test whether the input double was integer-valued. { ScratchDoubleScope scratch(masm); masm.convertInt32ToDouble(output, scratch); masm.branchDouble(Assembler::DoubleEqualOrUnordered, input, scratch, &end); } // Input is not integer-valued, so we rounded off-by-one in the // wrong direction. Correct by subtraction. masm.subl(Imm32(1), output); // Cannot overflow: output was already checked against INT_MIN. } masm.bind(&end); } } void CodeGeneratorX86Shared::visitFloorF(LFloorF* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bailout; if (AssemblerX86Shared::HasSSE41()) { // Bail on negative-zero. masm.branchNegativeZeroFloat32(input, output, &bailout); bailoutFrom(&bailout, lir->snapshot()); // Round toward -Infinity. { ScratchFloat32Scope scratch(masm); masm.vroundss(X86Encoding::RoundDown, input, scratch, scratch); bailoutCvttss2si(scratch, output, lir->snapshot()); } } else { Label negative, end; // Branch to a slow path for negative inputs. Doesn't catch NaN or -0. { ScratchFloat32Scope scratch(masm); masm.zeroFloat32(scratch); masm.branchFloat(Assembler::DoubleLessThan, input, scratch, &negative); } // Bail on negative-zero. masm.branchNegativeZeroFloat32(input, output, &bailout); bailoutFrom(&bailout, lir->snapshot()); // Input is non-negative, so truncation correctly rounds. bailoutCvttss2si(input, output, lir->snapshot()); masm.jump(&end); // Input is negative, but isn't -0. // Negative values go on a comparatively expensive path, since no // native rounding mode matches JS semantics. Still better than callVM. masm.bind(&negative); { // Truncate and round toward zero. // This is off-by-one for everything but integer-valued inputs. bailoutCvttss2si(input, output, lir->snapshot()); // Test whether the input double was integer-valued. { ScratchFloat32Scope scratch(masm); masm.convertInt32ToFloat32(output, scratch); masm.branchFloat(Assembler::DoubleEqualOrUnordered, input, scratch, &end); } // Input is not integer-valued, so we rounded off-by-one in the // wrong direction. Correct by subtraction. masm.subl(Imm32(1), output); // Cannot overflow: output was already checked against INT_MIN. } masm.bind(&end); } } void CodeGeneratorX86Shared::visitCeil(LCeil* lir) { FloatRegister input = ToFloatRegister(lir->input()); ScratchDoubleScope scratch(masm); Register output = ToRegister(lir->output()); Label bailout, lessThanMinusOne; // Bail on ]-1; -0] range masm.loadConstantDouble(-1, scratch); masm.branchDouble(Assembler::DoubleLessThanOrEqualOrUnordered, input, scratch, &lessThanMinusOne); // Test for remaining values with the sign bit set, i.e. ]-1; -0] masm.vmovmskpd(input, output); masm.branchTest32(Assembler::NonZero, output, Imm32(1), &bailout); bailoutFrom(&bailout, lir->snapshot()); if (AssemblerX86Shared::HasSSE41()) { // x <= -1 or x > -0 masm.bind(&lessThanMinusOne); // Round toward +Infinity. masm.vroundsd(X86Encoding::RoundUp, input, scratch, scratch); bailoutCvttsd2si(scratch, output, lir->snapshot()); return; } // No SSE4.1 Label end; // x >= 0 and x is not -0.0, we can truncate (resp. truncate and add 1) for // integer (resp. non-integer) values. // Will also work for values >= INT_MAX + 1, as the truncate // operation will return INT_MIN and there'll be a bailout. bailoutCvttsd2si(input, output, lir->snapshot()); masm.convertInt32ToDouble(output, scratch); masm.branchDouble(Assembler::DoubleEqualOrUnordered, input, scratch, &end); // Input is not integer-valued, add 1 to obtain the ceiling value masm.addl(Imm32(1), output); // if input > INT_MAX, output == INT_MAX so adding 1 will overflow. bailoutIf(Assembler::Overflow, lir->snapshot()); masm.jump(&end); // x <= -1, truncation is the way to go. masm.bind(&lessThanMinusOne); bailoutCvttsd2si(input, output, lir->snapshot()); masm.bind(&end); } void CodeGeneratorX86Shared::visitCeilF(LCeilF* lir) { FloatRegister input = ToFloatRegister(lir->input()); ScratchFloat32Scope scratch(masm); Register output = ToRegister(lir->output()); Label bailout, lessThanMinusOne; // Bail on ]-1; -0] range masm.loadConstantFloat32(-1.f, scratch); masm.branchFloat(Assembler::DoubleLessThanOrEqualOrUnordered, input, scratch, &lessThanMinusOne); // Test for remaining values with the sign bit set, i.e. ]-1; -0] masm.vmovmskps(input, output); masm.branchTest32(Assembler::NonZero, output, Imm32(1), &bailout); bailoutFrom(&bailout, lir->snapshot()); if (AssemblerX86Shared::HasSSE41()) { // x <= -1 or x > -0 masm.bind(&lessThanMinusOne); // Round toward +Infinity. masm.vroundss(X86Encoding::RoundUp, input, scratch, scratch); bailoutCvttss2si(scratch, output, lir->snapshot()); return; } // No SSE4.1 Label end; // x >= 0 and x is not -0.0, we can truncate (resp. truncate and add 1) for // integer (resp. non-integer) values. // Will also work for values >= INT_MAX + 1, as the truncate // operation will return INT_MIN and there'll be a bailout. bailoutCvttss2si(input, output, lir->snapshot()); masm.convertInt32ToFloat32(output, scratch); masm.branchFloat(Assembler::DoubleEqualOrUnordered, input, scratch, &end); // Input is not integer-valued, add 1 to obtain the ceiling value masm.addl(Imm32(1), output); // if input > INT_MAX, output == INT_MAX so adding 1 will overflow. bailoutIf(Assembler::Overflow, lir->snapshot()); masm.jump(&end); // x <= -1, truncation is the way to go. masm.bind(&lessThanMinusOne); bailoutCvttss2si(input, output, lir->snapshot()); masm.bind(&end); } void CodeGeneratorX86Shared::visitRound(LRound* lir) { FloatRegister input = ToFloatRegister(lir->input()); FloatRegister temp = ToFloatRegister(lir->temp()); ScratchDoubleScope scratch(masm); Register output = ToRegister(lir->output()); Label negativeOrZero, negative, end, bailout; // Branch to a slow path for non-positive inputs. Doesn't catch NaN. masm.zeroDouble(scratch); masm.loadConstantDouble(GetBiggestNumberLessThan(0.5), temp); masm.branchDouble(Assembler::DoubleLessThanOrEqual, input, scratch, &negativeOrZero); // Input is positive. Add the biggest double less than 0.5 and // truncate, rounding down (because if the input is the biggest double less // than 0.5, adding 0.5 would undesirably round up to 1). Note that we have // to add the input to the temp register because we're not allowed to // modify the input register. masm.addDouble(input, temp); bailoutCvttsd2si(temp, output, lir->snapshot()); masm.jump(&end); // Input is negative, +0 or -0. masm.bind(&negativeOrZero); // Branch on negative input. masm.j(Assembler::NotEqual, &negative); // Bail on negative-zero. masm.branchNegativeZero(input, output, &bailout, /* maybeNonZero = */ false); bailoutFrom(&bailout, lir->snapshot()); // Input is +0 masm.xor32(output, output); masm.jump(&end); // Input is negative. masm.bind(&negative); // Inputs in ]-0.5; 0] need to be added 0.5, other negative inputs need to // be added the biggest double less than 0.5. Label loadJoin; masm.loadConstantDouble(-0.5, scratch); masm.branchDouble(Assembler::DoubleLessThan, input, scratch, &loadJoin); masm.loadConstantDouble(0.5, temp); masm.bind(&loadJoin); if (AssemblerX86Shared::HasSSE41()) { // Add 0.5 and round toward -Infinity. The result is stored in the temp // register (currently contains 0.5). masm.addDouble(input, temp); masm.vroundsd(X86Encoding::RoundDown, temp, scratch, scratch); // Truncate. bailoutCvttsd2si(scratch, output, lir->snapshot()); // If the result is positive zero, then the actual result is -0. Bail. // Otherwise, the truncation will have produced the correct negative integer. masm.test32(output, output); bailoutIf(Assembler::Zero, lir->snapshot()); } else { masm.addDouble(input, temp); // Round toward -Infinity without the benefit of ROUNDSD. { // If input + 0.5 >= 0, input is a negative number >= -0.5 and the result is -0. masm.compareDouble(Assembler::DoubleGreaterThanOrEqual, temp, scratch); bailoutIf(Assembler::DoubleGreaterThanOrEqual, lir->snapshot()); // Truncate and round toward zero. // This is off-by-one for everything but integer-valued inputs. bailoutCvttsd2si(temp, output, lir->snapshot()); // Test whether the truncated double was integer-valued. masm.convertInt32ToDouble(output, scratch); masm.branchDouble(Assembler::DoubleEqualOrUnordered, temp, scratch, &end); // Input is not integer-valued, so we rounded off-by-one in the // wrong direction. Correct by subtraction. masm.subl(Imm32(1), output); // Cannot overflow: output was already checked against INT_MIN. } } masm.bind(&end); } void CodeGeneratorX86Shared::visitRoundF(LRoundF* lir) { FloatRegister input = ToFloatRegister(lir->input()); FloatRegister temp = ToFloatRegister(lir->temp()); ScratchFloat32Scope scratch(masm); Register output = ToRegister(lir->output()); Label negativeOrZero, negative, end, bailout; // Branch to a slow path for non-positive inputs. Doesn't catch NaN. masm.zeroFloat32(scratch); masm.loadConstantFloat32(GetBiggestNumberLessThan(0.5f), temp); masm.branchFloat(Assembler::DoubleLessThanOrEqual, input, scratch, &negativeOrZero); // Input is non-negative. Add the biggest float less than 0.5 and truncate, // rounding down (because if the input is the biggest float less than 0.5, // adding 0.5 would undesirably round up to 1). Note that we have to add // the input to the temp register because we're not allowed to modify the // input register. masm.addFloat32(input, temp); bailoutCvttss2si(temp, output, lir->snapshot()); masm.jump(&end); // Input is negative, +0 or -0. masm.bind(&negativeOrZero); // Branch on negative input. masm.j(Assembler::NotEqual, &negative); // Bail on negative-zero. masm.branchNegativeZeroFloat32(input, output, &bailout); bailoutFrom(&bailout, lir->snapshot()); // Input is +0. masm.xor32(output, output); masm.jump(&end); // Input is negative. masm.bind(&negative); // Inputs in ]-0.5; 0] need to be added 0.5, other negative inputs need to // be added the biggest double less than 0.5. Label loadJoin; masm.loadConstantFloat32(-0.5f, scratch); masm.branchFloat(Assembler::DoubleLessThan, input, scratch, &loadJoin); masm.loadConstantFloat32(0.5f, temp); masm.bind(&loadJoin); if (AssemblerX86Shared::HasSSE41()) { // Add 0.5 and round toward -Infinity. The result is stored in the temp // register (currently contains 0.5). masm.addFloat32(input, temp); masm.vroundss(X86Encoding::RoundDown, temp, scratch, scratch); // Truncate. bailoutCvttss2si(scratch, output, lir->snapshot()); // If the result is positive zero, then the actual result is -0. Bail. // Otherwise, the truncation will have produced the correct negative integer. masm.test32(output, output); bailoutIf(Assembler::Zero, lir->snapshot()); } else { masm.addFloat32(input, temp); // Round toward -Infinity without the benefit of ROUNDSS. { // If input + 0.5 >= 0, input is a negative number >= -0.5 and the result is -0. masm.compareFloat(Assembler::DoubleGreaterThanOrEqual, temp, scratch); bailoutIf(Assembler::DoubleGreaterThanOrEqual, lir->snapshot()); // Truncate and round toward zero. // This is off-by-one for everything but integer-valued inputs. bailoutCvttss2si(temp, output, lir->snapshot()); // Test whether the truncated double was integer-valued. masm.convertInt32ToFloat32(output, scratch); masm.branchFloat(Assembler::DoubleEqualOrUnordered, temp, scratch, &end); // Input is not integer-valued, so we rounded off-by-one in the // wrong direction. Correct by subtraction. masm.subl(Imm32(1), output); // Cannot overflow: output was already checked against INT_MIN. } } masm.bind(&end); } void CodeGeneratorX86Shared::visitGuardShape(LGuardShape* guard) { Register obj = ToRegister(guard->input()); masm.cmpPtr(Operand(obj, ShapedObject::offsetOfShape()), ImmGCPtr(guard->mir()->shape())); bailoutIf(Assembler::NotEqual, guard->snapshot()); } void CodeGeneratorX86Shared::visitGuardObjectGroup(LGuardObjectGroup* guard) { Register obj = ToRegister(guard->input()); masm.cmpPtr(Operand(obj, JSObject::offsetOfGroup()), ImmGCPtr(guard->mir()->group())); Assembler::Condition cond = guard->mir()->bailOnEquality() ? Assembler::Equal : Assembler::NotEqual; bailoutIf(cond, guard->snapshot()); } void CodeGeneratorX86Shared::visitGuardClass(LGuardClass* guard) { Register obj = ToRegister(guard->input()); Register tmp = ToRegister(guard->tempInt()); masm.loadPtr(Address(obj, JSObject::offsetOfGroup()), tmp); masm.cmpPtr(Operand(tmp, ObjectGroup::offsetOfClasp()), ImmPtr(guard->mir()->getClass())); bailoutIf(Assembler::NotEqual, guard->snapshot()); } void CodeGeneratorX86Shared::visitEffectiveAddress(LEffectiveAddress* ins) { const MEffectiveAddress* mir = ins->mir(); Register base = ToRegister(ins->base()); Register index = ToRegister(ins->index()); Register output = ToRegister(ins->output()); masm.leal(Operand(base, index, mir->scale(), mir->displacement()), output); } void CodeGeneratorX86Shared::generateInvalidateEpilogue() { // Ensure that there is enough space in the buffer for the OsiPoint // patching to occur. Otherwise, we could overwrite the invalidation // epilogue. for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) masm.nop(); masm.bind(&invalidate_); // Push the Ion script onto the stack (when we determine what that pointer is). invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1))); JitCode* thunk = gen->jitRuntime()->getInvalidationThunk(); masm.call(thunk); // We should never reach this point in JIT code -- the invalidation thunk should // pop the invalidated JS frame and return directly to its caller. masm.assumeUnreachable("Should have returned directly to its caller instead of here."); } void CodeGeneratorX86Shared::visitNegI(LNegI* ins) { Register input = ToRegister(ins->input()); MOZ_ASSERT(input == ToRegister(ins->output())); masm.neg32(input); } void CodeGeneratorX86Shared::visitNegD(LNegD* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); masm.negateDouble(input); } void CodeGeneratorX86Shared::visitNegF(LNegF* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); masm.negateFloat(input); } void CodeGeneratorX86Shared::visitSimd128Int(LSimd128Int* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantSimd128Int(ins->getValue(), ToFloatRegister(out)); } void CodeGeneratorX86Shared::visitSimd128Float(LSimd128Float* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantSimd128Float(ins->getValue(), ToFloatRegister(out)); } void CodeGeneratorX86Shared::visitInt32x4ToFloat32x4(LInt32x4ToFloat32x4* ins) { FloatRegister in = ToFloatRegister(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); masm.convertInt32x4ToFloat32x4(in, out); } void CodeGeneratorX86Shared::visitFloat32x4ToInt32x4(LFloat32x4ToInt32x4* ins) { FloatRegister in = ToFloatRegister(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); Register temp = ToRegister(ins->temp()); masm.convertFloat32x4ToInt32x4(in, out); auto* ool = new(alloc()) OutOfLineSimdFloatToIntCheck(temp, in, ins, ins->mir()->trapOffset()); addOutOfLineCode(ool, ins->mir()); static const SimdConstant InvalidResult = SimdConstant::SplatX4(int32_t(-2147483648)); ScratchSimd128Scope scratch(masm); masm.loadConstantSimd128Int(InvalidResult, scratch); masm.packedEqualInt32x4(Operand(out), scratch); // TODO (bug 1156228): If we have SSE4.1, we can use PTEST here instead of // the two following instructions. masm.vmovmskps(scratch, temp); masm.cmp32(temp, Imm32(0)); masm.j(Assembler::NotEqual, ool->entry()); masm.bind(ool->rejoin()); } void CodeGeneratorX86Shared::visitOutOfLineSimdFloatToIntCheck(OutOfLineSimdFloatToIntCheck *ool) { static const SimdConstant Int32MaxX4 = SimdConstant::SplatX4(2147483647.f); static const SimdConstant Int32MinX4 = SimdConstant::SplatX4(-2147483648.f); Label onConversionError; FloatRegister input = ool->input(); Register temp = ool->temp(); ScratchSimd128Scope scratch(masm); masm.loadConstantSimd128Float(Int32MinX4, scratch); masm.vcmpleps(Operand(input), scratch, scratch); masm.vmovmskps(scratch, temp); masm.cmp32(temp, Imm32(15)); masm.j(Assembler::NotEqual, &onConversionError); masm.loadConstantSimd128Float(Int32MaxX4, scratch); masm.vcmpleps(Operand(input), scratch, scratch); masm.vmovmskps(scratch, temp); masm.cmp32(temp, Imm32(0)); masm.j(Assembler::NotEqual, &onConversionError); masm.jump(ool->rejoin()); if (gen->compilingWasm()) { masm.bindLater(&onConversionError, trap(ool, wasm::Trap::ImpreciseSimdConversion)); } else { masm.bind(&onConversionError); bailout(ool->ins()->snapshot()); } } // Convert Float32x4 to Uint32x4. // // If any input lane value is out of range or NaN, bail out. void CodeGeneratorX86Shared::visitFloat32x4ToUint32x4(LFloat32x4ToUint32x4* ins) { const MSimdConvert* mir = ins->mir(); FloatRegister in = ToFloatRegister(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); Register temp = ToRegister(ins->tempR()); FloatRegister tempF = ToFloatRegister(ins->tempF()); // Classify lane values into 4 disjoint classes: // // N-lanes: in <= -1.0 // A-lanes: -1.0 < in <= 0x0.ffffffp31 // B-lanes: 0x1.0p31 <= in <= 0x0.ffffffp32 // V-lanes: 0x1.0p32 <= in, or isnan(in) // // We need to bail out to throw a RangeError if we see any N-lanes or // V-lanes. // // For A-lanes and B-lanes, we make two float -> int32 conversions: // // A = cvttps2dq(in) // B = cvttps2dq(in - 0x1.0p31f) // // Note that the subtraction for the B computation is exact for B-lanes. // There is no rounding, so B is the low 31 bits of the correctly converted // result. // // The cvttps2dq instruction produces 0x80000000 when the input is NaN or // out of range for a signed int32_t. This conveniently provides the missing // high bit for B, so the desired result is A for A-lanes and A|B for // B-lanes. ScratchSimd128Scope scratch(masm); // TODO: If the majority of lanes are A-lanes, it could be faster to compute // A first, use vmovmskps to check for any non-A-lanes and handle them in // ool code. OTOH, we we're wrong about the lane distribution, that would be // slower. // Compute B in |scratch|. static const float Adjust = 0x80000000; // 0x1.0p31f for the benefit of MSVC. static const SimdConstant Bias = SimdConstant::SplatX4(-Adjust); masm.loadConstantSimd128Float(Bias, scratch); masm.packedAddFloat32(Operand(in), scratch); masm.convertFloat32x4ToInt32x4(scratch, scratch); // Compute A in |out|. This is the last time we use |in| and the first time // we use |out|, so we can tolerate if they are the same register. masm.convertFloat32x4ToInt32x4(in, out); // We can identify A-lanes by the sign bits in A: Any A-lanes will be // positive in A, and N, B, and V-lanes will be 0x80000000 in A. Compute a // mask of non-A-lanes into |tempF|. masm.zeroSimd128Float(tempF); masm.packedGreaterThanInt32x4(Operand(out), tempF); // Clear the A-lanes in B. masm.bitwiseAndSimd128(Operand(tempF), scratch); // Compute the final result: A for A-lanes, A|B for B-lanes. masm.bitwiseOrSimd128(Operand(scratch), out); // We still need to filter out the V-lanes. They would show up as 0x80000000 // in both A and B. Since we cleared the valid A-lanes in B, the V-lanes are // the remaining negative lanes in B. masm.vmovmskps(scratch, temp); masm.cmp32(temp, Imm32(0)); if (gen->compilingWasm()) masm.j(Assembler::NotEqual, trap(mir, wasm::Trap::ImpreciseSimdConversion)); else bailoutIf(Assembler::NotEqual, ins->snapshot()); } void CodeGeneratorX86Shared::visitSimdValueInt32x4(LSimdValueInt32x4* ins) { MOZ_ASSERT(ins->mir()->type() == MIRType::Int32x4 || ins->mir()->type() == MIRType::Bool32x4); FloatRegister output = ToFloatRegister(ins->output()); if (AssemblerX86Shared::HasSSE41()) { masm.vmovd(ToRegister(ins->getOperand(0)), output); for (size_t i = 1; i < 4; ++i) { Register r = ToRegister(ins->getOperand(i)); masm.vpinsrd(i, r, output, output); } return; } masm.reserveStack(Simd128DataSize); for (size_t i = 0; i < 4; ++i) { Register r = ToRegister(ins->getOperand(i)); masm.store32(r, Address(StackPointer, i * sizeof(int32_t))); } masm.loadAlignedSimd128Int(Address(StackPointer, 0), output); masm.freeStack(Simd128DataSize); } void CodeGeneratorX86Shared::visitSimdValueFloat32x4(LSimdValueFloat32x4* ins) { MOZ_ASSERT(ins->mir()->type() == MIRType::Float32x4); FloatRegister r0 = ToFloatRegister(ins->getOperand(0)); FloatRegister r1 = ToFloatRegister(ins->getOperand(1)); FloatRegister r2 = ToFloatRegister(ins->getOperand(2)); FloatRegister r3 = ToFloatRegister(ins->getOperand(3)); FloatRegister tmp = ToFloatRegister(ins->getTemp(0)); FloatRegister output = ToFloatRegister(ins->output()); FloatRegister r0Copy = masm.reusedInputFloat32x4(r0, output); FloatRegister r1Copy = masm.reusedInputFloat32x4(r1, tmp); masm.vunpcklps(r3, r1Copy, tmp); masm.vunpcklps(r2, r0Copy, output); masm.vunpcklps(tmp, output, output); } void CodeGeneratorX86Shared::visitSimdSplatX16(LSimdSplatX16* ins) { MOZ_ASSERT(SimdTypeToLength(ins->mir()->type()) == 16); Register input = ToRegister(ins->getOperand(0)); FloatRegister output = ToFloatRegister(ins->output()); masm.vmovd(input, output); if (AssemblerX86Shared::HasSSSE3()) { masm.zeroSimd128Int(ScratchSimd128Reg); masm.vpshufb(ScratchSimd128Reg, output, output); } else { // Use two shifts to duplicate the low 8 bits into the low 16 bits. masm.vpsllw(Imm32(8), output, output); masm.vmovdqa(output, ScratchSimd128Reg); masm.vpsrlw(Imm32(8), ScratchSimd128Reg, ScratchSimd128Reg); masm.vpor(ScratchSimd128Reg, output, output); // Then do an X8 splat. masm.vpshuflw(0, output, output); masm.vpshufd(0, output, output); } } void CodeGeneratorX86Shared::visitSimdSplatX8(LSimdSplatX8* ins) { MOZ_ASSERT(SimdTypeToLength(ins->mir()->type()) == 8); Register input = ToRegister(ins->getOperand(0)); FloatRegister output = ToFloatRegister(ins->output()); masm.vmovd(input, output); masm.vpshuflw(0, output, output); masm.vpshufd(0, output, output); } void CodeGeneratorX86Shared::visitSimdSplatX4(LSimdSplatX4* ins) { FloatRegister output = ToFloatRegister(ins->output()); MSimdSplat* mir = ins->mir(); MOZ_ASSERT(IsSimdType(mir->type())); JS_STATIC_ASSERT(sizeof(float) == sizeof(int32_t)); if (mir->type() == MIRType::Float32x4) { FloatRegister r = ToFloatRegister(ins->getOperand(0)); FloatRegister rCopy = masm.reusedInputFloat32x4(r, output); masm.vshufps(0, rCopy, rCopy, output); } else { Register r = ToRegister(ins->getOperand(0)); masm.vmovd(r, output); masm.vpshufd(0, output, output); } } void CodeGeneratorX86Shared::visitSimdReinterpretCast(LSimdReinterpretCast* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); if (input.aliases(output)) return; if (IsIntegerSimdType(ins->mir()->type())) masm.vmovdqa(input, output); else masm.vmovaps(input, output); } // Extract an integer lane from the 32x4 vector register |input| and place it in // |output|. void CodeGeneratorX86Shared::emitSimdExtractLane32x4(FloatRegister input, Register output, unsigned lane) { if (lane == 0) { // The value we want to extract is in the low double-word masm.moveLowInt32(input, output); } else if (AssemblerX86Shared::HasSSE41()) { masm.vpextrd(lane, input, output); } else { uint32_t mask = MacroAssembler::ComputeShuffleMask(lane); masm.shuffleInt32(mask, input, ScratchSimd128Reg); masm.moveLowInt32(ScratchSimd128Reg, output); } } // Extract an integer lane from the 16x8 vector register |input|, sign- or // zero-extend to 32 bits and place the result in |output|. void CodeGeneratorX86Shared::emitSimdExtractLane16x8(FloatRegister input, Register output, unsigned lane, SimdSign signedness) { // Unlike pextrd and pextrb, this is available in SSE2. masm.vpextrw(lane, input, output); if (signedness == SimdSign::Signed) masm.movswl(output, output); } // Extract an integer lane from the 8x16 vector register |input|, sign- or // zero-extend to 32 bits and place the result in |output|. void CodeGeneratorX86Shared::emitSimdExtractLane8x16(FloatRegister input, Register output, unsigned lane, SimdSign signedness) { if (AssemblerX86Shared::HasSSE41()) { masm.vpextrb(lane, input, output); // vpextrb clears the high bits, so no further extension required. if (signedness == SimdSign::Unsigned) signedness = SimdSign::NotApplicable; } else { // Extract the relevant 16 bits containing our lane, then shift the // right 8 bits into place. emitSimdExtractLane16x8(input, output, lane / 2, SimdSign::Unsigned); if (lane % 2) { masm.shrl(Imm32(8), output); // The shrl handles the zero-extension. Don't repeat it. if (signedness == SimdSign::Unsigned) signedness = SimdSign::NotApplicable; } } // We have the right low 8 bits in |output|, but we may need to fix the high // bits. Note that this requires |output| to be one of the %eax-%edx // registers. switch (signedness) { case SimdSign::Signed: masm.movsbl(output, output); break; case SimdSign::Unsigned: masm.movzbl(output, output); break; case SimdSign::NotApplicable: // No adjustment needed. break; } } void CodeGeneratorX86Shared::visitSimdExtractElementB(LSimdExtractElementB* ins) { FloatRegister input = ToFloatRegister(ins->input()); Register output = ToRegister(ins->output()); MSimdExtractElement* mir = ins->mir(); unsigned length = SimdTypeToLength(mir->specialization()); switch (length) { case 4: emitSimdExtractLane32x4(input, output, mir->lane()); break; case 8: // Get a lane, don't bother fixing the high bits since we'll mask below. emitSimdExtractLane16x8(input, output, mir->lane(), SimdSign::NotApplicable); break; case 16: emitSimdExtractLane8x16(input, output, mir->lane(), SimdSign::NotApplicable); break; default: MOZ_CRASH("Unhandled SIMD length"); } // We need to generate a 0/1 value. We have 0/-1 and possibly dirty high bits. masm.and32(Imm32(1), output); } void CodeGeneratorX86Shared::visitSimdExtractElementI(LSimdExtractElementI* ins) { FloatRegister input = ToFloatRegister(ins->input()); Register output = ToRegister(ins->output()); MSimdExtractElement* mir = ins->mir(); unsigned length = SimdTypeToLength(mir->specialization()); switch (length) { case 4: emitSimdExtractLane32x4(input, output, mir->lane()); break; case 8: emitSimdExtractLane16x8(input, output, mir->lane(), mir->signedness()); break; case 16: emitSimdExtractLane8x16(input, output, mir->lane(), mir->signedness()); break; default: MOZ_CRASH("Unhandled SIMD length"); } } void CodeGeneratorX86Shared::visitSimdExtractElementU2D(LSimdExtractElementU2D* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); Register temp = ToRegister(ins->temp()); MSimdExtractElement* mir = ins->mir(); MOZ_ASSERT(mir->specialization() == MIRType::Int32x4); emitSimdExtractLane32x4(input, temp, mir->lane()); masm.convertUInt32ToDouble(temp, output); } void CodeGeneratorX86Shared::visitSimdExtractElementF(LSimdExtractElementF* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); unsigned lane = ins->mir()->lane(); if (lane == 0) { // The value we want to extract is in the low double-word if (input != output) masm.moveFloat32(input, output); } else if (lane == 2) { masm.moveHighPairToLowPairFloat32(input, output); } else { uint32_t mask = MacroAssembler::ComputeShuffleMask(lane); masm.shuffleFloat32(mask, input, output); } // NaNs contained within SIMD values are not enforced to be canonical, so // when we extract an element into a "regular" scalar JS value, we have to // canonicalize. In wasm code, we can skip this, as wasm only has to // canonicalize NaNs at FFI boundaries. if (!gen->compilingWasm()) masm.canonicalizeFloat(output); } void CodeGeneratorX86Shared::visitSimdInsertElementI(LSimdInsertElementI* ins) { FloatRegister vector = ToFloatRegister(ins->vector()); Register value = ToRegister(ins->value()); FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT(vector == output); // defineReuseInput(0) unsigned lane = ins->lane(); unsigned length = ins->length(); if (length == 8) { // Available in SSE 2. masm.vpinsrw(lane, value, vector, output); return; } // Note that, contrarily to float32x4, we cannot use vmovd if the inserted // value goes into the first component, as vmovd clears out the higher lanes // of the output. if (AssemblerX86Shared::HasSSE41()) { // TODO: Teach Lowering that we don't need defineReuseInput if we have AVX. switch (length) { case 4: masm.vpinsrd(lane, value, vector, output); return; case 16: masm.vpinsrb(lane, value, vector, output); return; } } masm.reserveStack(Simd128DataSize); masm.storeAlignedSimd128Int(vector, Address(StackPointer, 0)); switch (length) { case 4: masm.store32(value, Address(StackPointer, lane * sizeof(int32_t))); break; case 16: // Note that this requires `value` to be in one the registers where the // low 8 bits are addressible (%eax - %edx on x86, all of them on x86-64). masm.store8(value, Address(StackPointer, lane * sizeof(int8_t))); break; default: MOZ_CRASH("Unsupported SIMD length"); } masm.loadAlignedSimd128Int(Address(StackPointer, 0), output); masm.freeStack(Simd128DataSize); } void CodeGeneratorX86Shared::visitSimdInsertElementF(LSimdInsertElementF* ins) { FloatRegister vector = ToFloatRegister(ins->vector()); FloatRegister value = ToFloatRegister(ins->value()); FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT(vector == output); // defineReuseInput(0) if (ins->lane() == 0) { // As both operands are registers, vmovss doesn't modify the upper bits // of the destination operand. if (value != output) masm.vmovss(value, vector, output); return; } if (AssemblerX86Shared::HasSSE41()) { // The input value is in the low float32 of the 'value' FloatRegister. masm.vinsertps(masm.vinsertpsMask(0, ins->lane()), value, output, output); return; } unsigned component = unsigned(ins->lane()); masm.reserveStack(Simd128DataSize); masm.storeAlignedSimd128Float(vector, Address(StackPointer, 0)); masm.storeFloat32(value, Address(StackPointer, component * sizeof(int32_t))); masm.loadAlignedSimd128Float(Address(StackPointer, 0), output); masm.freeStack(Simd128DataSize); } void CodeGeneratorX86Shared::visitSimdAllTrue(LSimdAllTrue* ins) { FloatRegister input = ToFloatRegister(ins->input()); Register output = ToRegister(ins->output()); masm.vmovmskps(input, output); masm.cmp32(output, Imm32(0xf)); masm.emitSet(Assembler::Zero, output); } void CodeGeneratorX86Shared::visitSimdAnyTrue(LSimdAnyTrue* ins) { FloatRegister input = ToFloatRegister(ins->input()); Register output = ToRegister(ins->output()); masm.vmovmskps(input, output); masm.cmp32(output, Imm32(0x0)); masm.emitSet(Assembler::NonZero, output); } template void CodeGeneratorX86Shared::visitSimdGeneralShuffle(LSimdGeneralShuffleBase* ins, Reg tempRegister) { MSimdGeneralShuffle* mir = ins->mir(); unsigned numVectors = mir->numVectors(); Register laneTemp = ToRegister(ins->temp()); // This won't generate fast code, but it's fine because we expect users // to have used constant indices (and thus MSimdGeneralShuffle to be fold // into MSimdSwizzle/MSimdShuffle, which are fast). // We need stack space for the numVectors inputs and for the output vector. unsigned stackSpace = Simd128DataSize * (numVectors + 1); masm.reserveStack(stackSpace); for (unsigned i = 0; i < numVectors; i++) { masm.storeAlignedVector(ToFloatRegister(ins->vector(i)), Address(StackPointer, Simd128DataSize * (1 + i))); } Label bail; const Scale laneScale = ScaleFromElemWidth(sizeof(T)); for (size_t i = 0; i < mir->numLanes(); i++) { Operand lane = ToOperand(ins->lane(i)); masm.cmp32(lane, Imm32(numVectors * mir->numLanes() - 1)); masm.j(Assembler::Above, &bail); if (lane.kind() == Operand::REG) { masm.loadScalar(Operand(StackPointer, ToRegister(ins->lane(i)), laneScale, Simd128DataSize), tempRegister); } else { masm.load32(lane, laneTemp); masm.loadScalar(Operand(StackPointer, laneTemp, laneScale, Simd128DataSize), tempRegister); } masm.storeScalar(tempRegister, Address(StackPointer, i * sizeof(T))); } FloatRegister output = ToFloatRegister(ins->output()); masm.loadAlignedVector(Address(StackPointer, 0), output); Label join; masm.jump(&join); { masm.bind(&bail); masm.freeStack(stackSpace); bailout(ins->snapshot()); } masm.bind(&join); masm.setFramePushed(masm.framePushed() + stackSpace); masm.freeStack(stackSpace); } void CodeGeneratorX86Shared::visitSimdGeneralShuffleI(LSimdGeneralShuffleI* ins) { switch (ins->mir()->type()) { case MIRType::Int8x16: return visitSimdGeneralShuffle(ins, ToRegister(ins->temp())); case MIRType::Int16x8: return visitSimdGeneralShuffle(ins, ToRegister(ins->temp())); case MIRType::Int32x4: return visitSimdGeneralShuffle(ins, ToRegister(ins->temp())); default: MOZ_CRASH("unsupported type for general shuffle"); } } void CodeGeneratorX86Shared::visitSimdGeneralShuffleF(LSimdGeneralShuffleF* ins) { ScratchFloat32Scope scratch(masm); visitSimdGeneralShuffle(ins, scratch); } void CodeGeneratorX86Shared::visitSimdSwizzleI(LSimdSwizzleI* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); const unsigned numLanes = ins->numLanes(); switch (numLanes) { case 4: { uint32_t x = ins->lane(0); uint32_t y = ins->lane(1); uint32_t z = ins->lane(2); uint32_t w = ins->lane(3); uint32_t mask = MacroAssembler::ComputeShuffleMask(x, y, z, w); masm.shuffleInt32(mask, input, output); return; } } // In the general case, use pshufb if it is available. Convert to a // byte-wise swizzle. const unsigned bytesPerLane = 16 / numLanes; int8_t bLane[16]; for (unsigned i = 0; i < numLanes; i++) { for (unsigned b = 0; b < bytesPerLane; b++) { bLane[i * bytesPerLane + b] = ins->lane(i) * bytesPerLane + b; } } if (AssemblerX86Shared::HasSSSE3()) { ScratchSimd128Scope scratch(masm); masm.loadConstantSimd128Int(SimdConstant::CreateX16(bLane), scratch); FloatRegister inputCopy = masm.reusedInputInt32x4(input, output); masm.vpshufb(scratch, inputCopy, output); return; } // Worst-case fallback for pre-SSSE3 machines. Bounce through memory. Register temp = ToRegister(ins->getTemp(0)); masm.reserveStack(2 * Simd128DataSize); masm.storeAlignedSimd128Int(input, Address(StackPointer, Simd128DataSize)); for (unsigned i = 0; i < 16; i++) { masm.load8ZeroExtend(Address(StackPointer, Simd128DataSize + bLane[i]), temp); masm.store8(temp, Address(StackPointer, i)); } masm.loadAlignedSimd128Int(Address(StackPointer, 0), output); masm.freeStack(2 * Simd128DataSize); } void CodeGeneratorX86Shared::visitSimdSwizzleF(LSimdSwizzleF* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT(ins->numLanes() == 4); uint32_t x = ins->lane(0); uint32_t y = ins->lane(1); uint32_t z = ins->lane(2); uint32_t w = ins->lane(3); if (AssemblerX86Shared::HasSSE3()) { if (ins->lanesMatch(0, 0, 2, 2)) { masm.vmovsldup(input, output); return; } if (ins->lanesMatch(1, 1, 3, 3)) { masm.vmovshdup(input, output); return; } } // TODO Here and below, arch specific lowering could identify this pattern // and use defineReuseInput to avoid this move (bug 1084404) if (ins->lanesMatch(2, 3, 2, 3)) { FloatRegister inputCopy = masm.reusedInputFloat32x4(input, output); masm.vmovhlps(input, inputCopy, output); return; } if (ins->lanesMatch(0, 1, 0, 1)) { if (AssemblerX86Shared::HasSSE3() && !AssemblerX86Shared::HasAVX()) { masm.vmovddup(input, output); return; } FloatRegister inputCopy = masm.reusedInputFloat32x4(input, output); masm.vmovlhps(input, inputCopy, output); return; } if (ins->lanesMatch(0, 0, 1, 1)) { FloatRegister inputCopy = masm.reusedInputFloat32x4(input, output); masm.vunpcklps(input, inputCopy, output); return; } if (ins->lanesMatch(2, 2, 3, 3)) { FloatRegister inputCopy = masm.reusedInputFloat32x4(input, output); masm.vunpckhps(input, inputCopy, output); return; } uint32_t mask = MacroAssembler::ComputeShuffleMask(x, y, z, w); masm.shuffleFloat32(mask, input, output); } void CodeGeneratorX86Shared::visitSimdShuffle(LSimdShuffle* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); FloatRegister rhs = ToFloatRegister(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); const unsigned numLanes = ins->numLanes(); const unsigned bytesPerLane = 16 / numLanes; // Convert the shuffle to a byte-wise shuffle. uint8_t bLane[16]; for (unsigned i = 0; i < numLanes; i++) { for (unsigned b = 0; b < bytesPerLane; b++) { bLane[i * bytesPerLane + b] = ins->lane(i) * bytesPerLane + b; } } // Use pshufb if it is available. if (AssemblerX86Shared::HasSSSE3()) { FloatRegister scratch1 = ToFloatRegister(ins->temp()); ScratchSimd128Scope scratch2(masm); // Use pshufb instructions to gather the lanes from each source vector. // A negative index creates a zero lane, so the two vectors can be combined. // Set scratch2 = lanes from lhs. int8_t idx[16]; for (unsigned i = 0; i < 16; i++) idx[i] = bLane[i] < 16 ? bLane[i] : -1; masm.loadConstantSimd128Int(SimdConstant::CreateX16(idx), scratch1); FloatRegister lhsCopy = masm.reusedInputInt32x4(lhs, scratch2); masm.vpshufb(scratch1, lhsCopy, scratch2); // Set output = lanes from rhs. for (unsigned i = 0; i < 16; i++) idx[i] = bLane[i] >= 16 ? bLane[i] - 16 : -1; masm.loadConstantSimd128Int(SimdConstant::CreateX16(idx), scratch1); FloatRegister rhsCopy = masm.reusedInputInt32x4(rhs, output); masm.vpshufb(scratch1, rhsCopy, output); // Combine. masm.vpor(scratch2, output, output); return; } // Worst-case fallback for pre-SSE3 machines. Bounce through memory. Register temp = ToRegister(ins->getTemp(0)); masm.reserveStack(3 * Simd128DataSize); masm.storeAlignedSimd128Int(lhs, Address(StackPointer, Simd128DataSize)); masm.storeAlignedSimd128Int(rhs, Address(StackPointer, 2 * Simd128DataSize)); for (unsigned i = 0; i < 16; i++) { masm.load8ZeroExtend(Address(StackPointer, Simd128DataSize + bLane[i]), temp); masm.store8(temp, Address(StackPointer, i)); } masm.loadAlignedSimd128Int(Address(StackPointer, 0), output); masm.freeStack(3 * Simd128DataSize); } void CodeGeneratorX86Shared::visitSimdShuffleX4(LSimdShuffleX4* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister out = ToFloatRegister(ins->output()); uint32_t x = ins->lane(0); uint32_t y = ins->lane(1); uint32_t z = ins->lane(2); uint32_t w = ins->lane(3); // Check that lanes come from LHS in majority: unsigned numLanesFromLHS = (x < 4) + (y < 4) + (z < 4) + (w < 4); MOZ_ASSERT(numLanesFromLHS >= 2); // When reading this method, remember that vshufps takes the two first // inputs of the destination operand (right operand) and the two last // inputs of the source operand (left operand). // // Legend for explanations: // - L: LHS // - R: RHS // - T: temporary uint32_t mask; // If all lanes came from a single vector, we should have constructed a // MSimdSwizzle instead. MOZ_ASSERT(numLanesFromLHS < 4); // If all values stay in their lane, this is a blend. if (AssemblerX86Shared::HasSSE41()) { if (x % 4 == 0 && y % 4 == 1 && z % 4 == 2 && w % 4 == 3) { masm.vblendps(masm.blendpsMask(x >= 4, y >= 4, z >= 4, w >= 4), rhs, lhs, out); return; } } // One element of the second, all other elements of the first if (numLanesFromLHS == 3) { unsigned firstMask = -1, secondMask = -1; // register-register vmovss preserves the high lanes. if (ins->lanesMatch(4, 1, 2, 3) && rhs.kind() == Operand::FPREG) { masm.vmovss(FloatRegister::FromCode(rhs.fpu()), lhs, out); return; } // SSE4.1 vinsertps can handle any single element. unsigned numLanesUnchanged = (x == 0) + (y == 1) + (z == 2) + (w == 3); if (AssemblerX86Shared::HasSSE41() && numLanesUnchanged == 3) { unsigned srcLane; unsigned dstLane; if (x >= 4) { srcLane = x - 4; dstLane = 0; } else if (y >= 4) { srcLane = y - 4; dstLane = 1; } else if (z >= 4) { srcLane = z - 4; dstLane = 2; } else { MOZ_ASSERT(w >= 4); srcLane = w - 4; dstLane = 3; } masm.vinsertps(masm.vinsertpsMask(srcLane, dstLane), rhs, lhs, out); return; } FloatRegister rhsCopy = ToFloatRegister(ins->temp()); if (x < 4 && y < 4) { if (w >= 4) { w %= 4; // T = (Rw Rw Lz Lz) = vshufps(firstMask, lhs, rhs, rhsCopy) firstMask = MacroAssembler::ComputeShuffleMask(w, w, z, z); // (Lx Ly Lz Rw) = (Lx Ly Tz Tx) = vshufps(secondMask, T, lhs, out) secondMask = MacroAssembler::ComputeShuffleMask(x, y, 2, 0); } else { MOZ_ASSERT(z >= 4); z %= 4; // T = (Rz Rz Lw Lw) = vshufps(firstMask, lhs, rhs, rhsCopy) firstMask = MacroAssembler::ComputeShuffleMask(z, z, w, w); // (Lx Ly Rz Lw) = (Lx Ly Tx Tz) = vshufps(secondMask, T, lhs, out) secondMask = MacroAssembler::ComputeShuffleMask(x, y, 0, 2); } masm.vshufps(firstMask, lhs, rhsCopy, rhsCopy); masm.vshufps(secondMask, rhsCopy, lhs, out); return; } MOZ_ASSERT(z < 4 && w < 4); if (y >= 4) { y %= 4; // T = (Ry Ry Lx Lx) = vshufps(firstMask, lhs, rhs, rhsCopy) firstMask = MacroAssembler::ComputeShuffleMask(y, y, x, x); // (Lx Ry Lz Lw) = (Tz Tx Lz Lw) = vshufps(secondMask, lhs, T, out) secondMask = MacroAssembler::ComputeShuffleMask(2, 0, z, w); } else { MOZ_ASSERT(x >= 4); x %= 4; // T = (Rx Rx Ly Ly) = vshufps(firstMask, lhs, rhs, rhsCopy) firstMask = MacroAssembler::ComputeShuffleMask(x, x, y, y); // (Rx Ly Lz Lw) = (Tx Tz Lz Lw) = vshufps(secondMask, lhs, T, out) secondMask = MacroAssembler::ComputeShuffleMask(0, 2, z, w); } masm.vshufps(firstMask, lhs, rhsCopy, rhsCopy); if (AssemblerX86Shared::HasAVX()) { masm.vshufps(secondMask, lhs, rhsCopy, out); } else { masm.vshufps(secondMask, lhs, rhsCopy, rhsCopy); masm.moveSimd128Float(rhsCopy, out); } return; } // Two elements from one vector, two other elements from the other MOZ_ASSERT(numLanesFromLHS == 2); // TODO Here and below, symmetric case would be more handy to avoid a move, // but can't be reached because operands would get swapped (bug 1084404). if (ins->lanesMatch(2, 3, 6, 7)) { ScratchSimd128Scope scratch(masm); if (AssemblerX86Shared::HasAVX()) { FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, scratch); masm.vmovhlps(lhs, rhsCopy, out); } else { masm.loadAlignedSimd128Float(rhs, scratch); masm.vmovhlps(lhs, scratch, scratch); masm.moveSimd128Float(scratch, out); } return; } if (ins->lanesMatch(0, 1, 4, 5)) { FloatRegister rhsCopy; ScratchSimd128Scope scratch(masm); if (rhs.kind() == Operand::FPREG) { // No need to make an actual copy, since the operand is already // in a register, and it won't be clobbered by the vmovlhps. rhsCopy = FloatRegister::FromCode(rhs.fpu()); } else { masm.loadAlignedSimd128Float(rhs, scratch); rhsCopy = scratch; } masm.vmovlhps(rhsCopy, lhs, out); return; } if (ins->lanesMatch(0, 4, 1, 5)) { masm.vunpcklps(rhs, lhs, out); return; } // TODO swapped case would be better (bug 1084404) if (ins->lanesMatch(4, 0, 5, 1)) { ScratchSimd128Scope scratch(masm); if (AssemblerX86Shared::HasAVX()) { FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, scratch); masm.vunpcklps(lhs, rhsCopy, out); } else { masm.loadAlignedSimd128Float(rhs, scratch); masm.vunpcklps(lhs, scratch, scratch); masm.moveSimd128Float(scratch, out); } return; } if (ins->lanesMatch(2, 6, 3, 7)) { masm.vunpckhps(rhs, lhs, out); return; } // TODO swapped case would be better (bug 1084404) if (ins->lanesMatch(6, 2, 7, 3)) { ScratchSimd128Scope scratch(masm); if (AssemblerX86Shared::HasAVX()) { FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, scratch); masm.vunpckhps(lhs, rhsCopy, out); } else { masm.loadAlignedSimd128Float(rhs, scratch); masm.vunpckhps(lhs, scratch, scratch); masm.moveSimd128Float(scratch, out); } return; } // In one vshufps if (x < 4 && y < 4) { mask = MacroAssembler::ComputeShuffleMask(x, y, z % 4, w % 4); masm.vshufps(mask, rhs, lhs, out); return; } // At creation, we should have explicitly swapped in this case. MOZ_ASSERT(!(z >= 4 && w >= 4)); // In two vshufps, for the most generic case: uint32_t firstMask[4], secondMask[4]; unsigned i = 0, j = 2, k = 0; #define COMPUTE_MASK(lane) \ if (lane >= 4) { \ firstMask[j] = lane % 4; \ secondMask[k++] = j++; \ } else { \ firstMask[i] = lane; \ secondMask[k++] = i++; \ } COMPUTE_MASK(x) COMPUTE_MASK(y) COMPUTE_MASK(z) COMPUTE_MASK(w) #undef COMPUTE_MASK MOZ_ASSERT(i == 2 && j == 4 && k == 4); mask = MacroAssembler::ComputeShuffleMask(firstMask[0], firstMask[1], firstMask[2], firstMask[3]); masm.vshufps(mask, rhs, lhs, lhs); mask = MacroAssembler::ComputeShuffleMask(secondMask[0], secondMask[1], secondMask[2], secondMask[3]); masm.vshufps(mask, lhs, lhs, lhs); } void CodeGeneratorX86Shared::visitSimdBinaryCompIx16(LSimdBinaryCompIx16* ins) { static const SimdConstant allOnes = SimdConstant::SplatX16(-1); FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT_IF(!Assembler::HasAVX(), output == lhs); ScratchSimd128Scope scratch(masm); MSimdBinaryComp::Operation op = ins->operation(); switch (op) { case MSimdBinaryComp::greaterThan: masm.vpcmpgtb(rhs, lhs, output); return; case MSimdBinaryComp::equal: masm.vpcmpeqb(rhs, lhs, output); return; case MSimdBinaryComp::lessThan: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); // src := src > lhs (i.e. lhs < rhs) // Improve by doing custom lowering (rhs is tied to the output register) masm.vpcmpgtb(ToOperand(ins->lhs()), scratch, scratch); masm.moveSimd128Int(scratch, output); return; case MSimdBinaryComp::notEqual: // Ideally for notEqual, greaterThanOrEqual, and lessThanOrEqual, we // should invert the comparison by, e.g. swapping the arms of a select // if that's what it's used in. masm.loadConstantSimd128Int(allOnes, scratch); masm.vpcmpeqb(rhs, lhs, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; case MSimdBinaryComp::greaterThanOrEqual: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); masm.vpcmpgtb(ToOperand(ins->lhs()), scratch, scratch); masm.loadConstantSimd128Int(allOnes, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; case MSimdBinaryComp::lessThanOrEqual: // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here. masm.loadConstantSimd128Int(allOnes, scratch); masm.vpcmpgtb(rhs, lhs, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryCompIx8(LSimdBinaryCompIx8* ins) { static const SimdConstant allOnes = SimdConstant::SplatX8(-1); FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MOZ_ASSERT_IF(!Assembler::HasAVX(), output == lhs); ScratchSimd128Scope scratch(masm); MSimdBinaryComp::Operation op = ins->operation(); switch (op) { case MSimdBinaryComp::greaterThan: masm.vpcmpgtw(rhs, lhs, output); return; case MSimdBinaryComp::equal: masm.vpcmpeqw(rhs, lhs, output); return; case MSimdBinaryComp::lessThan: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); // src := src > lhs (i.e. lhs < rhs) // Improve by doing custom lowering (rhs is tied to the output register) masm.vpcmpgtw(ToOperand(ins->lhs()), scratch, scratch); masm.moveSimd128Int(scratch, output); return; case MSimdBinaryComp::notEqual: // Ideally for notEqual, greaterThanOrEqual, and lessThanOrEqual, we // should invert the comparison by, e.g. swapping the arms of a select // if that's what it's used in. masm.loadConstantSimd128Int(allOnes, scratch); masm.vpcmpeqw(rhs, lhs, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; case MSimdBinaryComp::greaterThanOrEqual: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); masm.vpcmpgtw(ToOperand(ins->lhs()), scratch, scratch); masm.loadConstantSimd128Int(allOnes, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; case MSimdBinaryComp::lessThanOrEqual: // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here. masm.loadConstantSimd128Int(allOnes, scratch); masm.vpcmpgtw(rhs, lhs, output); masm.bitwiseXorSimd128(Operand(scratch), output); return; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryCompIx4(LSimdBinaryCompIx4* ins) { static const SimdConstant allOnes = SimdConstant::SplatX4(-1); FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); MOZ_ASSERT(ToFloatRegister(ins->output()) == lhs); ScratchSimd128Scope scratch(masm); MSimdBinaryComp::Operation op = ins->operation(); switch (op) { case MSimdBinaryComp::greaterThan: masm.packedGreaterThanInt32x4(rhs, lhs); return; case MSimdBinaryComp::equal: masm.packedEqualInt32x4(rhs, lhs); return; case MSimdBinaryComp::lessThan: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); // src := src > lhs (i.e. lhs < rhs) // Improve by doing custom lowering (rhs is tied to the output register) masm.packedGreaterThanInt32x4(ToOperand(ins->lhs()), scratch); masm.moveSimd128Int(scratch, lhs); return; case MSimdBinaryComp::notEqual: // Ideally for notEqual, greaterThanOrEqual, and lessThanOrEqual, we // should invert the comparison by, e.g. swapping the arms of a select // if that's what it's used in. masm.loadConstantSimd128Int(allOnes, scratch); masm.packedEqualInt32x4(rhs, lhs); masm.bitwiseXorSimd128(Operand(scratch), lhs); return; case MSimdBinaryComp::greaterThanOrEqual: // src := rhs if (rhs.kind() == Operand::FPREG) masm.moveSimd128Int(ToFloatRegister(ins->rhs()), scratch); else masm.loadAlignedSimd128Int(rhs, scratch); masm.packedGreaterThanInt32x4(ToOperand(ins->lhs()), scratch); masm.loadConstantSimd128Int(allOnes, lhs); masm.bitwiseXorSimd128(Operand(scratch), lhs); return; case MSimdBinaryComp::lessThanOrEqual: // lhs <= rhs is equivalent to !(rhs < lhs), which we compute here. masm.loadConstantSimd128Int(allOnes, scratch); masm.packedGreaterThanInt32x4(rhs, lhs); masm.bitwiseXorSimd128(Operand(scratch), lhs); return; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryCompFx4(LSimdBinaryCompFx4* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MSimdBinaryComp::Operation op = ins->operation(); switch (op) { case MSimdBinaryComp::equal: masm.vcmpeqps(rhs, lhs, output); return; case MSimdBinaryComp::lessThan: masm.vcmpltps(rhs, lhs, output); return; case MSimdBinaryComp::lessThanOrEqual: masm.vcmpleps(rhs, lhs, output); return; case MSimdBinaryComp::notEqual: masm.vcmpneqps(rhs, lhs, output); return; case MSimdBinaryComp::greaterThanOrEqual: case MSimdBinaryComp::greaterThan: // We reverse these before register allocation so that we don't have to // copy into and out of temporaries after codegen. MOZ_CRASH("lowering should have reversed this"); } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryArithIx16(LSimdBinaryArithIx16* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MSimdBinaryArith::Operation op = ins->operation(); switch (op) { case MSimdBinaryArith::Op_add: masm.vpaddb(rhs, lhs, output); return; case MSimdBinaryArith::Op_sub: masm.vpsubb(rhs, lhs, output); return; case MSimdBinaryArith::Op_mul: // 8x16 mul is a valid operation, but not supported in SSE or AVX. // The operation is synthesized from 16x8 multiplies by // MSimdBinaryArith::AddLegalized(). break; case MSimdBinaryArith::Op_div: case MSimdBinaryArith::Op_max: case MSimdBinaryArith::Op_min: case MSimdBinaryArith::Op_minNum: case MSimdBinaryArith::Op_maxNum: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryArithIx8(LSimdBinaryArithIx8* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MSimdBinaryArith::Operation op = ins->operation(); switch (op) { case MSimdBinaryArith::Op_add: masm.vpaddw(rhs, lhs, output); return; case MSimdBinaryArith::Op_sub: masm.vpsubw(rhs, lhs, output); return; case MSimdBinaryArith::Op_mul: masm.vpmullw(rhs, lhs, output); return; case MSimdBinaryArith::Op_div: case MSimdBinaryArith::Op_max: case MSimdBinaryArith::Op_min: case MSimdBinaryArith::Op_minNum: case MSimdBinaryArith::Op_maxNum: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryArithIx4(LSimdBinaryArithIx4* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); ScratchSimd128Scope scratch(masm); MSimdBinaryArith::Operation op = ins->operation(); switch (op) { case MSimdBinaryArith::Op_add: masm.vpaddd(rhs, lhs, output); return; case MSimdBinaryArith::Op_sub: masm.vpsubd(rhs, lhs, output); return; case MSimdBinaryArith::Op_mul: { if (AssemblerX86Shared::HasSSE41()) { masm.vpmulld(rhs, lhs, output); return; } masm.loadAlignedSimd128Int(rhs, scratch); masm.vpmuludq(lhs, scratch, scratch); // scratch contains (Rx, _, Rz, _) where R is the resulting vector. FloatRegister temp = ToFloatRegister(ins->temp()); masm.vpshufd(MacroAssembler::ComputeShuffleMask(1, 1, 3, 3), lhs, lhs); masm.vpshufd(MacroAssembler::ComputeShuffleMask(1, 1, 3, 3), rhs, temp); masm.vpmuludq(temp, lhs, lhs); // lhs contains (Ry, _, Rw, _) where R is the resulting vector. masm.vshufps(MacroAssembler::ComputeShuffleMask(0, 2, 0, 2), scratch, lhs, lhs); // lhs contains (Ry, Rw, Rx, Rz) masm.vshufps(MacroAssembler::ComputeShuffleMask(2, 0, 3, 1), lhs, lhs, lhs); return; } case MSimdBinaryArith::Op_div: // x86 doesn't have SIMD i32 div. break; case MSimdBinaryArith::Op_max: // we can do max with a single instruction only if we have SSE4.1 // using the PMAXSD instruction. break; case MSimdBinaryArith::Op_min: // we can do max with a single instruction only if we have SSE4.1 // using the PMINSD instruction. break; case MSimdBinaryArith::Op_minNum: case MSimdBinaryArith::Op_maxNum: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryArithFx4(LSimdBinaryArithFx4* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); ScratchSimd128Scope scratch(masm); MSimdBinaryArith::Operation op = ins->operation(); switch (op) { case MSimdBinaryArith::Op_add: masm.vaddps(rhs, lhs, output); return; case MSimdBinaryArith::Op_sub: masm.vsubps(rhs, lhs, output); return; case MSimdBinaryArith::Op_mul: masm.vmulps(rhs, lhs, output); return; case MSimdBinaryArith::Op_div: masm.vdivps(rhs, lhs, output); return; case MSimdBinaryArith::Op_max: { FloatRegister lhsCopy = masm.reusedInputFloat32x4(lhs, scratch); masm.vcmpunordps(rhs, lhsCopy, scratch); FloatRegister tmp = ToFloatRegister(ins->temp()); FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, tmp); masm.vmaxps(Operand(lhs), rhsCopy, tmp); masm.vmaxps(rhs, lhs, output); masm.vandps(tmp, output, output); masm.vorps(scratch, output, output); // or in the all-ones NaNs return; } case MSimdBinaryArith::Op_min: { FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, scratch); masm.vminps(Operand(lhs), rhsCopy, scratch); masm.vminps(rhs, lhs, output); masm.vorps(scratch, output, output); // NaN or'd with arbitrary bits is NaN return; } case MSimdBinaryArith::Op_minNum: { FloatRegister tmp = ToFloatRegister(ins->temp()); masm.loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)), tmp); FloatRegister mask = scratch; FloatRegister tmpCopy = masm.reusedInputFloat32x4(tmp, scratch); masm.vpcmpeqd(Operand(lhs), tmpCopy, mask); masm.vandps(tmp, mask, mask); FloatRegister lhsCopy = masm.reusedInputFloat32x4(lhs, tmp); masm.vminps(rhs, lhsCopy, tmp); masm.vorps(mask, tmp, tmp); FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, mask); masm.vcmpneqps(rhs, rhsCopy, mask); if (AssemblerX86Shared::HasAVX()) { masm.vblendvps(mask, lhs, tmp, output); } else { // Emulate vblendvps. // With SSE.4.1 we could use blendvps, however it's awkward since // it requires the mask to be in xmm0. if (lhs != output) masm.moveSimd128Float(lhs, output); masm.vandps(Operand(mask), output, output); masm.vandnps(Operand(tmp), mask, mask); masm.vorps(Operand(mask), output, output); } return; } case MSimdBinaryArith::Op_maxNum: { FloatRegister mask = scratch; masm.loadConstantSimd128Int(SimdConstant::SplatX4(0), mask); masm.vpcmpeqd(Operand(lhs), mask, mask); FloatRegister tmp = ToFloatRegister(ins->temp()); masm.loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)), tmp); masm.vandps(tmp, mask, mask); FloatRegister lhsCopy = masm.reusedInputFloat32x4(lhs, tmp); masm.vmaxps(rhs, lhsCopy, tmp); masm.vandnps(Operand(tmp), mask, mask); // Ensure tmp always contains the temporary result mask = tmp; tmp = scratch; FloatRegister rhsCopy = masm.reusedInputAlignedFloat32x4(rhs, mask); masm.vcmpneqps(rhs, rhsCopy, mask); if (AssemblerX86Shared::HasAVX()) { masm.vblendvps(mask, lhs, tmp, output); } else { // Emulate vblendvps. // With SSE.4.1 we could use blendvps, however it's awkward since // it requires the mask to be in xmm0. if (lhs != output) masm.moveSimd128Float(lhs, output); masm.vandps(Operand(mask), output, output); masm.vandnps(Operand(tmp), mask, mask); masm.vorps(Operand(mask), output, output); } return; } } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinarySaturating(LSimdBinarySaturating* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); SimdSign sign = ins->signedness(); MOZ_ASSERT(sign != SimdSign::NotApplicable); switch (ins->type()) { case MIRType::Int8x16: switch (ins->operation()) { case MSimdBinarySaturating::add: if (sign == SimdSign::Signed) masm.vpaddsb(rhs, lhs, output); else masm.vpaddusb(rhs, lhs, output); return; case MSimdBinarySaturating::sub: if (sign == SimdSign::Signed) masm.vpsubsb(rhs, lhs, output); else masm.vpsubusb(rhs, lhs, output); return; } break; case MIRType::Int16x8: switch (ins->operation()) { case MSimdBinarySaturating::add: if (sign == SimdSign::Signed) masm.vpaddsw(rhs, lhs, output); else masm.vpaddusw(rhs, lhs, output); return; case MSimdBinarySaturating::sub: if (sign == SimdSign::Signed) masm.vpsubsw(rhs, lhs, output); else masm.vpsubusw(rhs, lhs, output); return; } break; default: break; } MOZ_CRASH("unsupported type for SIMD saturating arithmetic"); } void CodeGeneratorX86Shared::visitSimdUnaryArithIx16(LSimdUnaryArithIx16* ins) { Operand in = ToOperand(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); static const SimdConstant allOnes = SimdConstant::SplatX16(-1); switch (ins->operation()) { case MSimdUnaryArith::neg: masm.zeroSimd128Int(out); masm.packedSubInt8(in, out); return; case MSimdUnaryArith::not_: masm.loadConstantSimd128Int(allOnes, out); masm.bitwiseXorSimd128(in, out); return; case MSimdUnaryArith::abs: case MSimdUnaryArith::reciprocalApproximation: case MSimdUnaryArith::reciprocalSqrtApproximation: case MSimdUnaryArith::sqrt: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdUnaryArithIx8(LSimdUnaryArithIx8* ins) { Operand in = ToOperand(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); static const SimdConstant allOnes = SimdConstant::SplatX8(-1); switch (ins->operation()) { case MSimdUnaryArith::neg: masm.zeroSimd128Int(out); masm.packedSubInt16(in, out); return; case MSimdUnaryArith::not_: masm.loadConstantSimd128Int(allOnes, out); masm.bitwiseXorSimd128(in, out); return; case MSimdUnaryArith::abs: case MSimdUnaryArith::reciprocalApproximation: case MSimdUnaryArith::reciprocalSqrtApproximation: case MSimdUnaryArith::sqrt: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdUnaryArithIx4(LSimdUnaryArithIx4* ins) { Operand in = ToOperand(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); static const SimdConstant allOnes = SimdConstant::SplatX4(-1); switch (ins->operation()) { case MSimdUnaryArith::neg: masm.zeroSimd128Int(out); masm.packedSubInt32(in, out); return; case MSimdUnaryArith::not_: masm.loadConstantSimd128Int(allOnes, out); masm.bitwiseXorSimd128(in, out); return; case MSimdUnaryArith::abs: case MSimdUnaryArith::reciprocalApproximation: case MSimdUnaryArith::reciprocalSqrtApproximation: case MSimdUnaryArith::sqrt: break; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdUnaryArithFx4(LSimdUnaryArithFx4* ins) { Operand in = ToOperand(ins->input()); FloatRegister out = ToFloatRegister(ins->output()); // All ones but the sign bit float signMask = SpecificNaN(0, FloatingPoint::kSignificandBits); static const SimdConstant signMasks = SimdConstant::SplatX4(signMask); // All ones including the sign bit float ones = SpecificNaN(1, FloatingPoint::kSignificandBits); static const SimdConstant allOnes = SimdConstant::SplatX4(ones); // All zeros but the sign bit static const SimdConstant minusZero = SimdConstant::SplatX4(-0.f); switch (ins->operation()) { case MSimdUnaryArith::abs: masm.loadConstantSimd128Float(signMasks, out); masm.bitwiseAndSimd128(in, out); return; case MSimdUnaryArith::neg: masm.loadConstantSimd128Float(minusZero, out); masm.bitwiseXorSimd128(in, out); return; case MSimdUnaryArith::not_: masm.loadConstantSimd128Float(allOnes, out); masm.bitwiseXorSimd128(in, out); return; case MSimdUnaryArith::reciprocalApproximation: masm.packedRcpApproximationFloat32x4(in, out); return; case MSimdUnaryArith::reciprocalSqrtApproximation: masm.packedRcpSqrtApproximationFloat32x4(in, out); return; case MSimdUnaryArith::sqrt: masm.packedSqrtFloat32x4(in, out); return; } MOZ_CRASH("unexpected SIMD op"); } void CodeGeneratorX86Shared::visitSimdBinaryBitwise(LSimdBinaryBitwise* ins) { FloatRegister lhs = ToFloatRegister(ins->lhs()); Operand rhs = ToOperand(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); MSimdBinaryBitwise::Operation op = ins->operation(); switch (op) { case MSimdBinaryBitwise::and_: if (ins->type() == MIRType::Float32x4) masm.vandps(rhs, lhs, output); else masm.vpand(rhs, lhs, output); return; case MSimdBinaryBitwise::or_: if (ins->type() == MIRType::Float32x4) masm.vorps(rhs, lhs, output); else masm.vpor(rhs, lhs, output); return; case MSimdBinaryBitwise::xor_: if (ins->type() == MIRType::Float32x4) masm.vxorps(rhs, lhs, output); else masm.vpxor(rhs, lhs, output); return; } MOZ_CRASH("unexpected SIMD bitwise op"); } void CodeGeneratorX86Shared::visitSimdShift(LSimdShift* ins) { FloatRegister out = ToFloatRegister(ins->output()); MOZ_ASSERT(ToFloatRegister(ins->vector()) == out); // defineReuseInput(0); // The shift amount is masked to the number of bits in a lane. uint32_t shiftmask = (128u / SimdTypeToLength(ins->type())) - 1; // Note that SSE doesn't have instructions for shifting 8x16 vectors. // These shifts are synthesized by the MSimdShift::AddLegalized() function. const LAllocation* val = ins->value(); if (val->isConstant()) { MOZ_ASSERT(ins->temp()->isBogusTemp()); Imm32 count(uint32_t(ToInt32(val)) & shiftmask); switch (ins->type()) { case MIRType::Int16x8: switch (ins->operation()) { case MSimdShift::lsh: masm.packedLeftShiftByScalarInt16x8(count, out); return; case MSimdShift::rsh: masm.packedRightShiftByScalarInt16x8(count, out); return; case MSimdShift::ursh: masm.packedUnsignedRightShiftByScalarInt16x8(count, out); return; } break; case MIRType::Int32x4: switch (ins->operation()) { case MSimdShift::lsh: masm.packedLeftShiftByScalarInt32x4(count, out); return; case MSimdShift::rsh: masm.packedRightShiftByScalarInt32x4(count, out); return; case MSimdShift::ursh: masm.packedUnsignedRightShiftByScalarInt32x4(count, out); return; } break; default: MOZ_CRASH("unsupported type for SIMD shifts"); } MOZ_CRASH("unexpected SIMD bitwise op"); } // Truncate val to 5 bits. We should have a temp register for that. MOZ_ASSERT(val->isRegister()); Register count = ToRegister(ins->temp()); masm.mov(ToRegister(val), count); masm.andl(Imm32(shiftmask), count); ScratchFloat32Scope scratch(masm); masm.vmovd(count, scratch); switch (ins->type()) { case MIRType::Int16x8: switch (ins->operation()) { case MSimdShift::lsh: masm.packedLeftShiftByScalarInt16x8(scratch, out); return; case MSimdShift::rsh: masm.packedRightShiftByScalarInt16x8(scratch, out); return; case MSimdShift::ursh: masm.packedUnsignedRightShiftByScalarInt16x8(scratch, out); return; } break; case MIRType::Int32x4: switch (ins->operation()) { case MSimdShift::lsh: masm.packedLeftShiftByScalarInt32x4(scratch, out); return; case MSimdShift::rsh: masm.packedRightShiftByScalarInt32x4(scratch, out); return; case MSimdShift::ursh: masm.packedUnsignedRightShiftByScalarInt32x4(scratch, out); return; } break; default: MOZ_CRASH("unsupported type for SIMD shifts"); } MOZ_CRASH("unexpected SIMD bitwise op"); } void CodeGeneratorX86Shared::visitSimdSelect(LSimdSelect* ins) { FloatRegister mask = ToFloatRegister(ins->mask()); FloatRegister onTrue = ToFloatRegister(ins->lhs()); FloatRegister onFalse = ToFloatRegister(ins->rhs()); FloatRegister output = ToFloatRegister(ins->output()); FloatRegister temp = ToFloatRegister(ins->temp()); if (onTrue != output) masm.vmovaps(onTrue, output); if (mask != temp) masm.vmovaps(mask, temp); MSimdSelect* mir = ins->mir(); unsigned lanes = SimdTypeToLength(mir->type()); if (AssemblerX86Shared::HasAVX() && lanes == 4) { // TBD: Use vpblendvb for lanes > 4, HasAVX. masm.vblendvps(mask, onTrue, onFalse, output); return; } // SSE4.1 has plain blendvps which can do this, but it is awkward // to use because it requires the mask to be in xmm0. masm.bitwiseAndSimd128(Operand(temp), output); masm.bitwiseAndNotSimd128(Operand(onFalse), temp); masm.bitwiseOrSimd128(Operand(temp), output); } void CodeGeneratorX86Shared::visitCompareExchangeTypedArrayElement(LCompareExchangeTypedArrayElement* lir) { Register elements = ToRegister(lir->elements()); AnyRegister output = ToAnyRegister(lir->output()); Register temp = lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); Register oldval = ToRegister(lir->oldval()); Register newval = ToRegister(lir->newval()); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address dest(elements, ToInt32(lir->index()) * width); masm.compareExchangeToTypedIntArray(arrayType, dest, oldval, newval, temp, output); } else { BaseIndex dest(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); masm.compareExchangeToTypedIntArray(arrayType, dest, oldval, newval, temp, output); } } void CodeGeneratorX86Shared::visitAtomicExchangeTypedArrayElement(LAtomicExchangeTypedArrayElement* lir) { Register elements = ToRegister(lir->elements()); AnyRegister output = ToAnyRegister(lir->output()); Register temp = lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); Register value = ToRegister(lir->value()); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address dest(elements, ToInt32(lir->index()) * width); masm.atomicExchangeToTypedIntArray(arrayType, dest, value, temp, output); } else { BaseIndex dest(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); masm.atomicExchangeToTypedIntArray(arrayType, dest, value, temp, output); } } template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const S& value, const T& mem, Register temp1, Register temp2, AnyRegister output) { switch (arrayType) { case Scalar::Int8: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd8SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub8SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd8SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr8SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor8SignExtend(value, mem, temp1, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint8: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd8ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub8ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd8ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr8ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor8ZeroExtend(value, mem, temp1, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int16: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd16SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub16SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd16SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr16SignExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor16SignExtend(value, mem, temp1, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint16: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd16ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub16ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd16ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr16ZeroExtend(value, mem, temp1, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor16ZeroExtend(value, mem, temp1, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int32: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd32(value, mem, temp1, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub32(value, mem, temp1, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd32(value, mem, temp1, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr32(value, mem, temp1, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor32(value, mem, temp1, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint32: // At the moment, the code in MCallOptimize.cpp requires the output // type to be double for uint32 arrays. See bug 1077305. MOZ_ASSERT(output.isFloat()); switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd32(value, mem, InvalidReg, temp1); break; case AtomicFetchSubOp: masm.atomicFetchSub32(value, mem, InvalidReg, temp1); break; case AtomicFetchAndOp: masm.atomicFetchAnd32(value, mem, temp2, temp1); break; case AtomicFetchOrOp: masm.atomicFetchOr32(value, mem, temp2, temp1); break; case AtomicFetchXorOp: masm.atomicFetchXor32(value, mem, temp2, temp1); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } masm.convertUInt32ToDouble(temp1, output.fpu()); break; default: MOZ_CRASH("Invalid typed array type"); } } template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const Address& mem, Register temp1, Register temp2, AnyRegister output); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const BaseIndex& mem, Register temp1, Register temp2, AnyRegister output); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const Address& mem, Register temp1, Register temp2, AnyRegister output); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const BaseIndex& mem, Register temp1, Register temp2, AnyRegister output); // Binary operation for effect, result discarded. template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const S& value, const T& mem) { switch (arrayType) { case Scalar::Int8: case Scalar::Uint8: switch (op) { case AtomicFetchAddOp: masm.atomicAdd8(value, mem); break; case AtomicFetchSubOp: masm.atomicSub8(value, mem); break; case AtomicFetchAndOp: masm.atomicAnd8(value, mem); break; case AtomicFetchOrOp: masm.atomicOr8(value, mem); break; case AtomicFetchXorOp: masm.atomicXor8(value, mem); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int16: case Scalar::Uint16: switch (op) { case AtomicFetchAddOp: masm.atomicAdd16(value, mem); break; case AtomicFetchSubOp: masm.atomicSub16(value, mem); break; case AtomicFetchAndOp: masm.atomicAnd16(value, mem); break; case AtomicFetchOrOp: masm.atomicOr16(value, mem); break; case AtomicFetchXorOp: masm.atomicXor16(value, mem); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int32: case Scalar::Uint32: switch (op) { case AtomicFetchAddOp: masm.atomicAdd32(value, mem); break; case AtomicFetchSubOp: masm.atomicSub32(value, mem); break; case AtomicFetchAndOp: masm.atomicAnd32(value, mem); break; case AtomicFetchOrOp: masm.atomicOr32(value, mem); break; case AtomicFetchXorOp: masm.atomicXor32(value, mem); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; default: MOZ_CRASH("Invalid typed array type"); } } template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const Address& mem); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const BaseIndex& mem); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const Address& mem); template void CodeGeneratorX86Shared::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const BaseIndex& mem); template static inline void AtomicBinopToTypedArray(CodeGeneratorX86Shared* cg, AtomicOp op, Scalar::Type arrayType, const LAllocation* value, const T& mem, Register temp1, Register temp2, AnyRegister output) { if (value->isConstant()) cg->atomicBinopToTypedIntArray(op, arrayType, Imm32(ToInt32(value)), mem, temp1, temp2, output); else cg->atomicBinopToTypedIntArray(op, arrayType, ToRegister(value), mem, temp1, temp2, output); } void CodeGeneratorX86Shared::visitAtomicTypedArrayElementBinop(LAtomicTypedArrayElementBinop* lir) { MOZ_ASSERT(lir->mir()->hasUses()); AnyRegister output = ToAnyRegister(lir->output()); Register elements = ToRegister(lir->elements()); Register temp1 = lir->temp1()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp1()); Register temp2 = lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2()); const LAllocation* value = lir->value(); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address mem(elements, ToInt32(lir->index()) * width); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, temp1, temp2, output); } else { BaseIndex mem(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, temp1, temp2, output); } } template static inline void AtomicBinopToTypedArray(CodeGeneratorX86Shared* cg, AtomicOp op, Scalar::Type arrayType, const LAllocation* value, const T& mem) { if (value->isConstant()) cg->atomicBinopToTypedIntArray(op, arrayType, Imm32(ToInt32(value)), mem); else cg->atomicBinopToTypedIntArray(op, arrayType, ToRegister(value), mem); } void CodeGeneratorX86Shared::visitAtomicTypedArrayElementBinopForEffect(LAtomicTypedArrayElementBinopForEffect* lir) { MOZ_ASSERT(!lir->mir()->hasUses()); Register elements = ToRegister(lir->elements()); const LAllocation* value = lir->value(); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address mem(elements, ToInt32(lir->index()) * width); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem); } else { BaseIndex mem(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem); } } void CodeGeneratorX86Shared::visitMemoryBarrier(LMemoryBarrier* ins) { if (ins->type() & MembarStoreLoad) masm.storeLoadFence(); } void CodeGeneratorX86Shared::setReturnDoubleRegs(LiveRegisterSet* regs) { MOZ_ASSERT(ReturnFloat32Reg.encoding() == X86Encoding::xmm0); MOZ_ASSERT(ReturnDoubleReg.encoding() == X86Encoding::xmm0); MOZ_ASSERT(ReturnSimd128Reg.encoding() == X86Encoding::xmm0); regs->add(ReturnFloat32Reg); regs->add(ReturnDoubleReg); regs->add(ReturnSimd128Reg); } void CodeGeneratorX86Shared::visitOutOfLineWasmTruncateCheck(OutOfLineWasmTruncateCheck* ool) { FloatRegister input = ool->input(); MIRType fromType = ool->fromType(); MIRType toType = ool->toType(); Label* oolRejoin = ool->rejoin(); bool isUnsigned = ool->isUnsigned(); wasm::TrapOffset off = ool->trapOffset(); if (fromType == MIRType::Float32) { if (toType == MIRType::Int32) masm.outOfLineWasmTruncateFloat32ToInt32(input, isUnsigned, off, oolRejoin); else if (toType == MIRType::Int64) masm.outOfLineWasmTruncateFloat32ToInt64(input, isUnsigned, off, oolRejoin); else MOZ_CRASH("unexpected type"); } else if (fromType == MIRType::Double) { if (toType == MIRType::Int32) masm.outOfLineWasmTruncateDoubleToInt32(input, isUnsigned, off, oolRejoin); else if (toType == MIRType::Int64) masm.outOfLineWasmTruncateDoubleToInt64(input, isUnsigned, off, oolRejoin); else MOZ_CRASH("unexpected type"); } else { MOZ_CRASH("unexpected type"); } } void CodeGeneratorX86Shared::canonicalizeIfDeterministic(Scalar::Type type, const LAllocation* value) { #ifdef JS_MORE_DETERMINISTIC switch (type) { case Scalar::Float32: { FloatRegister in = ToFloatRegister(value); masm.canonicalizeFloatIfDeterministic(in); break; } case Scalar::Float64: { FloatRegister in = ToFloatRegister(value); masm.canonicalizeDoubleIfDeterministic(in); break; } case Scalar::Float32x4: { FloatRegister in = ToFloatRegister(value); MOZ_ASSERT(in.isSimd128()); FloatRegister scratch = in != xmm0.asSimd128() ? xmm0 : xmm1; masm.push(scratch); masm.canonicalizeFloat32x4(in, scratch); masm.pop(scratch); break; } default: { // Other types don't need canonicalization. break; } } #endif // JS_MORE_DETERMINISTIC } void CodeGeneratorX86Shared::visitCopySignF(LCopySignF* lir) { FloatRegister lhs = ToFloatRegister(lir->getOperand(0)); FloatRegister rhs = ToFloatRegister(lir->getOperand(1)); FloatRegister out = ToFloatRegister(lir->output()); if (lhs == rhs) { if (lhs != out) masm.moveFloat32(lhs, out); return; } ScratchFloat32Scope scratch(masm); float clearSignMask = BitwiseCast(INT32_MAX); masm.loadConstantFloat32(clearSignMask, scratch); masm.vandps(scratch, lhs, out); float keepSignMask = BitwiseCast(INT32_MIN); masm.loadConstantFloat32(keepSignMask, scratch); masm.vandps(rhs, scratch, scratch); masm.vorps(scratch, out, out); } void CodeGeneratorX86Shared::visitCopySignD(LCopySignD* lir) { FloatRegister lhs = ToFloatRegister(lir->getOperand(0)); FloatRegister rhs = ToFloatRegister(lir->getOperand(1)); FloatRegister out = ToFloatRegister(lir->output()); if (lhs == rhs) { if (lhs != out) masm.moveDouble(lhs, out); return; } ScratchDoubleScope scratch(masm); double clearSignMask = BitwiseCast(INT64_MAX); masm.loadConstantDouble(clearSignMask, scratch); masm.vandpd(scratch, lhs, out); double keepSignMask = BitwiseCast(INT64_MIN); masm.loadConstantDouble(keepSignMask, scratch); masm.vandpd(rhs, scratch, scratch); masm.vorpd(scratch, out, out); } void CodeGeneratorX86Shared::visitRotateI64(LRotateI64* lir) { MRotate* mir = lir->mir(); LAllocation* count = lir->count(); Register64 input = ToRegister64(lir->input()); Register64 output = ToOutRegister64(lir); Register temp = ToTempRegisterOrInvalid(lir->temp()); MOZ_ASSERT(input == output); if (count->isConstant()) { int32_t c = int32_t(count->toConstant()->toInt64() & 0x3F); if (!c) return; if (mir->isLeftRotate()) masm.rotateLeft64(Imm32(c), input, output, temp); else masm.rotateRight64(Imm32(c), input, output, temp); } else { if (mir->isLeftRotate()) masm.rotateLeft64(ToRegister(count), input, output, temp); else masm.rotateRight64(ToRegister(count), input, output, temp); } } void CodeGeneratorX86Shared::visitPopcntI64(LPopcntI64* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); Register64 output = ToOutRegister64(lir); Register temp = InvalidReg; if (!AssemblerX86Shared::HasPOPCNT()) temp = ToRegister(lir->getTemp(0)); masm.popcnt64(input, output, temp); } } // namespace jit } // namespace js