/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/arm/CodeGenerator-arm.h" #include "mozilla/MathAlgorithms.h" #include "jscntxt.h" #include "jscompartment.h" #include "jsnum.h" #include "jit/CodeGenerator.h" #include "jit/JitCompartment.h" #include "jit/JitFrames.h" #include "jit/MIR.h" #include "jit/MIRGraph.h" #include "js/Conversions.h" #include "vm/Shape.h" #include "vm/TraceLogging.h" #include "jsscriptinlines.h" #include "jit/MacroAssembler-inl.h" #include "jit/shared/CodeGenerator-shared-inl.h" using namespace js; using namespace js::jit; using mozilla::FloorLog2; using mozilla::NegativeInfinity; using JS::GenericNaN; using JS::ToInt32; // shared CodeGeneratorARM::CodeGeneratorARM(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masm) : CodeGeneratorShared(gen, graph, masm) { } Register64 CodeGeneratorARM::ToOperandOrRegister64(const LInt64Allocation input) { return ToRegister64(input); } void CodeGeneratorARM::emitBranch(Assembler::Condition cond, MBasicBlock* mirTrue, MBasicBlock* mirFalse) { if (isNextBlock(mirFalse->lir())) { jumpToBlock(mirTrue, cond); } else { jumpToBlock(mirFalse, Assembler::InvertCondition(cond)); jumpToBlock(mirTrue); } } void OutOfLineBailout::accept(CodeGeneratorARM* codegen) { codegen->visitOutOfLineBailout(this); } void CodeGeneratorARM::visitTestIAndBranch(LTestIAndBranch* test) { const LAllocation* opd = test->getOperand(0); MBasicBlock* ifTrue = test->ifTrue(); MBasicBlock* ifFalse = test->ifFalse(); // Test the operand masm.as_cmp(ToRegister(opd), Imm8(0)); if (isNextBlock(ifFalse->lir())) { jumpToBlock(ifTrue, Assembler::NonZero); } else if (isNextBlock(ifTrue->lir())) { jumpToBlock(ifFalse, Assembler::Zero); } else { jumpToBlock(ifFalse, Assembler::Zero); jumpToBlock(ifTrue); } } void CodeGeneratorARM::visitCompare(LCompare* comp) { Assembler::Condition cond = JSOpToCondition(comp->mir()->compareType(), comp->jsop()); const LAllocation* left = comp->getOperand(0); const LAllocation* right = comp->getOperand(1); const LDefinition* def = comp->getDef(0); ScratchRegisterScope scratch(masm); if (right->isConstant()) { masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch); } else if (right->isRegister()) { masm.ma_cmp(ToRegister(left), ToRegister(right)); } else { SecondScratchRegisterScope scratch2(masm); masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2); } masm.ma_mov(Imm32(0), ToRegister(def)); masm.ma_mov(Imm32(1), ToRegister(def), cond); } void CodeGeneratorARM::visitCompareAndBranch(LCompareAndBranch* comp) { Assembler::Condition cond = JSOpToCondition(comp->cmpMir()->compareType(), comp->jsop()); const LAllocation* left = comp->left(); const LAllocation* right = comp->right(); ScratchRegisterScope scratch(masm); if (right->isConstant()) { masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch); } else if (right->isRegister()) { masm.ma_cmp(ToRegister(left), ToRegister(right)); } else { SecondScratchRegisterScope scratch2(masm); masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2); } emitBranch(cond, comp->ifTrue(), comp->ifFalse()); } bool CodeGeneratorARM::generateOutOfLineCode() { if (!CodeGeneratorShared::generateOutOfLineCode()) return false; if (deoptLabel_.used()) { // All non-table-based bailouts will go here. masm.bind(&deoptLabel_); // Push the frame size, so the handler can recover the IonScript. masm.ma_mov(Imm32(frameSize()), lr); JitCode* handler = gen->jitRuntime()->getGenericBailoutHandler(); masm.branch(handler); } return !masm.oom(); } void CodeGeneratorARM::bailoutIf(Assembler::Condition condition, LSnapshot* snapshot) { encode(snapshot); // Though the assembler doesn't track all frame pushes, at least make sure // the known value makes sense. We can't use bailout tables if the stack // isn't properly aligned to the static frame size. MOZ_ASSERT_IF(frameClass_ != FrameSizeClass::None(), frameClass_.frameSize() == masm.framePushed()); if (assignBailoutId(snapshot)) { uint8_t* bailoutTable = Assembler::BailoutTableStart(deoptTable_->raw()); uint8_t* code = bailoutTable + snapshot->bailoutId() * BAILOUT_TABLE_ENTRY_SIZE; masm.ma_b(code, condition); return; } // We could not use a jump table, either because all bailout IDs were // reserved, or a jump table is not optimal for this frame size or // platform. Whatever, we will generate a lazy bailout. InlineScriptTree* tree = snapshot->mir()->block()->trackedTree(); OutOfLineBailout* ool = new(alloc()) OutOfLineBailout(snapshot, masm.framePushed()); // All bailout code is associated with the bytecodeSite of the block we are // bailing out from. addOutOfLineCode(ool, new(alloc()) BytecodeSite(tree, tree->script()->code())); masm.ma_b(ool->entry(), condition); } void CodeGeneratorARM::bailoutFrom(Label* label, LSnapshot* snapshot) { if (masm.bailed()) return; MOZ_ASSERT_IF(!masm.oom(), label->used()); MOZ_ASSERT_IF(!masm.oom(), !label->bound()); encode(snapshot); // Though the assembler doesn't track all frame pushes, at least make sure // the known value makes sense. We can't use bailout tables if the stack // isn't properly aligned to the static frame size. MOZ_ASSERT_IF(frameClass_ != FrameSizeClass::None(), frameClass_.frameSize() == masm.framePushed()); // On ARM we don't use a bailout table. InlineScriptTree* tree = snapshot->mir()->block()->trackedTree(); OutOfLineBailout* ool = new(alloc()) OutOfLineBailout(snapshot, masm.framePushed()); // All bailout code is associated with the bytecodeSite of the block we are // bailing out from. addOutOfLineCode(ool, new(alloc()) BytecodeSite(tree, tree->script()->code())); masm.retarget(label, ool->entry()); } void CodeGeneratorARM::bailout(LSnapshot* snapshot) { Label label; masm.ma_b(&label); bailoutFrom(&label, snapshot); } void CodeGeneratorARM::visitOutOfLineBailout(OutOfLineBailout* ool) { ScratchRegisterScope scratch(masm); masm.ma_mov(Imm32(ool->snapshot()->snapshotOffset()), scratch); masm.ma_push(scratch); // BailoutStack::padding_ masm.ma_push(scratch); // BailoutStack::snapshotOffset_ masm.ma_b(&deoptLabel_); } void CodeGeneratorARM::visitMinMaxD(LMinMaxD* ins) { FloatRegister first = ToFloatRegister(ins->first()); FloatRegister second = ToFloatRegister(ins->second()); MOZ_ASSERT(first == ToFloatRegister(ins->output())); if (ins->mir()->isMax()) masm.maxDouble(second, first, true); else masm.minDouble(second, first, true); } void CodeGeneratorARM::visitMinMaxF(LMinMaxF* ins) { FloatRegister first = ToFloatRegister(ins->first()); FloatRegister second = ToFloatRegister(ins->second()); MOZ_ASSERT(first == ToFloatRegister(ins->output())); if (ins->mir()->isMax()) masm.maxFloat32(second, first, true); else masm.minFloat32(second, first, true); } void CodeGeneratorARM::visitAbsD(LAbsD* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); masm.ma_vabs(input, input); } void CodeGeneratorARM::visitAbsF(LAbsF* ins) { FloatRegister input = ToFloatRegister(ins->input()); MOZ_ASSERT(input == ToFloatRegister(ins->output())); masm.ma_vabs_f32(input, input); } void CodeGeneratorARM::visitSqrtD(LSqrtD* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); masm.ma_vsqrt(input, output); } void CodeGeneratorARM::visitSqrtF(LSqrtF* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); masm.ma_vsqrt_f32(input, output); } void CodeGeneratorARM::visitAddI(LAddI* ins) { const LAllocation* lhs = ins->getOperand(0); const LAllocation* rhs = ins->getOperand(1); const LDefinition* dest = ins->getDef(0); ScratchRegisterScope scratch(masm); if (rhs->isConstant()) masm.ma_add(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch, SetCC); else if (rhs->isRegister()) masm.ma_add(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC); else masm.ma_add(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest), SetCC); if (ins->snapshot()) bailoutIf(Assembler::Overflow, ins->snapshot()); } void CodeGeneratorARM::visitAddI64(LAddI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LAddI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LAddI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (IsConstant(rhs)) { masm.add64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); return; } masm.add64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); } void CodeGeneratorARM::visitSubI(LSubI* ins) { const LAllocation* lhs = ins->getOperand(0); const LAllocation* rhs = ins->getOperand(1); const LDefinition* dest = ins->getDef(0); ScratchRegisterScope scratch(masm); if (rhs->isConstant()) masm.ma_sub(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch, SetCC); else if (rhs->isRegister()) masm.ma_sub(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC); else masm.ma_sub(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest), SetCC); if (ins->snapshot()) bailoutIf(Assembler::Overflow, ins->snapshot()); } void CodeGeneratorARM::visitSubI64(LSubI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LSubI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LSubI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (IsConstant(rhs)) { masm.sub64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); return; } masm.sub64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); } void CodeGeneratorARM::visitMulI(LMulI* ins) { const LAllocation* lhs = ins->getOperand(0); const LAllocation* rhs = ins->getOperand(1); const LDefinition* dest = ins->getDef(0); MMul* mul = ins->mir(); MOZ_ASSERT_IF(mul->mode() == MMul::Integer, !mul->canBeNegativeZero() && !mul->canOverflow()); if (rhs->isConstant()) { // Bailout when this condition is met. Assembler::Condition c = Assembler::Overflow; // Bailout on -0.0 int32_t constant = ToInt32(rhs); if (mul->canBeNegativeZero() && constant <= 0) { Assembler::Condition bailoutCond = (constant == 0) ? Assembler::LessThan : Assembler::Equal; masm.as_cmp(ToRegister(lhs), Imm8(0)); bailoutIf(bailoutCond, ins->snapshot()); } // TODO: move these to ma_mul. switch (constant) { case -1: masm.as_rsb(ToRegister(dest), ToRegister(lhs), Imm8(0), SetCC); break; case 0: masm.ma_mov(Imm32(0), ToRegister(dest)); return; // Escape overflow check; case 1: // Nop masm.ma_mov(ToRegister(lhs), ToRegister(dest)); return; // Escape overflow check; case 2: masm.ma_add(ToRegister(lhs), ToRegister(lhs), ToRegister(dest), SetCC); // Overflow is handled later. break; default: { bool handled = false; if (constant > 0) { // Try shift and add sequences for a positive constant. if (!mul->canOverflow()) { // If it cannot overflow, we can do lots of optimizations. Register src = ToRegister(lhs); uint32_t shift = FloorLog2(constant); uint32_t rest = constant - (1 << shift); // See if the constant has one bit set, meaning it can be // encoded as a bitshift. if ((1 << shift) == constant) { masm.ma_lsl(Imm32(shift), src, ToRegister(dest)); handled = true; } else { // If the constant cannot be encoded as (1 << C1), see // if it can be encoded as (1 << C1) | (1 << C2), which // can be computed using an add and a shift. uint32_t shift_rest = FloorLog2(rest); if ((1u << shift_rest) == rest) { masm.as_add(ToRegister(dest), src, lsl(src, shift-shift_rest)); if (shift_rest != 0) masm.ma_lsl(Imm32(shift_rest), ToRegister(dest), ToRegister(dest)); handled = true; } } } else if (ToRegister(lhs) != ToRegister(dest)) { // To stay on the safe side, only optimize things that are a // power of 2. uint32_t shift = FloorLog2(constant); if ((1 << shift) == constant) { // dest = lhs * pow(2,shift) masm.ma_lsl(Imm32(shift), ToRegister(lhs), ToRegister(dest)); // At runtime, check (lhs == dest >> shift), if this // does not hold, some bits were lost due to overflow, // and the computation should be resumed as a double. masm.as_cmp(ToRegister(lhs), asr(ToRegister(dest), shift)); c = Assembler::NotEqual; handled = true; } } } if (!handled) { ScratchRegisterScope scratch(masm); if (mul->canOverflow()) c = masm.ma_check_mul(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch, c); else masm.ma_mul(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch); } } } // Bailout on overflow. if (mul->canOverflow()) bailoutIf(c, ins->snapshot()); } else { Assembler::Condition c = Assembler::Overflow; if (mul->canOverflow()) { ScratchRegisterScope scratch(masm); c = masm.ma_check_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), scratch, c); } else { masm.ma_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest)); } // Bailout on overflow. if (mul->canOverflow()) bailoutIf(c, ins->snapshot()); if (mul->canBeNegativeZero()) { Label done; masm.as_cmp(ToRegister(dest), Imm8(0)); masm.ma_b(&done, Assembler::NotEqual); // Result is -0 if lhs or rhs is negative. masm.ma_cmn(ToRegister(lhs), ToRegister(rhs)); bailoutIf(Assembler::Signed, ins->snapshot()); masm.bind(&done); } } } void CodeGeneratorARM::visitMulI64(LMulI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LMulI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LMulI64::Rhs); MOZ_ASSERT(ToRegister64(lhs) == ToOutRegister64(lir)); if (IsConstant(rhs)) { int64_t constant = ToInt64(rhs); switch (constant) { case -1: masm.neg64(ToRegister64(lhs)); return; case 0: masm.xor64(ToRegister64(lhs), ToRegister64(lhs)); return; case 1: // nop return; case 2: masm.add64(ToRegister64(lhs), ToRegister64(lhs)); return; default: if (constant > 0) { // Use shift if constant is power of 2. int32_t shift = mozilla::FloorLog2(constant); if (int64_t(1) << shift == constant) { masm.lshift64(Imm32(shift), ToRegister64(lhs)); return; } } Register temp = ToTempRegisterOrInvalid(lir->temp()); masm.mul64(Imm64(constant), ToRegister64(lhs), temp); } } else { Register temp = ToTempRegisterOrInvalid(lir->temp()); masm.mul64(ToOperandOrRegister64(rhs), ToRegister64(lhs), temp); } } void CodeGeneratorARM::divICommon(MDiv* mir, Register lhs, Register rhs, Register output, LSnapshot* snapshot, Label& done) { ScratchRegisterScope scratch(masm); if (mir->canBeNegativeOverflow()) { // Handle INT32_MIN / -1; // The integer division will give INT32_MIN, but we want -(double)INT32_MIN. // Sets EQ if lhs == INT32_MIN. masm.ma_cmp(lhs, Imm32(INT32_MIN), scratch); // If EQ (LHS == INT32_MIN), sets EQ if rhs == -1. masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal); if (mir->canTruncateOverflow()) { if (mir->trapOnError()) { masm.ma_b(trap(mir, wasm::Trap::IntegerOverflow), Assembler::Equal); } else { // (-INT32_MIN)|0 = INT32_MIN Label skip; masm.ma_b(&skip, Assembler::NotEqual); masm.ma_mov(Imm32(INT32_MIN), output); masm.ma_b(&done); masm.bind(&skip); } } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, snapshot); } } // Handle divide by zero. if (mir->canBeDivideByZero()) { masm.as_cmp(rhs, Imm8(0)); if (mir->canTruncateInfinities()) { if (mir->trapOnError()) { masm.ma_b(trap(mir, wasm::Trap::IntegerDivideByZero), Assembler::Equal); } else { // Infinity|0 == 0 Label skip; masm.ma_b(&skip, Assembler::NotEqual); masm.ma_mov(Imm32(0), output); masm.ma_b(&done); masm.bind(&skip); } } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, snapshot); } } // Handle negative 0. if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) { Label nonzero; masm.as_cmp(lhs, Imm8(0)); masm.ma_b(&nonzero, Assembler::NotEqual); masm.as_cmp(rhs, Imm8(0)); MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::LessThan, snapshot); masm.bind(&nonzero); } } void CodeGeneratorARM::visitDivI(LDivI* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register temp = ToRegister(ins->getTemp(0)); Register output = ToRegister(ins->output()); MDiv* mir = ins->mir(); Label done; divICommon(mir, lhs, rhs, output, ins->snapshot(), done); if (mir->canTruncateRemainder()) { masm.ma_sdiv(lhs, rhs, output); } else { { ScratchRegisterScope scratch(masm); masm.ma_sdiv(lhs, rhs, temp); masm.ma_mul(temp, rhs, scratch); masm.ma_cmp(lhs, scratch); } bailoutIf(Assembler::NotEqual, ins->snapshot()); masm.ma_mov(temp, output); } masm.bind(&done); } extern "C" { extern MOZ_EXPORT int64_t __aeabi_idivmod(int,int); extern MOZ_EXPORT int64_t __aeabi_uidivmod(int,int); } void CodeGeneratorARM::visitSoftDivI(LSoftDivI* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); MDiv* mir = ins->mir(); Label done; divICommon(mir, lhs, rhs, output, ins->snapshot(), done); masm.setupAlignedABICall(); masm.passABIArg(lhs); masm.passABIArg(rhs); if (gen->compilingWasm()) masm.callWithABI(wasm::SymbolicAddress::aeabi_idivmod); else masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, __aeabi_idivmod)); // idivmod returns the quotient in r0, and the remainder in r1. if (!mir->canTruncateRemainder()) { MOZ_ASSERT(mir->fallible()); masm.as_cmp(r1, Imm8(0)); bailoutIf(Assembler::NonZero, ins->snapshot()); } masm.bind(&done); } void CodeGeneratorARM::visitDivPowTwoI(LDivPowTwoI* ins) { MDiv* mir = ins->mir(); Register lhs = ToRegister(ins->numerator()); Register output = ToRegister(ins->output()); int32_t shift = ins->shift(); if (shift == 0) { masm.ma_mov(lhs, output); return; } if (!mir->isTruncated()) { // If the remainder is != 0, bailout since this must be a double. { // The bailout code also needs the scratch register. // Here it is only used as a dummy target to set CC flags. ScratchRegisterScope scratch(masm); masm.as_mov(scratch, lsl(lhs, 32 - shift), SetCC); } bailoutIf(Assembler::NonZero, ins->snapshot()); } if (!mir->canBeNegativeDividend()) { // Numerator is unsigned, so needs no adjusting. Do the shift. masm.as_mov(output, asr(lhs, shift)); return; } // Adjust the value so that shifting produces a correctly rounded result // when the numerator is negative. See 10-1 "Signed Division by a Known // Power of 2" in Henry S. Warren, Jr.'s Hacker's Delight. ScratchRegisterScope scratch(masm); if (shift > 1) { masm.as_mov(scratch, asr(lhs, 31)); masm.as_add(scratch, lhs, lsr(scratch, 32 - shift)); } else { masm.as_add(scratch, lhs, lsr(lhs, 32 - shift)); } // Do the shift. masm.as_mov(output, asr(scratch, shift)); } void CodeGeneratorARM::modICommon(MMod* mir, Register lhs, Register rhs, Register output, LSnapshot* snapshot, Label& done) { // 0/X (with X < 0) is bad because both of these values *should* be doubles, // and the result should be -0.0, which cannot be represented in integers. // X/0 is bad because it will give garbage (or abort), when it should give // either \infty, -\infty or NaN. // Prevent 0 / X (with X < 0) and X / 0 // testing X / Y. Compare Y with 0. // There are three cases: (Y < 0), (Y == 0) and (Y > 0). // If (Y < 0), then we compare X with 0, and bail if X == 0. // If (Y == 0), then we simply want to bail. Since this does not set the // flags necessary for LT to trigger, we don't test X, and take the bailout // because the EQ flag is set. // If (Y > 0), we don't set EQ, and we don't trigger LT, so we don't take // the bailout. if (mir->canBeDivideByZero() || mir->canBeNegativeDividend()) { if (mir->trapOnError()) { // wasm allows negative lhs and return 0 in this case. MOZ_ASSERT(mir->isTruncated()); masm.as_cmp(rhs, Imm8(0)); masm.ma_b(trap(mir, wasm::Trap::IntegerDivideByZero), Assembler::Equal); return; } masm.as_cmp(rhs, Imm8(0)); masm.as_cmp(lhs, Imm8(0), Assembler::LessThan); if (mir->isTruncated()) { // NaN|0 == 0 and (0 % -X)|0 == 0 Label skip; masm.ma_b(&skip, Assembler::NotEqual); masm.ma_mov(Imm32(0), output); masm.ma_b(&done); masm.bind(&skip); } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, snapshot); } } } void CodeGeneratorARM::visitModI(LModI* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); Register callTemp = ToRegister(ins->callTemp()); MMod* mir = ins->mir(); // Save the lhs in case we end up with a 0 that should be a -0.0 because lhs < 0. masm.ma_mov(lhs, callTemp); Label done; modICommon(mir, lhs, rhs, output, ins->snapshot(), done); { ScratchRegisterScope scratch(masm); masm.ma_smod(lhs, rhs, output, scratch); } // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0. if (mir->canBeNegativeDividend()) { if (mir->isTruncated()) { // -0.0|0 == 0 } else { MOZ_ASSERT(mir->fallible()); // See if X < 0 masm.as_cmp(output, Imm8(0)); masm.ma_b(&done, Assembler::NotEqual); masm.as_cmp(callTemp, Imm8(0)); bailoutIf(Assembler::Signed, ins->snapshot()); } } masm.bind(&done); } void CodeGeneratorARM::visitSoftModI(LSoftModI* ins) { // Extract the registers from this instruction. Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); Register callTemp = ToRegister(ins->callTemp()); MMod* mir = ins->mir(); Label done; // Save the lhs in case we end up with a 0 that should be a -0.0 because lhs < 0. MOZ_ASSERT(callTemp.code() > r3.code() && callTemp.code() < r12.code()); masm.ma_mov(lhs, callTemp); // Prevent INT_MIN % -1; // The integer division will give INT_MIN, but we want -(double)INT_MIN. if (mir->canBeNegativeDividend()) { { ScratchRegisterScope scratch(masm); // Sets EQ if lhs == INT_MIN masm.ma_cmp(lhs, Imm32(INT_MIN), scratch); // If EQ (LHS == INT_MIN), sets EQ if rhs == -1 masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal); } if (mir->isTruncated()) { // (INT_MIN % -1)|0 == 0 Label skip; masm.ma_b(&skip, Assembler::NotEqual); masm.ma_mov(Imm32(0), output); masm.ma_b(&done); masm.bind(&skip); } else { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, ins->snapshot()); } } modICommon(mir, lhs, rhs, output, ins->snapshot(), done); masm.setupAlignedABICall(); masm.passABIArg(lhs); masm.passABIArg(rhs); if (gen->compilingWasm()) masm.callWithABI(wasm::SymbolicAddress::aeabi_idivmod); else masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, __aeabi_idivmod)); // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0 if (mir->canBeNegativeDividend()) { if (mir->isTruncated()) { // -0.0|0 == 0 } else { MOZ_ASSERT(mir->fallible()); // See if X < 0 masm.as_cmp(r1, Imm8(0)); masm.ma_b(&done, Assembler::NotEqual); masm.as_cmp(callTemp, Imm8(0)); bailoutIf(Assembler::Signed, ins->snapshot()); } } masm.bind(&done); } void CodeGeneratorARM::visitModPowTwoI(LModPowTwoI* ins) { Register in = ToRegister(ins->getOperand(0)); Register out = ToRegister(ins->getDef(0)); MMod* mir = ins->mir(); Label fin; // bug 739870, jbramley has a different sequence that may help with speed // here. masm.ma_mov(in, out, SetCC); masm.ma_b(&fin, Assembler::Zero); masm.as_rsb(out, out, Imm8(0), LeaveCC, Assembler::Signed); { ScratchRegisterScope scratch(masm); masm.ma_and(Imm32((1 << ins->shift()) - 1), out, scratch); } masm.as_rsb(out, out, Imm8(0), SetCC, Assembler::Signed); if (mir->canBeNegativeDividend()) { if (!mir->isTruncated()) { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Zero, ins->snapshot()); } else { // -0|0 == 0 } } masm.bind(&fin); } void CodeGeneratorARM::visitModMaskI(LModMaskI* ins) { Register src = ToRegister(ins->getOperand(0)); Register dest = ToRegister(ins->getDef(0)); Register tmp1 = ToRegister(ins->getTemp(0)); Register tmp2 = ToRegister(ins->getTemp(1)); MMod* mir = ins->mir(); ScratchRegisterScope scratch(masm); SecondScratchRegisterScope scratch2(masm); masm.ma_mod_mask(src, dest, tmp1, tmp2, scratch, scratch2, ins->shift()); if (mir->canBeNegativeDividend()) { if (!mir->isTruncated()) { MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Zero, ins->snapshot()); } else { // -0|0 == 0 } } } void CodeGeneratorARM::visitBitNotI(LBitNotI* ins) { const LAllocation* input = ins->getOperand(0); const LDefinition* dest = ins->getDef(0); // This will not actually be true on arm. We can not an imm8m in order to // get a wider range of numbers MOZ_ASSERT(!input->isConstant()); masm.ma_mvn(ToRegister(input), ToRegister(dest)); } void CodeGeneratorARM::visitBitOpI(LBitOpI* ins) { const LAllocation* lhs = ins->getOperand(0); const LAllocation* rhs = ins->getOperand(1); const LDefinition* dest = ins->getDef(0); ScratchRegisterScope scratch(masm); // All of these bitops should be either imm32's, or integer registers. switch (ins->bitop()) { case JSOP_BITOR: if (rhs->isConstant()) masm.ma_orr(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), scratch); else masm.ma_orr(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); break; case JSOP_BITXOR: if (rhs->isConstant()) masm.ma_eor(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), scratch); else masm.ma_eor(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); break; case JSOP_BITAND: if (rhs->isConstant()) masm.ma_and(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), scratch); else masm.ma_and(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); break; default: MOZ_CRASH("unexpected binary opcode"); } } void CodeGeneratorARM::visitShiftI(LShiftI* ins) { Register lhs = ToRegister(ins->lhs()); const LAllocation* rhs = ins->rhs(); Register dest = ToRegister(ins->output()); if (rhs->isConstant()) { int32_t shift = ToInt32(rhs) & 0x1F; switch (ins->bitop()) { case JSOP_LSH: if (shift) masm.ma_lsl(Imm32(shift), lhs, dest); else masm.ma_mov(lhs, dest); break; case JSOP_RSH: if (shift) masm.ma_asr(Imm32(shift), lhs, dest); else masm.ma_mov(lhs, dest); break; case JSOP_URSH: if (shift) { masm.ma_lsr(Imm32(shift), lhs, dest); } else { // x >>> 0 can overflow. masm.ma_mov(lhs, dest); if (ins->mir()->toUrsh()->fallible()) { masm.as_cmp(dest, Imm8(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); } } break; default: MOZ_CRASH("Unexpected shift op"); } } else { // The shift amounts should be AND'ed into the 0-31 range since arm // shifts by the lower byte of the register (it will attempt to shift by // 250 if you ask it to). masm.as_and(dest, ToRegister(rhs), Imm8(0x1F)); switch (ins->bitop()) { case JSOP_LSH: masm.ma_lsl(dest, lhs, dest); break; case JSOP_RSH: masm.ma_asr(dest, lhs, dest); break; case JSOP_URSH: masm.ma_lsr(dest, lhs, dest); if (ins->mir()->toUrsh()->fallible()) { // x >>> 0 can overflow. masm.as_cmp(dest, Imm8(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); } break; default: MOZ_CRASH("Unexpected shift op"); } } } void CodeGeneratorARM::visitUrshD(LUrshD* ins) { Register lhs = ToRegister(ins->lhs()); Register temp = ToRegister(ins->temp()); const LAllocation* rhs = ins->rhs(); FloatRegister out = ToFloatRegister(ins->output()); if (rhs->isConstant()) { int32_t shift = ToInt32(rhs) & 0x1F; if (shift) masm.ma_lsr(Imm32(shift), lhs, temp); else masm.ma_mov(lhs, temp); } else { masm.as_and(temp, ToRegister(rhs), Imm8(0x1F)); masm.ma_lsr(temp, lhs, temp); } masm.convertUInt32ToDouble(temp, out); } void CodeGeneratorARM::visitClzI(LClzI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); masm.clz32(input, output, /* knownNotZero = */ false); } void CodeGeneratorARM::visitCtzI(LCtzI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); masm.ctz32(input, output, /* knownNotZero = */ false); } void CodeGeneratorARM::visitPopcntI(LPopcntI* ins) { Register input = ToRegister(ins->input()); Register output = ToRegister(ins->output()); Register tmp = ToRegister(ins->temp()); masm.popcnt32(input, output, tmp); } void CodeGeneratorARM::visitPowHalfD(LPowHalfD* ins) { FloatRegister input = ToFloatRegister(ins->input()); FloatRegister output = ToFloatRegister(ins->output()); ScratchDoubleScope scratch(masm); Label done; // Masm.pow(-Infinity, 0.5) == Infinity. masm.loadConstantDouble(NegativeInfinity<double>(), scratch); masm.compareDouble(input, scratch); masm.ma_vneg(scratch, output, Assembler::Equal); masm.ma_b(&done, Assembler::Equal); // Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5). // Adding 0 converts any -0 to 0. masm.loadConstantDouble(0.0, scratch); masm.ma_vadd(scratch, input, output); masm.ma_vsqrt(output, output); masm.bind(&done); } MoveOperand CodeGeneratorARM::toMoveOperand(LAllocation a) const { if (a.isGeneralReg()) return MoveOperand(ToRegister(a)); if (a.isFloatReg()) return MoveOperand(ToFloatRegister(a)); int32_t offset = ToStackOffset(a); MOZ_ASSERT((offset & 3) == 0); return MoveOperand(StackPointer, offset); } class js::jit::OutOfLineTableSwitch : public OutOfLineCodeBase<CodeGeneratorARM> { MTableSwitch* mir_; Vector<CodeLabel, 8, JitAllocPolicy> codeLabels_; void accept(CodeGeneratorARM* codegen) { codegen->visitOutOfLineTableSwitch(this); } public: OutOfLineTableSwitch(TempAllocator& alloc, MTableSwitch* mir) : mir_(mir), codeLabels_(alloc) {} MTableSwitch* mir() const { return mir_; } bool addCodeLabel(CodeLabel label) { return codeLabels_.append(label); } CodeLabel codeLabel(unsigned i) { return codeLabels_[i]; } }; void CodeGeneratorARM::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) { MTableSwitch* mir = ool->mir(); size_t numCases = mir->numCases(); for (size_t i = 0; i < numCases; i++) { LBlock* caseblock = skipTrivialBlocks(mir->getCase(numCases - 1 - i))->lir(); Label* caseheader = caseblock->label(); uint32_t caseoffset = caseheader->offset(); // The entries of the jump table need to be absolute addresses and thus // must be patched after codegen is finished. CodeLabel cl = ool->codeLabel(i); cl.target()->bind(caseoffset); masm.addCodeLabel(cl); } } void CodeGeneratorARM::emitTableSwitchDispatch(MTableSwitch* mir, Register index, Register base) { // The code generated by this is utter hax. // The end result looks something like: // SUBS index, input, #base // RSBSPL index, index, #max // LDRPL pc, pc, index lsl 2 // B default // If the range of targets in N through M, we first subtract off the lowest // case (N), which both shifts the arguments into the range 0 to (M - N) // with and sets the MInus flag if the argument was out of range on the low // end. // Then we a reverse subtract with the size of the jump table, which will // reverse the order of range (It is size through 0, rather than 0 through // size). The main purpose of this is that we set the same flag as the lower // bound check for the upper bound check. Lastly, we do this conditionally // on the previous check succeeding. // Then we conditionally load the pc offset by the (reversed) index (times // the address size) into the pc, which branches to the correct case. NOTE: // when we go to read the pc, the value that we get back is the pc of the // current instruction *PLUS 8*. This means that ldr foo, [pc, +0] reads // $pc+8. In other words, there is an empty word after the branch into the // switch table before the table actually starts. Since the only other // unhandled case is the default case (both out of range high and out of // range low) I then insert a branch to default case into the extra slot, // which ensures we don't attempt to execute the address table. Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label(); ScratchRegisterScope scratch(masm); int32_t cases = mir->numCases(); // Lower value with low value. masm.ma_sub(index, Imm32(mir->low()), index, scratch, SetCC); masm.ma_rsb(index, Imm32(cases - 1), index, scratch, SetCC, Assembler::NotSigned); // Inhibit pools within the following sequence because we are indexing into // a pc relative table. The region will have one instruction for ma_ldr, one // for ma_b, and each table case takes one word. AutoForbidPools afp(&masm, 1 + 1 + cases); masm.ma_ldr(DTRAddr(pc, DtrRegImmShift(index, LSL, 2)), pc, Offset, Assembler::NotSigned); masm.ma_b(defaultcase); // To fill in the CodeLabels for the case entries, we need to first generate // the case entries (we don't yet know their offsets in the instruction // stream). OutOfLineTableSwitch* ool = new(alloc()) OutOfLineTableSwitch(alloc(), mir); for (int32_t i = 0; i < cases; i++) { CodeLabel cl; masm.writeCodePointer(cl.patchAt()); masm.propagateOOM(ool->addCodeLabel(cl)); } addOutOfLineCode(ool, mir); } void CodeGeneratorARM::visitMathD(LMathD* math) { FloatRegister src1 = ToFloatRegister(math->getOperand(0)); FloatRegister src2 = ToFloatRegister(math->getOperand(1)); FloatRegister output = ToFloatRegister(math->getDef(0)); switch (math->jsop()) { case JSOP_ADD: masm.ma_vadd(src1, src2, output); break; case JSOP_SUB: masm.ma_vsub(src1, src2, output); break; case JSOP_MUL: masm.ma_vmul(src1, src2, output); break; case JSOP_DIV: masm.ma_vdiv(src1, src2, output); break; default: MOZ_CRASH("unexpected opcode"); } } void CodeGeneratorARM::visitMathF(LMathF* math) { FloatRegister src1 = ToFloatRegister(math->getOperand(0)); FloatRegister src2 = ToFloatRegister(math->getOperand(1)); FloatRegister output = ToFloatRegister(math->getDef(0)); switch (math->jsop()) { case JSOP_ADD: masm.ma_vadd_f32(src1, src2, output); break; case JSOP_SUB: masm.ma_vsub_f32(src1, src2, output); break; case JSOP_MUL: masm.ma_vmul_f32(src1, src2, output); break; case JSOP_DIV: masm.ma_vdiv_f32(src1, src2, output); break; default: MOZ_CRASH("unexpected opcode"); } } void CodeGeneratorARM::visitFloor(LFloor* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bail; masm.floor(input, output, &bail); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::visitFloorF(LFloorF* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bail; masm.floorf(input, output, &bail); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::visitCeil(LCeil* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bail; masm.ceil(input, output, &bail); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::visitCeilF(LCeilF* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); Label bail; masm.ceilf(input, output, &bail); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::visitRound(LRound* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); FloatRegister tmp = ToFloatRegister(lir->temp()); Label bail; // Output is either correct, or clamped. All -0 cases have been translated // to a clamped case. masm.round(input, output, &bail, tmp); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::visitRoundF(LRoundF* lir) { FloatRegister input = ToFloatRegister(lir->input()); Register output = ToRegister(lir->output()); FloatRegister tmp = ToFloatRegister(lir->temp()); Label bail; // Output is either correct, or clamped. All -0 cases have been translated // to a clamped case. masm.roundf(input, output, &bail, tmp); bailoutFrom(&bail, lir->snapshot()); } void CodeGeneratorARM::emitRoundDouble(FloatRegister src, Register dest, Label* fail) { ScratchDoubleScope scratch(masm); ScratchRegisterScope scratchReg(masm); masm.ma_vcvt_F64_I32(src, scratch); masm.ma_vxfer(scratch, dest); masm.ma_cmp(dest, Imm32(0x7fffffff), scratchReg); masm.ma_cmp(dest, Imm32(0x80000000), scratchReg, Assembler::NotEqual); masm.ma_b(fail, Assembler::Equal); } void CodeGeneratorARM::visitTruncateDToInt32(LTruncateDToInt32* ins) { emitTruncateDouble(ToFloatRegister(ins->input()), ToRegister(ins->output()), ins->mir()); } void CodeGeneratorARM::visitTruncateFToInt32(LTruncateFToInt32* ins) { emitTruncateFloat32(ToFloatRegister(ins->input()), ToRegister(ins->output()), ins->mir()); } static const uint32_t FrameSizes[] = { 128, 256, 512, 1024 }; FrameSizeClass FrameSizeClass::FromDepth(uint32_t frameDepth) { for (uint32_t i = 0; i < JS_ARRAY_LENGTH(FrameSizes); i++) { if (frameDepth < FrameSizes[i]) return FrameSizeClass(i); } return FrameSizeClass::None(); } FrameSizeClass FrameSizeClass::ClassLimit() { return FrameSizeClass(JS_ARRAY_LENGTH(FrameSizes)); } uint32_t FrameSizeClass::frameSize() const { MOZ_ASSERT(class_ != NO_FRAME_SIZE_CLASS_ID); MOZ_ASSERT(class_ < JS_ARRAY_LENGTH(FrameSizes)); return FrameSizes[class_]; } ValueOperand CodeGeneratorARM::ToValue(LInstruction* ins, size_t pos) { Register typeReg = ToRegister(ins->getOperand(pos + TYPE_INDEX)); Register payloadReg = ToRegister(ins->getOperand(pos + PAYLOAD_INDEX)); return ValueOperand(typeReg, payloadReg); } ValueOperand CodeGeneratorARM::ToOutValue(LInstruction* ins) { Register typeReg = ToRegister(ins->getDef(TYPE_INDEX)); Register payloadReg = ToRegister(ins->getDef(PAYLOAD_INDEX)); return ValueOperand(typeReg, payloadReg); } ValueOperand CodeGeneratorARM::ToTempValue(LInstruction* ins, size_t pos) { Register typeReg = ToRegister(ins->getTemp(pos + TYPE_INDEX)); Register payloadReg = ToRegister(ins->getTemp(pos + PAYLOAD_INDEX)); return ValueOperand(typeReg, payloadReg); } void CodeGeneratorARM::visitValue(LValue* value) { const ValueOperand out = ToOutValue(value); masm.moveValue(value->value(), out); } void CodeGeneratorARM::visitBox(LBox* box) { const LDefinition* type = box->getDef(TYPE_INDEX); MOZ_ASSERT(!box->getOperand(0)->isConstant()); // On x86, the input operand and the output payload have the same virtual // register. All that needs to be written is the type tag for the type // definition. masm.ma_mov(Imm32(MIRTypeToTag(box->type())), ToRegister(type)); } void CodeGeneratorARM::visitBoxFloatingPoint(LBoxFloatingPoint* box) { const LDefinition* payload = box->getDef(PAYLOAD_INDEX); const LDefinition* type = box->getDef(TYPE_INDEX); const LAllocation* in = box->getOperand(0); FloatRegister reg = ToFloatRegister(in); if (box->type() == MIRType::Float32) { ScratchFloat32Scope scratch(masm); masm.convertFloat32ToDouble(reg, scratch); masm.ma_vxfer(VFPRegister(scratch), ToRegister(payload), ToRegister(type)); } else { masm.ma_vxfer(VFPRegister(reg), ToRegister(payload), ToRegister(type)); } } void CodeGeneratorARM::visitUnbox(LUnbox* unbox) { // Note that for unbox, the type and payload indexes are switched on the // inputs. MUnbox* mir = unbox->mir(); Register type = ToRegister(unbox->type()); ScratchRegisterScope scratch(masm); if (mir->fallible()) { masm.ma_cmp(type, Imm32(MIRTypeToTag(mir->type())), scratch); bailoutIf(Assembler::NotEqual, unbox->snapshot()); } } void CodeGeneratorARM::visitDouble(LDouble* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantDouble(ins->getDouble(), ToFloatRegister(out)); } void CodeGeneratorARM::visitFloat32(LFloat32* ins) { const LDefinition* out = ins->getDef(0); masm.loadConstantFloat32(ins->getFloat(), ToFloatRegister(out)); } Register CodeGeneratorARM::splitTagForTest(const ValueOperand& value) { return value.typeReg(); } void CodeGeneratorARM::visitTestDAndBranch(LTestDAndBranch* test) { const LAllocation* opd = test->input(); masm.ma_vcmpz(ToFloatRegister(opd)); masm.as_vmrs(pc); MBasicBlock* ifTrue = test->ifTrue(); MBasicBlock* ifFalse = test->ifFalse(); // If the compare set the 0 bit, then the result is definately false. jumpToBlock(ifFalse, Assembler::Zero); // It is also false if one of the operands is NAN, which is shown as // Overflow. jumpToBlock(ifFalse, Assembler::Overflow); jumpToBlock(ifTrue); } void CodeGeneratorARM::visitTestFAndBranch(LTestFAndBranch* test) { const LAllocation* opd = test->input(); masm.ma_vcmpz_f32(ToFloatRegister(opd)); masm.as_vmrs(pc); MBasicBlock* ifTrue = test->ifTrue(); MBasicBlock* ifFalse = test->ifFalse(); // If the compare set the 0 bit, then the result is definately false. jumpToBlock(ifFalse, Assembler::Zero); // It is also false if one of the operands is NAN, which is shown as // Overflow. jumpToBlock(ifFalse, Assembler::Overflow); jumpToBlock(ifTrue); } void CodeGeneratorARM::visitCompareD(LCompareD* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); masm.compareDouble(lhs, rhs); masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), ToRegister(comp->output())); } void CodeGeneratorARM::visitCompareF(LCompareF* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); masm.compareFloat(lhs, rhs); masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), ToRegister(comp->output())); } void CodeGeneratorARM::visitCompareDAndBranch(LCompareDAndBranch* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->cmpMir()->jsop()); masm.compareDouble(lhs, rhs); emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), comp->ifFalse()); } void CodeGeneratorARM::visitCompareFAndBranch(LCompareFAndBranch* comp) { FloatRegister lhs = ToFloatRegister(comp->left()); FloatRegister rhs = ToFloatRegister(comp->right()); Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->cmpMir()->jsop()); masm.compareFloat(lhs, rhs); emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), comp->ifFalse()); } void CodeGeneratorARM::visitCompareB(LCompareB* lir) { MCompare* mir = lir->mir(); const ValueOperand lhs = ToValue(lir, LCompareB::Lhs); const LAllocation* rhs = lir->rhs(); const Register output = ToRegister(lir->output()); MOZ_ASSERT(mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_STRICTNE); Label notBoolean, done; masm.branchTestBoolean(Assembler::NotEqual, lhs, ¬Boolean); { if (rhs->isConstant()) masm.cmp32(lhs.payloadReg(), Imm32(rhs->toConstant()->toBoolean())); else masm.cmp32(lhs.payloadReg(), ToRegister(rhs)); masm.emitSet(JSOpToCondition(mir->compareType(), mir->jsop()), output); masm.jump(&done); } masm.bind(¬Boolean); { masm.move32(Imm32(mir->jsop() == JSOP_STRICTNE), output); } masm.bind(&done); } void CodeGeneratorARM::visitCompareBAndBranch(LCompareBAndBranch* lir) { MCompare* mir = lir->cmpMir(); const ValueOperand lhs = ToValue(lir, LCompareBAndBranch::Lhs); const LAllocation* rhs = lir->rhs(); MOZ_ASSERT(mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_STRICTNE); Assembler::Condition cond = masm.testBoolean(Assembler::NotEqual, lhs); jumpToBlock((mir->jsop() == JSOP_STRICTEQ) ? lir->ifFalse() : lir->ifTrue(), cond); if (rhs->isConstant()) masm.cmp32(lhs.payloadReg(), Imm32(rhs->toConstant()->toBoolean())); else masm.cmp32(lhs.payloadReg(), ToRegister(rhs)); emitBranch(JSOpToCondition(mir->compareType(), mir->jsop()), lir->ifTrue(), lir->ifFalse()); } void CodeGeneratorARM::visitCompareBitwise(LCompareBitwise* lir) { MCompare* mir = lir->mir(); Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop()); const ValueOperand lhs = ToValue(lir, LCompareBitwise::LhsInput); const ValueOperand rhs = ToValue(lir, LCompareBitwise::RhsInput); const Register output = ToRegister(lir->output()); MOZ_ASSERT(mir->jsop() == JSOP_EQ || mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_NE || mir->jsop() == JSOP_STRICTNE); Label notEqual, done; masm.cmp32(lhs.typeReg(), rhs.typeReg()); masm.j(Assembler::NotEqual, ¬Equal); { masm.cmp32(lhs.payloadReg(), rhs.payloadReg()); masm.emitSet(cond, output); masm.jump(&done); } masm.bind(¬Equal); { masm.move32(Imm32(cond == Assembler::NotEqual), output); } masm.bind(&done); } void CodeGeneratorARM::visitCompareBitwiseAndBranch(LCompareBitwiseAndBranch* lir) { MCompare* mir = lir->cmpMir(); Assembler::Condition cond = JSOpToCondition(mir->compareType(), mir->jsop()); const ValueOperand lhs = ToValue(lir, LCompareBitwiseAndBranch::LhsInput); const ValueOperand rhs = ToValue(lir, LCompareBitwiseAndBranch::RhsInput); MOZ_ASSERT(mir->jsop() == JSOP_EQ || mir->jsop() == JSOP_STRICTEQ || mir->jsop() == JSOP_NE || mir->jsop() == JSOP_STRICTNE); MBasicBlock* notEqual = (cond == Assembler::Equal) ? lir->ifFalse() : lir->ifTrue(); masm.cmp32(lhs.typeReg(), rhs.typeReg()); jumpToBlock(notEqual, Assembler::NotEqual); masm.cmp32(lhs.payloadReg(), rhs.payloadReg()); emitBranch(cond, lir->ifTrue(), lir->ifFalse()); } void CodeGeneratorARM::visitBitAndAndBranch(LBitAndAndBranch* baab) { ScratchRegisterScope scratch(masm); if (baab->right()->isConstant()) masm.ma_tst(ToRegister(baab->left()), Imm32(ToInt32(baab->right())), scratch); else masm.ma_tst(ToRegister(baab->left()), ToRegister(baab->right())); emitBranch(Assembler::NonZero, baab->ifTrue(), baab->ifFalse()); } void CodeGeneratorARM::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) { masm.convertUInt32ToDouble(ToRegister(lir->input()), ToFloatRegister(lir->output())); } void CodeGeneratorARM::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) { masm.convertUInt32ToFloat32(ToRegister(lir->input()), ToFloatRegister(lir->output())); } void CodeGeneratorARM::visitNotI(LNotI* ins) { // It is hard to optimize !x, so just do it the basic way for now. masm.as_cmp(ToRegister(ins->input()), Imm8(0)); masm.emitSet(Assembler::Equal, ToRegister(ins->output())); } void CodeGeneratorARM::visitNotI64(LNotI64* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); Register output = ToRegister(lir->output()); masm.ma_orr(input.low, input.high, output); masm.as_cmp(output, Imm8(0)); masm.emitSet(Assembler::Equal, output); } void CodeGeneratorARM::visitNotD(LNotD* ins) { // Since this operation is not, we want to set a bit if the double is // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR. FloatRegister opd = ToFloatRegister(ins->input()); Register dest = ToRegister(ins->output()); // Do the compare. masm.ma_vcmpz(opd); // TODO There are three variations here to compare performance-wise. bool nocond = true; if (nocond) { // Load the value into the dest register. masm.as_vmrs(dest); masm.ma_lsr(Imm32(28), dest, dest); // 28 + 2 = 30 masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr); masm.as_and(dest, dest, Imm8(1)); } else { masm.as_vmrs(pc); masm.ma_mov(Imm32(0), dest); masm.ma_mov(Imm32(1), dest, Assembler::Equal); masm.ma_mov(Imm32(1), dest, Assembler::Overflow); } } void CodeGeneratorARM::visitNotF(LNotF* ins) { // Since this operation is not, we want to set a bit if the double is // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR. FloatRegister opd = ToFloatRegister(ins->input()); Register dest = ToRegister(ins->output()); // Do the compare. masm.ma_vcmpz_f32(opd); // TODO There are three variations here to compare performance-wise. bool nocond = true; if (nocond) { // Load the value into the dest register. masm.as_vmrs(dest); masm.ma_lsr(Imm32(28), dest, dest); // 28 + 2 = 30 masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr); masm.as_and(dest, dest, Imm8(1)); } else { masm.as_vmrs(pc); masm.ma_mov(Imm32(0), dest); masm.ma_mov(Imm32(1), dest, Assembler::Equal); masm.ma_mov(Imm32(1), dest, Assembler::Overflow); } } void CodeGeneratorARM::visitGuardShape(LGuardShape* guard) { Register obj = ToRegister(guard->input()); Register tmp = ToRegister(guard->tempInt()); ScratchRegisterScope scratch(masm); masm.ma_ldr(DTRAddr(obj, DtrOffImm(ShapedObject::offsetOfShape())), tmp); masm.ma_cmp(tmp, ImmGCPtr(guard->mir()->shape()), scratch); bailoutIf(Assembler::NotEqual, guard->snapshot()); } void CodeGeneratorARM::visitGuardObjectGroup(LGuardObjectGroup* guard) { Register obj = ToRegister(guard->input()); Register tmp = ToRegister(guard->tempInt()); MOZ_ASSERT(obj != tmp); ScratchRegisterScope scratch(masm); masm.ma_ldr(DTRAddr(obj, DtrOffImm(JSObject::offsetOfGroup())), tmp); masm.ma_cmp(tmp, ImmGCPtr(guard->mir()->group()), scratch); Assembler::Condition cond = guard->mir()->bailOnEquality() ? Assembler::Equal : Assembler::NotEqual; bailoutIf(cond, guard->snapshot()); } void CodeGeneratorARM::visitGuardClass(LGuardClass* guard) { Register obj = ToRegister(guard->input()); Register tmp = ToRegister(guard->tempInt()); ScratchRegisterScope scratch(masm); masm.loadObjClass(obj, tmp); masm.ma_cmp(tmp, Imm32((uint32_t)guard->mir()->getClass()), scratch); bailoutIf(Assembler::NotEqual, guard->snapshot()); } void CodeGeneratorARM::generateInvalidateEpilogue() { // Ensure that there is enough space in the buffer for the OsiPoint patching // to occur. Otherwise, we could overwrite the invalidation epilogue. for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) masm.nop(); masm.bind(&invalidate_); // Push the return address of the point that we bailed out at onto the stack. masm.Push(lr); // Push the Ion script onto the stack (when we determine what that pointer is). invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1))); JitCode* thunk = gen->jitRuntime()->getInvalidationThunk(); masm.branch(thunk); // We should never reach this point in JIT code -- the invalidation thunk // should pop the invalidated JS frame and return directly to its caller. masm.assumeUnreachable("Should have returned directly to its caller instead of here."); } void CodeGeneratorARM::visitLoadTypedArrayElementStatic(LLoadTypedArrayElementStatic* ins) { MOZ_CRASH("NYI"); } void CodeGeneratorARM::visitStoreTypedArrayElementStatic(LStoreTypedArrayElementStatic* ins) { MOZ_CRASH("NYI"); } void CodeGeneratorARM::visitCompareExchangeTypedArrayElement(LCompareExchangeTypedArrayElement* lir) { Register elements = ToRegister(lir->elements()); AnyRegister output = ToAnyRegister(lir->output()); Register temp = lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); Register oldval = ToRegister(lir->oldval()); Register newval = ToRegister(lir->newval()); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address dest(elements, ToInt32(lir->index()) * width); masm.compareExchangeToTypedIntArray(arrayType, dest, oldval, newval, temp, output); } else { BaseIndex dest(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); masm.compareExchangeToTypedIntArray(arrayType, dest, oldval, newval, temp, output); } } void CodeGeneratorARM::visitAtomicExchangeTypedArrayElement(LAtomicExchangeTypedArrayElement* lir) { Register elements = ToRegister(lir->elements()); AnyRegister output = ToAnyRegister(lir->output()); Register temp = lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); Register value = ToRegister(lir->value()); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address dest(elements, ToInt32(lir->index()) * width); masm.atomicExchangeToTypedIntArray(arrayType, dest, value, temp, output); } else { BaseIndex dest(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); masm.atomicExchangeToTypedIntArray(arrayType, dest, value, temp, output); } } template<typename S, typename T> void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const S& value, const T& mem, Register flagTemp, Register outTemp, AnyRegister output) { MOZ_ASSERT(flagTemp != InvalidReg); MOZ_ASSERT_IF(arrayType == Scalar::Uint32, outTemp != InvalidReg); switch (arrayType) { case Scalar::Int8: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd8SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub8SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd8SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr8SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor8SignExtend(value, mem, flagTemp, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint8: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd8ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub8ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd8ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr8ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor8ZeroExtend(value, mem, flagTemp, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int16: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd16SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub16SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd16SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr16SignExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor16SignExtend(value, mem, flagTemp, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint16: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd16ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub16ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd16ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr16ZeroExtend(value, mem, flagTemp, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor16ZeroExtend(value, mem, flagTemp, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int32: switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd32(value, mem, flagTemp, output.gpr()); break; case AtomicFetchSubOp: masm.atomicFetchSub32(value, mem, flagTemp, output.gpr()); break; case AtomicFetchAndOp: masm.atomicFetchAnd32(value, mem, flagTemp, output.gpr()); break; case AtomicFetchOrOp: masm.atomicFetchOr32(value, mem, flagTemp, output.gpr()); break; case AtomicFetchXorOp: masm.atomicFetchXor32(value, mem, flagTemp, output.gpr()); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Uint32: // At the moment, the code in MCallOptimize.cpp requires the output // type to be double for uint32 arrays. See bug 1077305. MOZ_ASSERT(output.isFloat()); switch (op) { case AtomicFetchAddOp: masm.atomicFetchAdd32(value, mem, flagTemp, outTemp); break; case AtomicFetchSubOp: masm.atomicFetchSub32(value, mem, flagTemp, outTemp); break; case AtomicFetchAndOp: masm.atomicFetchAnd32(value, mem, flagTemp, outTemp); break; case AtomicFetchOrOp: masm.atomicFetchOr32(value, mem, flagTemp, outTemp); break; case AtomicFetchXorOp: masm.atomicFetchXor32(value, mem, flagTemp, outTemp); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } masm.convertUInt32ToDouble(outTemp, output.fpu()); break; default: MOZ_CRASH("Invalid typed array type"); } } template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const Address& mem, Register flagTemp, Register outTemp, AnyRegister output); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const BaseIndex& mem, Register flagTemp, Register outTemp, AnyRegister output); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const Address& mem, Register flagTemp, Register outTemp, AnyRegister output); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const BaseIndex& mem, Register flagTemp, Register outTemp, AnyRegister output); // Binary operation for effect, result discarded. template<typename S, typename T> void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const S& value, const T& mem, Register flagTemp) { MOZ_ASSERT(flagTemp != InvalidReg); switch (arrayType) { case Scalar::Int8: case Scalar::Uint8: switch (op) { case AtomicFetchAddOp: masm.atomicAdd8(value, mem, flagTemp); break; case AtomicFetchSubOp: masm.atomicSub8(value, mem, flagTemp); break; case AtomicFetchAndOp: masm.atomicAnd8(value, mem, flagTemp); break; case AtomicFetchOrOp: masm.atomicOr8(value, mem, flagTemp); break; case AtomicFetchXorOp: masm.atomicXor8(value, mem, flagTemp); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int16: case Scalar::Uint16: switch (op) { case AtomicFetchAddOp: masm.atomicAdd16(value, mem, flagTemp); break; case AtomicFetchSubOp: masm.atomicSub16(value, mem, flagTemp); break; case AtomicFetchAndOp: masm.atomicAnd16(value, mem, flagTemp); break; case AtomicFetchOrOp: masm.atomicOr16(value, mem, flagTemp); break; case AtomicFetchXorOp: masm.atomicXor16(value, mem, flagTemp); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; case Scalar::Int32: case Scalar::Uint32: switch (op) { case AtomicFetchAddOp: masm.atomicAdd32(value, mem, flagTemp); break; case AtomicFetchSubOp: masm.atomicSub32(value, mem, flagTemp); break; case AtomicFetchAndOp: masm.atomicAnd32(value, mem, flagTemp); break; case AtomicFetchOrOp: masm.atomicOr32(value, mem, flagTemp); break; case AtomicFetchXorOp: masm.atomicXor32(value, mem, flagTemp); break; default: MOZ_CRASH("Invalid typed array atomic operation"); } break; default: MOZ_CRASH("Invalid typed array type"); } } template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const Address& mem, Register flagTemp); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Imm32& value, const BaseIndex& mem, Register flagTemp); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const Address& mem, Register flagTemp); template void CodeGeneratorARM::atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, const Register& value, const BaseIndex& mem, Register flagTemp); template <typename T> static inline void AtomicBinopToTypedArray(CodeGeneratorARM* cg, AtomicOp op, Scalar::Type arrayType, const LAllocation* value, const T& mem, Register flagTemp, Register outTemp, AnyRegister output) { if (value->isConstant()) cg->atomicBinopToTypedIntArray(op, arrayType, Imm32(ToInt32(value)), mem, flagTemp, outTemp, output); else cg->atomicBinopToTypedIntArray(op, arrayType, ToRegister(value), mem, flagTemp, outTemp, output); } void CodeGeneratorARM::visitAtomicTypedArrayElementBinop(LAtomicTypedArrayElementBinop* lir) { MOZ_ASSERT(lir->mir()->hasUses()); AnyRegister output = ToAnyRegister(lir->output()); Register elements = ToRegister(lir->elements()); Register flagTemp = ToRegister(lir->temp1()); Register outTemp = lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2()); const LAllocation* value = lir->value(); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address mem(elements, ToInt32(lir->index()) * width); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, flagTemp, outTemp, output); } else { BaseIndex mem(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, flagTemp, outTemp, output); } } template <typename T> static inline void AtomicBinopToTypedArray(CodeGeneratorARM* cg, AtomicOp op, Scalar::Type arrayType, const LAllocation* value, const T& mem, Register flagTemp) { if (value->isConstant()) cg->atomicBinopToTypedIntArray(op, arrayType, Imm32(ToInt32(value)), mem, flagTemp); else cg->atomicBinopToTypedIntArray(op, arrayType, ToRegister(value), mem, flagTemp); } void CodeGeneratorARM::visitAtomicTypedArrayElementBinopForEffect(LAtomicTypedArrayElementBinopForEffect* lir) { MOZ_ASSERT(!lir->mir()->hasUses()); Register elements = ToRegister(lir->elements()); Register flagTemp = ToRegister(lir->flagTemp()); const LAllocation* value = lir->value(); Scalar::Type arrayType = lir->mir()->arrayType(); int width = Scalar::byteSize(arrayType); if (lir->index()->isConstant()) { Address mem(elements, ToInt32(lir->index()) * width); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, flagTemp); } else { BaseIndex mem(elements, ToRegister(lir->index()), ScaleFromElemWidth(width)); AtomicBinopToTypedArray(this, lir->mir()->operation(), arrayType, value, mem, flagTemp); } } void CodeGeneratorARM::visitWasmSelect(LWasmSelect* ins) { MIRType mirType = ins->mir()->type(); Register cond = ToRegister(ins->condExpr()); masm.as_cmp(cond, Imm8(0)); if (mirType == MIRType::Int32) { Register falseExpr = ToRegister(ins->falseExpr()); Register out = ToRegister(ins->output()); MOZ_ASSERT(ToRegister(ins->trueExpr()) == out, "true expr input is reused for output"); masm.ma_mov(falseExpr, out, LeaveCC, Assembler::Zero); return; } FloatRegister out = ToFloatRegister(ins->output()); MOZ_ASSERT(ToFloatRegister(ins->trueExpr()) == out, "true expr input is reused for output"); FloatRegister falseExpr = ToFloatRegister(ins->falseExpr()); if (mirType == MIRType::Double) masm.moveDouble(falseExpr, out, Assembler::Zero); else if (mirType == MIRType::Float32) masm.moveFloat32(falseExpr, out, Assembler::Zero); else MOZ_CRASH("unhandled type in visitWasmSelect!"); } void CodeGeneratorARM::visitWasmReinterpret(LWasmReinterpret* lir) { MOZ_ASSERT(gen->compilingWasm()); MWasmReinterpret* ins = lir->mir(); MIRType to = ins->type(); DebugOnly<MIRType> from = ins->input()->type(); switch (to) { case MIRType::Int32: MOZ_ASSERT(from == MIRType::Float32); masm.ma_vxfer(ToFloatRegister(lir->input()), ToRegister(lir->output())); break; case MIRType::Float32: MOZ_ASSERT(from == MIRType::Int32); masm.ma_vxfer(ToRegister(lir->input()), ToFloatRegister(lir->output())); break; case MIRType::Double: case MIRType::Int64: MOZ_CRASH("not handled by this LIR opcode"); default: MOZ_CRASH("unexpected WasmReinterpret"); } } void CodeGeneratorARM::emitWasmCall(LWasmCallBase* ins) { MWasmCall* mir = ins->mir(); if (UseHardFpABI() || mir->callee().which() != wasm::CalleeDesc::Builtin) { emitWasmCallBase(ins); return; } // The soft ABI passes floating point arguments in GPRs. Since basically // nothing is set up to handle this, the values are placed in the // corresponding VFP registers, then transferred to GPRs immediately // before the call. The mapping is sN <-> rN, where double registers // can be treated as their two component single registers. for (unsigned i = 0, e = ins->numOperands(); i < e; i++) { LAllocation* a = ins->getOperand(i); if (a->isFloatReg()) { FloatRegister fr = ToFloatRegister(a); if (fr.isDouble()) { uint32_t srcId = fr.singleOverlay().id(); masm.ma_vxfer(fr, Register::FromCode(srcId), Register::FromCode(srcId + 1)); } else { uint32_t srcId = fr.id(); masm.ma_vxfer(fr, Register::FromCode(srcId)); } } } emitWasmCallBase(ins); switch (mir->type()) { case MIRType::Double: masm.ma_vxfer(r0, r1, d0); break; case MIRType::Float32: masm.as_vxfer(r0, InvalidReg, VFPRegister(d0).singleOverlay(), Assembler::CoreToFloat); break; default: break; } } void CodeGeneratorARM::visitWasmCall(LWasmCall* ins) { emitWasmCall(ins); } void CodeGeneratorARM::visitWasmCallI64(LWasmCallI64* ins) { emitWasmCall(ins); } void CodeGeneratorARM::visitAsmJSLoadHeap(LAsmJSLoadHeap* ins) { const MAsmJSLoadHeap* mir = ins->mir(); MOZ_ASSERT(mir->offset() == 0); const LAllocation* ptr = ins->ptr(); bool isSigned; int size; bool isFloat = false; switch (mir->accessType()) { case Scalar::Int8: isSigned = true; size = 8; break; case Scalar::Uint8: isSigned = false; size = 8; break; case Scalar::Int16: isSigned = true; size = 16; break; case Scalar::Uint16: isSigned = false; size = 16; break; case Scalar::Int32: case Scalar::Uint32: isSigned = true; size = 32; break; case Scalar::Float64: isFloat = true; size = 64; break; case Scalar::Float32: isFloat = true; size = 32; break; default: MOZ_CRASH("unexpected array type"); } if (ptr->isConstant()) { MOZ_ASSERT(!mir->needsBoundsCheck()); int32_t ptrImm = ptr->toConstant()->toInt32(); MOZ_ASSERT(ptrImm >= 0); if (isFloat) { ScratchRegisterScope scratch(masm); VFPRegister vd(ToFloatRegister(ins->output())); if (size == 32) masm.ma_vldr(Address(HeapReg, ptrImm), vd.singleOverlay(), scratch, Assembler::Always); else masm.ma_vldr(Address(HeapReg, ptrImm), vd, scratch, Assembler::Always); } else { ScratchRegisterScope scratch(masm); masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, Imm32(ptrImm), ToRegister(ins->output()), scratch, Offset, Assembler::Always); } } else { ScratchRegisterScope scratch(masm); Register ptrReg = ToRegister(ptr); if (isFloat) { FloatRegister output = ToFloatRegister(ins->output()); if (size == 32) output = output.singleOverlay(); Assembler::Condition cond = Assembler::Always; if (mir->needsBoundsCheck()) { BufferOffset cmp = masm.as_cmp(ptrReg, Imm8(0)); masm.append(wasm::BoundsCheck(cmp.getOffset())); size_t nanOffset = size == 32 ? wasm::NaN32GlobalDataOffset : wasm::NaN64GlobalDataOffset; masm.ma_vldr(Address(GlobalReg, nanOffset - WasmGlobalRegBias), output, scratch, Assembler::AboveOrEqual); cond = Assembler::Below; } masm.ma_vldr(output, HeapReg, ptrReg, scratch, 0, cond); } else { Register output = ToRegister(ins->output()); Assembler::Condition cond = Assembler::Always; if (mir->needsBoundsCheck()) { uint32_t cmpOffset = masm.as_cmp(ptrReg, Imm8(0)).getOffset(); masm.append(wasm::BoundsCheck(cmpOffset)); masm.ma_mov(Imm32(0), output, Assembler::AboveOrEqual); cond = Assembler::Below; } masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, ptrReg, output, scratch, Offset, cond); } } } template <typename T> void CodeGeneratorARM::emitWasmLoad(T* lir) { const MWasmLoad* mir = lir->mir(); uint32_t offset = mir->access().offset(); MOZ_ASSERT(offset < wasm::OffsetGuardLimit); Register ptr = ToRegister(lir->ptr()); Scalar::Type type = mir->access().type(); // Maybe add the offset. if (offset || type == Scalar::Int64) { ScratchRegisterScope scratch(masm); Register ptrPlusOffset = ToRegister(lir->ptrCopy()); if (offset) masm.ma_add(Imm32(offset), ptrPlusOffset, scratch); ptr = ptrPlusOffset; } else { MOZ_ASSERT(lir->ptrCopy()->isBogusTemp()); } bool isSigned = type == Scalar::Int8 || type == Scalar::Int16 || type == Scalar::Int32 || type == Scalar::Int64; unsigned byteSize = mir->access().byteSize(); masm.memoryBarrier(mir->access().barrierBefore()); BufferOffset load; if (mir->type() == MIRType::Int64) { Register64 output = ToOutRegister64(lir); if (type == Scalar::Int64) { MOZ_ASSERT(INT64LOW_OFFSET == 0); load = masm.ma_dataTransferN(IsLoad, 32, /* signed = */ false, HeapReg, ptr, output.low); masm.append(mir->access(), load.getOffset(), masm.framePushed()); masm.as_add(ptr, ptr, Imm8(INT64HIGH_OFFSET)); load = masm.ma_dataTransferN(IsLoad, 32, isSigned, HeapReg, ptr, output.high); masm.append(mir->access(), load.getOffset(), masm.framePushed()); } else { load = masm.ma_dataTransferN(IsLoad, byteSize * 8, isSigned, HeapReg, ptr, output.low); masm.append(mir->access(), load.getOffset(), masm.framePushed()); if (isSigned) masm.ma_asr(Imm32(31), output.low, output.high); else masm.ma_mov(Imm32(0), output.high); } } else { AnyRegister output = ToAnyRegister(lir->output()); bool isFloat = output.isFloat(); if (isFloat) { MOZ_ASSERT((byteSize == 4) == output.fpu().isSingle()); ScratchRegisterScope scratch(masm); masm.ma_add(HeapReg, ptr, scratch); load = masm.ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), output.fpu()); masm.append(mir->access(), load.getOffset(), masm.framePushed()); } else { load = masm.ma_dataTransferN(IsLoad, byteSize * 8, isSigned, HeapReg, ptr, output.gpr()); masm.append(mir->access(), load.getOffset(), masm.framePushed()); } } masm.memoryBarrier(mir->access().barrierAfter()); } void CodeGeneratorARM::visitWasmLoad(LWasmLoad* lir) { emitWasmLoad(lir); } void CodeGeneratorARM::visitWasmLoadI64(LWasmLoadI64* lir) { emitWasmLoad(lir); } template<typename T> void CodeGeneratorARM::emitWasmUnalignedLoad(T* lir) { const MWasmLoad* mir = lir->mir(); uint32_t offset = mir->access().offset(); MOZ_ASSERT(offset < wasm::OffsetGuardLimit); Register ptr = ToRegister(lir->ptrCopy()); if (offset) { ScratchRegisterScope scratch(masm); masm.ma_add(Imm32(offset), ptr, scratch); } // Add HeapReg to ptr, so we can use base+index addressing in the byte loads. masm.ma_add(HeapReg, ptr); unsigned byteSize = mir->access().byteSize(); Scalar::Type type = mir->access().type(); bool isSigned = type == Scalar::Int8 || type == Scalar::Int16 || type == Scalar::Int32 || type == Scalar::Int64; MIRType mirType = mir->type(); Register tmp = ToRegister(lir->getTemp(1)); Register low; if (IsFloatingPointType(mirType)) low = ToRegister(lir->getTemp(2)); else if (mirType == MIRType::Int64) low = ToOutRegister64(lir).low; else low = ToRegister(lir->output()); MOZ_ASSERT(low != tmp); MOZ_ASSERT(low != ptr); masm.memoryBarrier(mir->access().barrierBefore()); masm.emitUnalignedLoad(isSigned, Min(byteSize, 4u), ptr, tmp, low); if (IsFloatingPointType(mirType)) { FloatRegister output = ToFloatRegister(lir->output()); if (byteSize == 4) { MOZ_ASSERT(output.isSingle()); masm.ma_vxfer(low, output); } else { MOZ_ASSERT(byteSize == 8); MOZ_ASSERT(output.isDouble()); Register high = ToRegister(lir->getTemp(3)); masm.emitUnalignedLoad(/* signed */ false, 4, ptr, tmp, high, /* offset */ 4); masm.ma_vxfer(low, high, output); } } else if (mirType == MIRType::Int64) { Register64 output = ToOutRegister64(lir); if (type == Scalar::Int64) { MOZ_ASSERT(byteSize == 8); masm.emitUnalignedLoad(isSigned, 4, ptr, tmp, output.high, /* offset */ 4); } else { MOZ_ASSERT(byteSize <= 4); // Propagate sign. if (isSigned) masm.ma_asr(Imm32(31), output.low, output.high); else masm.ma_mov(Imm32(0), output.high); } } masm.memoryBarrier(mir->access().barrierAfter()); } void CodeGeneratorARM::visitWasmUnalignedLoad(LWasmUnalignedLoad* lir) { emitWasmUnalignedLoad(lir); } void CodeGeneratorARM::visitWasmUnalignedLoadI64(LWasmUnalignedLoadI64* lir) { emitWasmUnalignedLoad(lir); } void CodeGeneratorARM::visitWasmAddOffset(LWasmAddOffset* lir) { MWasmAddOffset* mir = lir->mir(); Register base = ToRegister(lir->base()); Register out = ToRegister(lir->output()); ScratchRegisterScope scratch(masm); masm.ma_add(base, Imm32(mir->offset()), out, scratch, SetCC); masm.ma_b(trap(mir, wasm::Trap::OutOfBounds), Assembler::CarrySet); } template <typename T> void CodeGeneratorARM::emitWasmStore(T* lir) { const MWasmStore* mir = lir->mir(); uint32_t offset = mir->access().offset(); MOZ_ASSERT(offset < wasm::OffsetGuardLimit); Register ptr = ToRegister(lir->ptr()); unsigned byteSize = mir->access().byteSize(); Scalar::Type type = mir->access().type(); // Maybe add the offset. if (offset || type == Scalar::Int64) { ScratchRegisterScope scratch(masm); Register ptrPlusOffset = ToRegister(lir->ptrCopy()); if (offset) masm.ma_add(Imm32(offset), ptrPlusOffset, scratch); ptr = ptrPlusOffset; } else { MOZ_ASSERT(lir->ptrCopy()->isBogusTemp()); } masm.memoryBarrier(mir->access().barrierBefore()); BufferOffset store; if (type == Scalar::Int64) { MOZ_ASSERT(INT64LOW_OFFSET == 0); Register64 value = ToRegister64(lir->getInt64Operand(lir->ValueIndex)); store = masm.ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ false, HeapReg, ptr, value.low); masm.append(mir->access(), store.getOffset(), masm.framePushed()); masm.as_add(ptr, ptr, Imm8(INT64HIGH_OFFSET)); store = masm.ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ true, HeapReg, ptr, value.high); masm.append(mir->access(), store.getOffset(), masm.framePushed()); } else { AnyRegister value = ToAnyRegister(lir->getOperand(lir->ValueIndex)); if (value.isFloat()) { ScratchRegisterScope scratch(masm); FloatRegister val = value.fpu(); MOZ_ASSERT((byteSize == 4) == val.isSingle()); masm.ma_add(HeapReg, ptr, scratch); store = masm.ma_vstr(val, Operand(Address(scratch, 0)).toVFPAddr()); masm.append(mir->access(), store.getOffset(), masm.framePushed()); } else { bool isSigned = type == Scalar::Uint32 || type == Scalar::Int32; // see AsmJSStoreHeap; Register val = value.gpr(); store = masm.ma_dataTransferN(IsStore, 8 * byteSize /* bits */, isSigned, HeapReg, ptr, val); masm.append(mir->access(), store.getOffset(), masm.framePushed()); } } masm.memoryBarrier(mir->access().barrierAfter()); } void CodeGeneratorARM::visitWasmStore(LWasmStore* lir) { emitWasmStore(lir); } void CodeGeneratorARM::visitWasmStoreI64(LWasmStoreI64* lir) { emitWasmStore(lir); } template<typename T> void CodeGeneratorARM::emitWasmUnalignedStore(T* lir) { const MWasmStore* mir = lir->mir(); uint32_t offset = mir->access().offset(); MOZ_ASSERT(offset < wasm::OffsetGuardLimit); Register ptr = ToRegister(lir->ptrCopy()); if (offset) { ScratchRegisterScope scratch(masm); masm.ma_add(Imm32(offset), ptr, scratch); } // Add HeapReg to ptr, so we can use base+index addressing in the byte loads. masm.ma_add(HeapReg, ptr); MIRType mirType = mir->value()->type(); masm.memoryBarrier(mir->access().barrierAfter()); Register val = ToRegister(lir->valueHelper()); if (IsFloatingPointType(mirType)) { masm.ma_vxfer(ToFloatRegister(lir->getOperand(LWasmUnalignedStore::ValueIndex)), val); } else if (mirType == MIRType::Int64) { Register64 input = ToRegister64(lir->getInt64Operand(LWasmUnalignedStoreI64::ValueIndex)); if (input.low != val) masm.ma_mov(input.low, val); } unsigned byteSize = mir->access().byteSize(); masm.emitUnalignedStore(Min(byteSize, 4u), ptr, val); if (byteSize > 4) { // It's a double or an int64 load. // Load the high 32 bits when counter == 4. if (IsFloatingPointType(mirType)) { FloatRegister fp = ToFloatRegister(lir->getOperand(LWasmUnalignedStore::ValueIndex)); MOZ_ASSERT(fp.isDouble()); ScratchRegisterScope scratch(masm); masm.ma_vxfer(fp, scratch, val); } else { MOZ_ASSERT(mirType == MIRType::Int64); masm.ma_mov(ToRegister64(lir->getInt64Operand(LWasmUnalignedStoreI64::ValueIndex)).high, val); } masm.emitUnalignedStore(4, ptr, val, /* offset */ 4); } masm.memoryBarrier(mir->access().barrierBefore()); } void CodeGeneratorARM::visitWasmUnalignedStore(LWasmUnalignedStore* lir) { emitWasmUnalignedStore(lir); } void CodeGeneratorARM::visitWasmUnalignedStoreI64(LWasmUnalignedStoreI64* lir) { emitWasmUnalignedStore(lir); } void CodeGeneratorARM::visitAsmJSStoreHeap(LAsmJSStoreHeap* ins) { const MAsmJSStoreHeap* mir = ins->mir(); MOZ_ASSERT(mir->offset() == 0); const LAllocation* ptr = ins->ptr(); bool isSigned; int size; bool isFloat = false; switch (mir->accessType()) { case Scalar::Int8: case Scalar::Uint8: isSigned = false; size = 8; break; case Scalar::Int16: case Scalar::Uint16: isSigned = false; size = 16; break; case Scalar::Int32: case Scalar::Uint32: isSigned = true; size = 32; break; case Scalar::Float64: isFloat = true; size = 64; break; case Scalar::Float32: isFloat = true; size = 32; break; default: MOZ_CRASH("unexpected array type"); } if (ptr->isConstant()) { MOZ_ASSERT(!mir->needsBoundsCheck()); int32_t ptrImm = ptr->toConstant()->toInt32(); MOZ_ASSERT(ptrImm >= 0); if (isFloat) { VFPRegister vd(ToFloatRegister(ins->value())); Address addr(HeapReg, ptrImm); if (size == 32) masm.storeFloat32(vd, addr); else masm.storeDouble(vd, addr); } else { ScratchRegisterScope scratch(masm); masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, Imm32(ptrImm), ToRegister(ins->value()), scratch, Offset, Assembler::Always); } } else { Register ptrReg = ToRegister(ptr); Assembler::Condition cond = Assembler::Always; if (mir->needsBoundsCheck()) { BufferOffset cmp = masm.as_cmp(ptrReg, Imm8(0)); masm.append(wasm::BoundsCheck(cmp.getOffset())); cond = Assembler::Below; } if (isFloat) { ScratchRegisterScope scratch(masm); FloatRegister value = ToFloatRegister(ins->value()); if (size == 32) value = value.singleOverlay(); masm.ma_vstr(value, HeapReg, ptrReg, scratch, 0, Assembler::Below); } else { ScratchRegisterScope scratch(masm); Register value = ToRegister(ins->value()); masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, ptrReg, value, scratch, Offset, cond); } } } void CodeGeneratorARM::visitAsmJSCompareExchangeHeap(LAsmJSCompareExchangeHeap* ins) { MAsmJSCompareExchangeHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); Scalar::Type vt = mir->access().type(); const LAllocation* ptr = ins->ptr(); Register ptrReg = ToRegister(ptr); BaseIndex srcAddr(HeapReg, ptrReg, TimesOne); MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); Register oldval = ToRegister(ins->oldValue()); Register newval = ToRegister(ins->newValue()); masm.compareExchangeToTypedIntArray(vt == Scalar::Uint32 ? Scalar::Int32 : vt, srcAddr, oldval, newval, InvalidReg, ToAnyRegister(ins->output())); } void CodeGeneratorARM::visitAsmJSCompareExchangeCallout(LAsmJSCompareExchangeCallout* ins) { const MAsmJSCompareExchangeHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); Register ptr = ToRegister(ins->ptr()); Register oldval = ToRegister(ins->oldval()); Register newval = ToRegister(ins->newval()); Register tls = ToRegister(ins->tls()); Register instance = ToRegister(ins->getTemp(0)); Register viewType = ToRegister(ins->getTemp(1)); MOZ_ASSERT(ToRegister(ins->output()) == ReturnReg); masm.loadPtr(Address(tls, offsetof(wasm::TlsData, instance)), instance); masm.ma_mov(Imm32(mir->access().type()), viewType); masm.setupAlignedABICall(); masm.passABIArg(instance); masm.passABIArg(viewType); masm.passABIArg(ptr); masm.passABIArg(oldval); masm.passABIArg(newval); masm.callWithABI(wasm::SymbolicAddress::AtomicCmpXchg); } void CodeGeneratorARM::visitAsmJSAtomicExchangeHeap(LAsmJSAtomicExchangeHeap* ins) { MAsmJSAtomicExchangeHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); Scalar::Type vt = mir->access().type(); Register ptrReg = ToRegister(ins->ptr()); Register value = ToRegister(ins->value()); BaseIndex srcAddr(HeapReg, ptrReg, TimesOne); MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); masm.atomicExchangeToTypedIntArray(vt == Scalar::Uint32 ? Scalar::Int32 : vt, srcAddr, value, InvalidReg, ToAnyRegister(ins->output())); } void CodeGeneratorARM::visitAsmJSAtomicExchangeCallout(LAsmJSAtomicExchangeCallout* ins) { const MAsmJSAtomicExchangeHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); Register ptr = ToRegister(ins->ptr()); Register value = ToRegister(ins->value()); Register tls = ToRegister(ins->tls()); Register instance = ToRegister(ins->getTemp(0)); Register viewType = ToRegister(ins->getTemp(1)); MOZ_ASSERT(ToRegister(ins->output()) == ReturnReg); masm.loadPtr(Address(tls, offsetof(wasm::TlsData, instance)), instance); masm.ma_mov(Imm32(mir->access().type()), viewType); masm.setupAlignedABICall(); masm.passABIArg(instance); masm.passABIArg(viewType); masm.passABIArg(ptr); masm.passABIArg(value); masm.callWithABI(wasm::SymbolicAddress::AtomicXchg); } void CodeGeneratorARM::visitAsmJSAtomicBinopHeap(LAsmJSAtomicBinopHeap* ins) { MAsmJSAtomicBinopHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); MOZ_ASSERT(mir->hasUses()); Scalar::Type vt = mir->access().type(); Register ptrReg = ToRegister(ins->ptr()); Register flagTemp = ToRegister(ins->flagTemp()); const LAllocation* value = ins->value(); AtomicOp op = mir->operation(); MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); BaseIndex srcAddr(HeapReg, ptrReg, TimesOne); if (value->isConstant()) { atomicBinopToTypedIntArray(op, vt == Scalar::Uint32 ? Scalar::Int32 : vt, Imm32(ToInt32(value)), srcAddr, flagTemp, InvalidReg, ToAnyRegister(ins->output())); } else { atomicBinopToTypedIntArray(op, vt == Scalar::Uint32 ? Scalar::Int32 : vt, ToRegister(value), srcAddr, flagTemp, InvalidReg, ToAnyRegister(ins->output())); } } void CodeGeneratorARM::visitAsmJSAtomicBinopHeapForEffect(LAsmJSAtomicBinopHeapForEffect* ins) { MAsmJSAtomicBinopHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); MOZ_ASSERT(!mir->hasUses()); Scalar::Type vt = mir->access().type(); Register ptrReg = ToRegister(ins->ptr()); Register flagTemp = ToRegister(ins->flagTemp()); const LAllocation* value = ins->value(); AtomicOp op = mir->operation(); MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); BaseIndex srcAddr(HeapReg, ptrReg, TimesOne); if (value->isConstant()) atomicBinopToTypedIntArray(op, vt, Imm32(ToInt32(value)), srcAddr, flagTemp); else atomicBinopToTypedIntArray(op, vt, ToRegister(value), srcAddr, flagTemp); } void CodeGeneratorARM::visitAsmJSAtomicBinopCallout(LAsmJSAtomicBinopCallout* ins) { const MAsmJSAtomicBinopHeap* mir = ins->mir(); MOZ_ASSERT(mir->access().offset() == 0); Register ptr = ToRegister(ins->ptr()); Register value = ToRegister(ins->value()); Register tls = ToRegister(ins->tls()); Register instance = ToRegister(ins->getTemp(0)); Register viewType = ToRegister(ins->getTemp(1)); masm.loadPtr(Address(tls, offsetof(wasm::TlsData, instance)), instance); masm.move32(Imm32(mir->access().type()), viewType); masm.setupAlignedABICall(); masm.passABIArg(instance); masm.passABIArg(viewType); masm.passABIArg(ptr); masm.passABIArg(value); switch (mir->operation()) { case AtomicFetchAddOp: masm.callWithABI(wasm::SymbolicAddress::AtomicFetchAdd); break; case AtomicFetchSubOp: masm.callWithABI(wasm::SymbolicAddress::AtomicFetchSub); break; case AtomicFetchAndOp: masm.callWithABI(wasm::SymbolicAddress::AtomicFetchAnd); break; case AtomicFetchOrOp: masm.callWithABI(wasm::SymbolicAddress::AtomicFetchOr); break; case AtomicFetchXorOp: masm.callWithABI(wasm::SymbolicAddress::AtomicFetchXor); break; default: MOZ_CRASH("Unknown op"); } } void CodeGeneratorARM::visitWasmStackArg(LWasmStackArg* ins) { const MWasmStackArg* mir = ins->mir(); Address dst(StackPointer, mir->spOffset()); ScratchRegisterScope scratch(masm); SecondScratchRegisterScope scratch2(masm); if (ins->arg()->isConstant()) { masm.ma_mov(Imm32(ToInt32(ins->arg())), scratch); masm.ma_str(scratch, dst, scratch2); } else { if (ins->arg()->isGeneralReg()) masm.ma_str(ToRegister(ins->arg()), dst, scratch); else masm.ma_vstr(ToFloatRegister(ins->arg()), dst, scratch); } } void CodeGeneratorARM::visitUDiv(LUDiv* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); Label done; generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir()); masm.ma_udiv(lhs, rhs, output); // Check for large unsigned result - represent as double. if (!ins->mir()->isTruncated()) { MOZ_ASSERT(ins->mir()->fallible()); masm.as_cmp(output, Imm8(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); } // Check for non-zero remainder if not truncating to int. if (!ins->mir()->canTruncateRemainder()) { MOZ_ASSERT(ins->mir()->fallible()); { ScratchRegisterScope scratch(masm); masm.ma_mul(rhs, output, scratch); masm.ma_cmp(scratch, lhs); } bailoutIf(Assembler::NotEqual, ins->snapshot()); } if (done.used()) masm.bind(&done); } void CodeGeneratorARM::visitUMod(LUMod* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); Label done; generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir()); { ScratchRegisterScope scratch(masm); masm.ma_umod(lhs, rhs, output, scratch); } // Check for large unsigned result - represent as double. if (!ins->mir()->isTruncated()) { MOZ_ASSERT(ins->mir()->fallible()); masm.as_cmp(output, Imm8(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); } if (done.used()) masm.bind(&done); } template<class T> void CodeGeneratorARM::generateUDivModZeroCheck(Register rhs, Register output, Label* done, LSnapshot* snapshot, T* mir) { if (!mir) return; if (mir->canBeDivideByZero()) { masm.as_cmp(rhs, Imm8(0)); if (mir->isTruncated()) { if (mir->trapOnError()) { masm.ma_b(trap(mir, wasm::Trap::IntegerDivideByZero), Assembler::Equal); } else { Label skip; masm.ma_b(&skip, Assembler::NotEqual); // Infinity|0 == 0 masm.ma_mov(Imm32(0), output); masm.ma_b(done); masm.bind(&skip); } } else { // Bailout for divide by zero MOZ_ASSERT(mir->fallible()); bailoutIf(Assembler::Equal, snapshot); } } } void CodeGeneratorARM::visitSoftUDivOrMod(LSoftUDivOrMod* ins) { Register lhs = ToRegister(ins->lhs()); Register rhs = ToRegister(ins->rhs()); Register output = ToRegister(ins->output()); MOZ_ASSERT(lhs == r0); MOZ_ASSERT(rhs == r1); MOZ_ASSERT(ins->mirRaw()->isDiv() || ins->mirRaw()->isMod()); MOZ_ASSERT_IF(ins->mirRaw()->isDiv(), output == r0); MOZ_ASSERT_IF(ins->mirRaw()->isMod(), output == r1); Label done; MDiv* div = ins->mir()->isDiv() ? ins->mir()->toDiv() : nullptr; MMod* mod = !div ? ins->mir()->toMod() : nullptr; generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), div); generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), mod); masm.setupAlignedABICall(); masm.passABIArg(lhs); masm.passABIArg(rhs); if (gen->compilingWasm()) masm.callWithABI(wasm::SymbolicAddress::aeabi_uidivmod); else masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, __aeabi_uidivmod)); // uidivmod returns the quotient in r0, and the remainder in r1. if (div && !div->canTruncateRemainder()) { MOZ_ASSERT(div->fallible()); masm.as_cmp(r1, Imm8(0)); bailoutIf(Assembler::NonZero, ins->snapshot()); } // Bailout for big unsigned results if ((div && !div->isTruncated()) || (mod && !mod->isTruncated())) { DebugOnly<bool> isFallible = (div && div->fallible()) || (mod && mod->fallible()); MOZ_ASSERT(isFallible); masm.as_cmp(output, Imm8(0)); bailoutIf(Assembler::LessThan, ins->snapshot()); } masm.bind(&done); } void CodeGeneratorARM::visitEffectiveAddress(LEffectiveAddress* ins) { const MEffectiveAddress* mir = ins->mir(); Register base = ToRegister(ins->base()); Register index = ToRegister(ins->index()); Register output = ToRegister(ins->output()); ScratchRegisterScope scratch(masm); masm.as_add(output, base, lsl(index, mir->scale())); masm.ma_add(Imm32(mir->displacement()), output, scratch); } void CodeGeneratorARM::visitWasmLoadGlobalVar(LWasmLoadGlobalVar* ins) { const MWasmLoadGlobalVar* mir = ins->mir(); unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias; ScratchRegisterScope scratch(masm); if (mir->type() == MIRType::Int32) { masm.ma_dtr(IsLoad, GlobalReg, Imm32(addr), ToRegister(ins->output()), scratch); } else if (mir->type() == MIRType::Float32) { VFPRegister vd(ToFloatRegister(ins->output())); masm.ma_vldr(Address(GlobalReg, addr), vd.singleOverlay(), scratch); } else { MOZ_ASSERT(mir->type() == MIRType::Double); masm.ma_vldr(Address(GlobalReg, addr), ToFloatRegister(ins->output()), scratch); } } void CodeGeneratorARM::visitWasmLoadGlobalVarI64(LWasmLoadGlobalVarI64* ins) { const MWasmLoadGlobalVar* mir = ins->mir(); unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias; MOZ_ASSERT(mir->type() == MIRType::Int64); Register64 output = ToOutRegister64(ins); ScratchRegisterScope scratch(masm); masm.ma_dtr(IsLoad, GlobalReg, Imm32(addr + INT64LOW_OFFSET), output.low, scratch); masm.ma_dtr(IsLoad, GlobalReg, Imm32(addr + INT64HIGH_OFFSET), output.high, scratch); } void CodeGeneratorARM::visitWasmStoreGlobalVar(LWasmStoreGlobalVar* ins) { const MWasmStoreGlobalVar* mir = ins->mir(); MIRType type = mir->value()->type(); ScratchRegisterScope scratch(masm); unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias; if (type == MIRType::Int32) { masm.ma_dtr(IsStore, GlobalReg, Imm32(addr), ToRegister(ins->value()), scratch); } else if (type == MIRType::Float32) { VFPRegister vd(ToFloatRegister(ins->value())); masm.ma_vstr(vd.singleOverlay(), Address(GlobalReg, addr), scratch); } else { MOZ_ASSERT(type == MIRType::Double); masm.ma_vstr(ToFloatRegister(ins->value()), Address(GlobalReg, addr), scratch); } } void CodeGeneratorARM::visitWasmStoreGlobalVarI64(LWasmStoreGlobalVarI64* ins) { const MWasmStoreGlobalVar* mir = ins->mir(); unsigned addr = mir->globalDataOffset() - WasmGlobalRegBias; MOZ_ASSERT (mir->value()->type() == MIRType::Int64); Register64 input = ToRegister64(ins->value()); ScratchRegisterScope scratch(masm); masm.ma_dtr(IsStore, GlobalReg, Imm32(addr + INT64LOW_OFFSET), input.low, scratch); masm.ma_dtr(IsStore, GlobalReg, Imm32(addr + INT64HIGH_OFFSET), input.high, scratch); } void CodeGeneratorARM::visitNegI(LNegI* ins) { Register input = ToRegister(ins->input()); masm.ma_neg(input, ToRegister(ins->output())); } void CodeGeneratorARM::visitNegD(LNegD* ins) { FloatRegister input = ToFloatRegister(ins->input()); masm.ma_vneg(input, ToFloatRegister(ins->output())); } void CodeGeneratorARM::visitNegF(LNegF* ins) { FloatRegister input = ToFloatRegister(ins->input()); masm.ma_vneg_f32(input, ToFloatRegister(ins->output())); } void CodeGeneratorARM::visitMemoryBarrier(LMemoryBarrier* ins) { masm.memoryBarrier(ins->type()); } void CodeGeneratorARM::setReturnDoubleRegs(LiveRegisterSet* regs) { MOZ_ASSERT(ReturnFloat32Reg.code_ == FloatRegisters::s0); MOZ_ASSERT(ReturnDoubleReg.code_ == FloatRegisters::s0); FloatRegister s1 = {FloatRegisters::s1, VFPRegister::Single}; regs->add(ReturnFloat32Reg); regs->add(s1); regs->add(ReturnDoubleReg); } void CodeGeneratorARM::visitWasmTruncateToInt32(LWasmTruncateToInt32* lir) { auto input = ToFloatRegister(lir->input()); auto output = ToRegister(lir->output()); MWasmTruncateToInt32* mir = lir->mir(); MIRType fromType = mir->input()->type(); auto* ool = new(alloc()) OutOfLineWasmTruncateCheck(mir, input); addOutOfLineCode(ool, mir); masm.wasmTruncateToInt32(input, output, fromType, mir->isUnsigned(), ool->entry()); masm.bind(ool->rejoin()); } void CodeGeneratorARM::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) { FloatRegister input = ToFloatRegister(lir->input()); FloatRegister inputDouble = input; Register64 output = ToOutRegister64(lir); MWasmTruncateToInt64* mir = lir->mir(); MIRType fromType = mir->input()->type(); auto* ool = new(alloc()) OutOfLineWasmTruncateCheck(mir, input); addOutOfLineCode(ool, mir); ScratchDoubleScope scratchScope(masm); if (fromType == MIRType::Float32) { inputDouble = ScratchDoubleReg; masm.convertFloat32ToDouble(input, inputDouble); } masm.Push(input); masm.setupUnalignedABICall(output.high); masm.passABIArg(inputDouble, MoveOp::DOUBLE); if (lir->mir()->isUnsigned()) masm.callWithABI(wasm::SymbolicAddress::TruncateDoubleToUint64); else masm.callWithABI(wasm::SymbolicAddress::TruncateDoubleToInt64); masm.Pop(input); ScratchRegisterScope scratch(masm); masm.ma_cmp(output.high, Imm32(0x80000000), scratch); masm.as_cmp(output.low, Imm8(0x00000000), Assembler::Equal); masm.ma_b(ool->entry(), Assembler::Equal); masm.bind(ool->rejoin()); MOZ_ASSERT(ReturnReg64 == output); } void CodeGeneratorARM::visitOutOfLineWasmTruncateCheck(OutOfLineWasmTruncateCheck* ool) { masm.outOfLineWasmTruncateToIntCheck(ool->input(), ool->fromType(), ool->toType(), ool->isUnsigned(), ool->rejoin(), ool->trapOffset()); } void CodeGeneratorARM::visitInt64ToFloatingPointCall(LInt64ToFloatingPointCall* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); FloatRegister output = ToFloatRegister(lir->output()); MInt64ToFloatingPoint* mir = lir->mir(); MIRType toType = mir->type(); // We are free to clobber all registers, since this is a call instruction. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); regs.take(input.low); regs.take(input.high); Register temp = regs.takeAny(); masm.setupUnalignedABICall(temp); masm.passABIArg(input.high); masm.passABIArg(input.low); if (lir->mir()->isUnsigned()) masm.callWithABI(wasm::SymbolicAddress::Uint64ToFloatingPoint, MoveOp::DOUBLE); else masm.callWithABI(wasm::SymbolicAddress::Int64ToFloatingPoint, MoveOp::DOUBLE); MOZ_ASSERT_IF(toType == MIRType::Double, output == ReturnDoubleReg); if (toType == MIRType::Float32) { MOZ_ASSERT(output == ReturnFloat32Reg); masm.convertDoubleToFloat32(ReturnDoubleReg, output); } } void CodeGeneratorARM::visitCopySignF(LCopySignF* ins) { FloatRegister lhs = ToFloatRegister(ins->getOperand(0)); FloatRegister rhs = ToFloatRegister(ins->getOperand(1)); FloatRegister output = ToFloatRegister(ins->getDef(0)); Register lhsi = ToRegister(ins->getTemp(0)); Register rhsi = ToRegister(ins->getTemp(1)); masm.ma_vxfer(lhs, lhsi); masm.ma_vxfer(rhs, rhsi); ScratchRegisterScope scratch(masm); // Clear lhs's sign. masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch); // Keep rhs's sign. masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch); // Combine. masm.ma_orr(lhsi, rhsi, rhsi); masm.ma_vxfer(rhsi, output); } void CodeGeneratorARM::visitCopySignD(LCopySignD* ins) { FloatRegister lhs = ToFloatRegister(ins->getOperand(0)); FloatRegister rhs = ToFloatRegister(ins->getOperand(1)); FloatRegister output = ToFloatRegister(ins->getDef(0)); Register lhsi = ToRegister(ins->getTemp(0)); Register rhsi = ToRegister(ins->getTemp(1)); // Manipulate high words of double inputs. masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore, Assembler::Always, 1); masm.as_vxfer(rhsi, InvalidReg, rhs, Assembler::FloatToCore, Assembler::Always, 1); ScratchRegisterScope scratch(masm); // Clear lhs's sign. masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch); // Keep rhs's sign. masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch); // Combine. masm.ma_orr(lhsi, rhsi, rhsi); // Reconstruct the output. masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore, Assembler::Always, 0); masm.ma_vxfer(lhsi, rhsi, output); } void CodeGeneratorARM::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) { const LInt64Allocation& input = lir->getInt64Operand(0); Register output = ToRegister(lir->output()); if (lir->mir()->bottomHalf()) masm.move32(ToRegister(input.low()), output); else masm.move32(ToRegister(input.high()), output); } void CodeGeneratorARM::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) { Register64 output = ToOutRegister64(lir); MOZ_ASSERT(ToRegister(lir->input()) == output.low); if (lir->mir()->isUnsigned()) masm.ma_mov(Imm32(0), output.high); else masm.ma_asr(Imm32(31), output.low, output.high); } void CodeGeneratorARM::visitDivOrModI64(LDivOrModI64* lir) { Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs)); Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs)); Register64 output = ToOutRegister64(lir); MOZ_ASSERT(output == ReturnReg64); // All inputs are useAtStart for a call instruction. As a result we cannot // ask for a non-aliasing temp. Using the following to get such a temp. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); regs.take(lhs.low); regs.take(lhs.high); if (lhs != rhs) { regs.take(rhs.low); regs.take(rhs.high); } Register temp = regs.takeAny(); Label done; // Handle divide by zero. if (lir->canBeDivideByZero()) masm.branchTest64(Assembler::Zero, rhs, rhs, temp, trap(lir, wasm::Trap::IntegerDivideByZero)); // Handle an integer overflow exception from INT64_MIN / -1. if (lir->canBeNegativeOverflow()) { Label notmin; masm.branch64(Assembler::NotEqual, lhs, Imm64(INT64_MIN), ¬min); masm.branch64(Assembler::NotEqual, rhs, Imm64(-1), ¬min); if (lir->mir()->isMod()) masm.xor64(output, output); else masm.jump(trap(lir, wasm::Trap::IntegerOverflow)); masm.jump(&done); masm.bind(¬min); } masm.setupUnalignedABICall(temp); masm.passABIArg(lhs.high); masm.passABIArg(lhs.low); masm.passABIArg(rhs.high); masm.passABIArg(rhs.low); MOZ_ASSERT(gen->compilingWasm()); if (lir->mir()->isMod()) masm.callWithABI(wasm::SymbolicAddress::ModI64); else masm.callWithABI(wasm::SymbolicAddress::DivI64); MOZ_ASSERT(ReturnReg64 == output); masm.bind(&done); } void CodeGeneratorARM::visitUDivOrModI64(LUDivOrModI64* lir) { Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs)); Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs)); MOZ_ASSERT(ToOutRegister64(lir) == ReturnReg64); // All inputs are useAtStart for a call instruction. As a result we cannot // ask for a non-aliasing temp. Using the following to get such a temp. AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); regs.take(lhs.low); regs.take(lhs.high); if (lhs != rhs) { regs.take(rhs.low); regs.take(rhs.high); } Register temp = regs.takeAny(); // Prevent divide by zero. if (lir->canBeDivideByZero()) masm.branchTest64(Assembler::Zero, rhs, rhs, temp, trap(lir, wasm::Trap::IntegerDivideByZero)); masm.setupUnalignedABICall(temp); masm.passABIArg(lhs.high); masm.passABIArg(lhs.low); masm.passABIArg(rhs.high); masm.passABIArg(rhs.low); MOZ_ASSERT(gen->compilingWasm()); if (lir->mir()->isMod()) masm.callWithABI(wasm::SymbolicAddress::UModI64); else masm.callWithABI(wasm::SymbolicAddress::UDivI64); } void CodeGeneratorARM::visitCompareI64(LCompareI64* lir) { MCompare* mir = lir->mir(); MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || mir->compareType() == MCompare::Compare_UInt64); const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); Register64 lhsRegs = ToRegister64(lhs); Register output = ToRegister(lir->output()); bool isSigned = mir->compareType() == MCompare::Compare_Int64; Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned); Label done; masm.move32(Imm32(1), output); if (IsConstant(rhs)) { Imm64 imm = Imm64(ToInt64(rhs)); masm.branch64(condition, lhsRegs, imm, &done); } else { Register64 rhsRegs = ToRegister64(rhs); masm.branch64(condition, lhsRegs, rhsRegs, &done); } masm.move32(Imm32(0), output); masm.bind(&done); } void CodeGeneratorARM::visitCompareI64AndBranch(LCompareI64AndBranch* lir) { MCompare* mir = lir->cmpMir(); MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || mir->compareType() == MCompare::Compare_UInt64); const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); Register64 lhsRegs = ToRegister64(lhs); bool isSigned = mir->compareType() == MCompare::Compare_Int64; Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned); Label* trueLabel = getJumpLabelForBranch(lir->ifTrue()); Label* falseLabel = getJumpLabelForBranch(lir->ifFalse()); if (isNextBlock(lir->ifFalse()->lir())) { falseLabel = nullptr; } else if (isNextBlock(lir->ifTrue()->lir())) { condition = Assembler::InvertCondition(condition); trueLabel = falseLabel; falseLabel = nullptr; } if (IsConstant(rhs)) { Imm64 imm = Imm64(ToInt64(rhs)); masm.branch64(condition, lhsRegs, imm, trueLabel, falseLabel); } else { Register64 rhsRegs = ToRegister64(rhs); masm.branch64(condition, lhsRegs, rhsRegs, trueLabel, falseLabel); } } void CodeGeneratorARM::visitShiftI64(LShiftI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LShiftI64::Lhs); LAllocation* rhs = lir->getOperand(LShiftI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); if (rhs->isConstant()) { int32_t shift = int32_t(rhs->toConstant()->toInt64() & 0x3F); switch (lir->bitop()) { case JSOP_LSH: if (shift) masm.lshift64(Imm32(shift), ToRegister64(lhs)); break; case JSOP_RSH: if (shift) masm.rshift64Arithmetic(Imm32(shift), ToRegister64(lhs)); break; case JSOP_URSH: if (shift) masm.rshift64(Imm32(shift), ToRegister64(lhs)); break; default: MOZ_CRASH("Unexpected shift op"); } return; } switch (lir->bitop()) { case JSOP_LSH: masm.lshift64(ToRegister(rhs), ToRegister64(lhs)); break; case JSOP_RSH: masm.rshift64Arithmetic(ToRegister(rhs), ToRegister64(lhs)); break; case JSOP_URSH: masm.rshift64(ToRegister(rhs), ToRegister64(lhs)); break; default: MOZ_CRASH("Unexpected shift op"); } } void CodeGeneratorARM::visitBitOpI64(LBitOpI64* lir) { const LInt64Allocation lhs = lir->getInt64Operand(LBitOpI64::Lhs); const LInt64Allocation rhs = lir->getInt64Operand(LBitOpI64::Rhs); MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); switch (lir->bitop()) { case JSOP_BITOR: if (IsConstant(rhs)) masm.or64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.or64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; case JSOP_BITXOR: if (IsConstant(rhs)) masm.xor64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.xor64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; case JSOP_BITAND: if (IsConstant(rhs)) masm.and64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); else masm.and64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); break; default: MOZ_CRASH("unexpected binary opcode"); } } void CodeGeneratorARM::visitRotateI64(LRotateI64* lir) { MRotate* mir = lir->mir(); LAllocation* count = lir->count(); Register64 input = ToRegister64(lir->input()); Register64 output = ToOutRegister64(lir); Register temp = ToTempRegisterOrInvalid(lir->temp()); if (count->isConstant()) { int32_t c = int32_t(count->toConstant()->toInt64() & 0x3F); if (!c) { masm.move64(input, output); return; } if (mir->isLeftRotate()) masm.rotateLeft64(Imm32(c), input, output, temp); else masm.rotateRight64(Imm32(c), input, output, temp); } else { if (mir->isLeftRotate()) masm.rotateLeft64(ToRegister(count), input, output, temp); else masm.rotateRight64(ToRegister(count), input, output, temp); } } void CodeGeneratorARM::visitWasmStackArgI64(LWasmStackArgI64* ins) { const MWasmStackArg* mir = ins->mir(); Address dst(StackPointer, mir->spOffset()); if (IsConstant(ins->arg())) masm.store64(Imm64(ToInt64(ins->arg())), dst); else masm.store64(ToRegister64(ins->arg()), dst); } void CodeGeneratorARM::visitWasmSelectI64(LWasmSelectI64* lir) { Register cond = ToRegister(lir->condExpr()); const LInt64Allocation falseExpr = lir->falseExpr(); Register64 out = ToOutRegister64(lir); MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out, "true expr is reused for input"); masm.as_cmp(cond, Imm8(0)); if (falseExpr.low().isRegister()) { masm.ma_mov(ToRegister(falseExpr.low()), out.low, LeaveCC, Assembler::Equal); masm.ma_mov(ToRegister(falseExpr.high()), out.high, LeaveCC, Assembler::Equal); } else { ScratchRegisterScope scratch(masm); masm.ma_ldr(ToAddress(falseExpr.low()), out.low, scratch, Offset, Assembler::Equal); masm.ma_ldr(ToAddress(falseExpr.high()), out.high, scratch, Offset, Assembler::Equal); } } void CodeGeneratorARM::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) { MOZ_ASSERT(lir->mir()->type() == MIRType::Double); MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64); Register64 input = ToRegister64(lir->getInt64Operand(0)); FloatRegister output = ToFloatRegister(lir->output()); masm.ma_vxfer(input.low, input.high, output); } void CodeGeneratorARM::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) { MOZ_ASSERT(lir->mir()->type() == MIRType::Int64); MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double); FloatRegister input = ToFloatRegister(lir->getOperand(0)); Register64 output = ToOutRegister64(lir); masm.ma_vxfer(input, output.low, output.high); } void CodeGeneratorARM::visitPopcntI64(LPopcntI64* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); Register64 output = ToOutRegister64(lir); Register temp = ToRegister(lir->getTemp(0)); masm.popcnt64(input, output, temp); } void CodeGeneratorARM::visitClzI64(LClzI64* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); Register64 output = ToOutRegister64(lir); masm.clz64(input, output.low); masm.move32(Imm32(0), output.high); } void CodeGeneratorARM::visitCtzI64(LCtzI64* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); Register64 output = ToOutRegister64(lir); masm.ctz64(input, output.low); masm.move32(Imm32(0), output.high); } void CodeGeneratorARM::visitTestI64AndBranch(LTestI64AndBranch* lir) { Register64 input = ToRegister64(lir->getInt64Operand(0)); masm.as_cmp(input.high, Imm8(0)); jumpToBlock(lir->ifTrue(), Assembler::NonZero); masm.as_cmp(input.low, Imm8(0)); emitBranch(Assembler::NonZero, lir->ifTrue(), lir->ifFalse()); }