// |jit-test| load(libdir + "asm.js"); load(libdir + "simd.js"); load(libdir + "asserts.js"); // Avoid pathological --ion-eager compile times due to bails in loops setJitCompilerOption('ion.warmup.trigger', 1000000); // Set to true to see more JS debugging spew const DEBUG = false; if (!isSimdAvailable() || typeof SIMD === 'undefined' || !isAsmJSCompilationAvailable()) { DEBUG && print("won't run tests as simd extensions aren't activated yet"); quit(0); } const RuntimeError = WebAssembly.RuntimeError; const INT32_MAX = Math.pow(2, 31) - 1; const INT32_MIN = INT32_MAX + 1 | 0; try { // Load / Store var IMPORTS = USE_ASM + 'var H=new glob.Uint8Array(heap); var i4=glob.SIMD.Int32x4; var ci4=i4.check; var load=i4.load; var store=i4.store;'; // Bad number of args assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load();} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3);} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3, 4, 5);} return f"); // Bad type of args assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(3, 5);} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, 5.0);} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0.;load(H, i);} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var H2=new glob.Int32Array(heap); function f(){var i=0;load(H2, i)} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var H2=42; function f(){var i=0;load(H2, i)} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;load(H2, i)} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "var f4=glob.SIMD.Float32x4; function f(){var i=0;var vec=f4(1,2,3,4); store(H, i, vec)} return f"); // Bad coercions of returned values assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;return load(H, i)|0;} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){var i=0;return +load(H, i);} return f"); // Literal index constants var buf = new ArrayBuffer(BUF_MIN); var SIZE_TA = BUF_MIN >> 2 var asI32 = new Int32Array(buf); asI32[SIZE_TA - 4] = 4; asI32[SIZE_TA - 3] = 3; asI32[SIZE_TA - 2] = 2; asI32[SIZE_TA - 1] = 1; assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, -1);} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1) + ");} return f"); assertAsmTypeFail('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1 - 15) + ");} return f"); asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f(){load(H, " + (INT32_MAX + 1 - 16) + ");} return f"); assertAsmLinkFail(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + (BUF_MIN - 15) + "));} return f"), this, {}, buf); assertEqX4(asmLink(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + (BUF_MIN - 16) + "));} return f"), this, {}, buf)(), [4, 3, 2, 1]); assertEqX4(asmLink(asmCompile('glob', 'ffi', 'heap', IMPORTS + "function f() {return ci4(load(H, " + BUF_MIN + " - 16 | 0));} return f"), this, {}, buf)(), [4, 3, 2, 1]); var CONSTANT_INDEX = 42; var CONSTANT_BYTE_INDEX = CONSTANT_INDEX << 2; var loadStoreCode = ` "use asm"; var H = new glob.Uint8Array(heap); var i4 = glob.SIMD.Int32x4; var i4load = i4.load; var i4store = i4.store; var ci4 = i4.check; var f4 = glob.SIMD.Float32x4; var f4load = f4.load; var f4store = f4.store; var cf4 = f4.check; function f32l(i) { i=i|0; return cf4(f4load(H, i|0)); } function f32lcst() { return cf4(f4load(H, ${CONSTANT_BYTE_INDEX})); } function f32s(i, vec) { i=i|0; vec=cf4(vec); f4store(H, i|0, vec); } function f32scst(vec) { vec=cf4(vec); f4store(H, ${CONSTANT_BYTE_INDEX}, vec); } function i32l(i) { i=i|0; return ci4(i4load(H, i|0)); } function i32lcst() { return ci4(i4load(H, ${CONSTANT_BYTE_INDEX})); } function i32s(i, vec) { i=i|0; vec=ci4(vec); i4store(H, i|0, vec); } function i32scst(vec) { vec=ci4(vec); i4store(H, ${CONSTANT_BYTE_INDEX}, vec); } function f32lbndcheck(i) { i=i|0; if ((i|0) > ${CONSTANT_BYTE_INDEX}) i=${CONSTANT_BYTE_INDEX}; if ((i|0) < 0) i = 0; return cf4(f4load(H, i|0)); } function f32sbndcheck(i, vec) { i=i|0; vec=cf4(vec); if ((i|0) > ${CONSTANT_BYTE_INDEX}) i=${CONSTANT_BYTE_INDEX}; if ((i|0) < 0) i = 0; return cf4(f4store(H, i|0, vec)); } return { f32l: f32l, f32lcst: f32lcst, f32s: f32s, f32scst: f32scst, f32lbndcheck: f32lbndcheck, f32sbndcheck: f32sbndcheck, i32l: i32l, i32lcst: i32lcst, i32s: i32s, i32scst: i32scst } `; const SIZE = 0x8000; var F32 = new Float32Array(SIZE); var reset = function() { for (var i = 0; i < SIZE; i++) F32[i] = i + 1; }; reset(); var buf = F32.buffer; var m = asmLink(asmCompile('glob', 'ffi', 'heap', loadStoreCode), this, null, buf); function slice(TA, i, n) { return Array.prototype.slice.call(TA, i, i + n); } // Float32x4.load function f32l(n) { return m.f32l((n|0) << 2 | 0); }; // Correct accesses assertEqX4(f32l(0), slice(F32, 0, 4)); assertEqX4(f32l(1), slice(F32, 1, 4)); assertEqX4(f32l(SIZE - 4), slice(F32, SIZE - 4, 4)); assertEqX4(m.f32lcst(), slice(F32, CONSTANT_INDEX, 4)); assertEqX4(m.f32lbndcheck(CONSTANT_BYTE_INDEX), slice(F32, CONSTANT_INDEX, 4)); // OOB assertThrowsInstanceOf(() => f32l(-1), RuntimeError); assertThrowsInstanceOf(() => f32l(SIZE), RuntimeError); assertThrowsInstanceOf(() => f32l(SIZE - 1), RuntimeError); assertThrowsInstanceOf(() => f32l(SIZE - 2), RuntimeError); assertThrowsInstanceOf(() => f32l(SIZE - 3), RuntimeError); var code = ` "use asm"; var f4 = glob.SIMD.Float32x4; var f4l = f4.load; var u8 = new glob.Uint8Array(heap); function g(x) { x = x|0; // set a constraint on the size of the heap var ptr = 0; ptr = u8[0xFFFF] | 0; // give a precise range to x x = (x>>0) > 5 ? 5 : x; x = (x>>0) < 0 ? 0 : x; // ptr value gets a precise range but the bounds check shouldn't get // eliminated. return f4l(u8, 0xFFFA + x | 0); } return g; `; assertThrowsInstanceOf(() => asmLink(asmCompile('glob', 'ffi', 'heap', code), this, {}, new ArrayBuffer(0x10000))(0), RuntimeError); // Float32x4.store function f32s(n, v) { return m.f32s((n|0) << 2 | 0, v); }; var vec = SIMD.Float32x4(5,6,7,8); var vec2 = SIMD.Float32x4(0,1,2,3); var vecWithNaN = SIMD.Float32x4(NaN, 2, NaN, 4); reset(); f32s(0, vec); assertEqX4(vec, slice(F32, 0, 4)); reset(); f32s(0, vec2); assertEqX4(vec2, slice(F32, 0, 4)); reset(); f32s(4, vec); assertEqX4(vec, slice(F32, 4, 4)); reset(); f32s(4, vecWithNaN); assertEqX4(vecWithNaN, slice(F32, 4, 4)); reset(); m.f32scst(vec2); assertEqX4(vec2, slice(F32, CONSTANT_INDEX, 4)); reset(); m.f32sbndcheck(CONSTANT_BYTE_INDEX, vec); assertEqX4(vec, slice(F32, CONSTANT_INDEX, 4)); // OOB reset(); assertThrowsInstanceOf(() => f32s(SIZE - 3, vec), RuntimeError); assertThrowsInstanceOf(() => f32s(SIZE - 2, vec), RuntimeError); assertThrowsInstanceOf(() => f32s(SIZE - 1, vec), RuntimeError); assertThrowsInstanceOf(() => f32s(SIZE, vec), RuntimeError); for (var i = 0; i < SIZE; i++) assertEq(F32[i], i + 1); // Int32x4.load var I32 = new Int32Array(buf); reset = function () { for (var i = 0; i < SIZE; i++) I32[i] = i + 1; }; reset(); function i32(n) { return m.i32l((n|0) << 2 | 0); }; // Correct accesses assertEqX4(i32(0), slice(I32, 0, 4)); assertEqX4(i32(1), slice(I32, 1, 4)); assertEqX4(i32(SIZE - 4), slice(I32, SIZE - 4, 4)); assertEqX4(m.i32lcst(), slice(I32, CONSTANT_INDEX, 4)); // OOB assertThrowsInstanceOf(() => i32(-1), RuntimeError); assertThrowsInstanceOf(() => i32(SIZE), RuntimeError); assertThrowsInstanceOf(() => i32(SIZE - 1), RuntimeError); assertThrowsInstanceOf(() => i32(SIZE - 2), RuntimeError); assertThrowsInstanceOf(() => i32(SIZE - 3), RuntimeError); // Int32x4.store function i32s(n, v) { return m.i32s((n|0) << 2 | 0, v); }; var vec = SIMD.Int32x4(5,6,7,8); var vec2 = SIMD.Int32x4(0,1,2,3); reset(); i32s(0, vec); assertEqX4(vec, slice(I32, 0, 4)); reset(); i32s(0, vec2); assertEqX4(vec2, slice(I32, 0, 4)); reset(); i32s(4, vec); assertEqX4(vec, slice(I32, 4, 4)); reset(); m.i32scst(vec2); assertEqX4(vec2, slice(I32, CONSTANT_INDEX, 4)); // OOB reset(); assertThrowsInstanceOf(() => i32s(SIZE - 3, vec), RuntimeError); assertThrowsInstanceOf(() => i32s(SIZE - 2, vec), RuntimeError); assertThrowsInstanceOf(() => i32s(SIZE - 1, vec), RuntimeError); assertThrowsInstanceOf(() => i32s(SIZE - 0, vec), RuntimeError); for (var i = 0; i < SIZE; i++) assertEq(I32[i], i + 1); // Partial loads and stores (function() { // Variable indexes function MakeCodeFor(typeName) { return ` "use asm"; var type = glob.SIMD.${typeName}; var c = type.check; var l1 = type.load1; var l2 = type.load2; var s1 = type.store1; var s2 = type.store2; var u8 = new glob.Uint8Array(heap); function load1(i) { i=i|0; return l1(u8, i); } function load2(i) { i=i|0; return l2(u8, i); } function loadCst1() { return l1(u8, 41 << 2); } function loadCst2() { return l2(u8, 41 << 2); } function store1(i, x) { i=i|0; x=c(x); return s1(u8, i, x); } function store2(i, x) { i=i|0; x=c(x); return s2(u8, i, x); } function storeCst1(x) { x=c(x); return s1(u8, 41 << 2, x); } function storeCst2(x) { x=c(x); return s2(u8, 41 << 2, x); } return { load1: load1, load2: load2, loadCst1: loadCst1, loadCst2: loadCst2, store1: store1, store2: store2, storeCst1: storeCst1, storeCst2: storeCst2, } `; } var SIZE = 0x10000; function TestPartialLoads(m, typedArray, x, y, z, w) { // Fill array with predictable values for (var i = 0; i < SIZE; i += 4) { typedArray[i] = x(i); typedArray[i + 1] = y(i); typedArray[i + 2] = z(i); typedArray[i + 3] = w(i); } // Test correct loads var i = 0, j = 0; // i in elems, j in bytes assertEqX4(m.load1(j), [x(i), 0, 0, 0]); assertEqX4(m.load2(j), [x(i), y(i), 0, 0]); j += 4; assertEqX4(m.load1(j), [y(i), 0, 0, 0]); assertEqX4(m.load2(j), [y(i), z(i), 0, 0]); j += 4; assertEqX4(m.load1(j), [z(i), 0, 0, 0]); assertEqX4(m.load2(j), [z(i), w(i), 0, 0]); j += 4; assertEqX4(m.load1(j), [w(i), 0, 0, 0]); assertEqX4(m.load2(j), [w(i), x(i+4), 0, 0]); j += 4; i += 4; assertEqX4(m.load1(j), [x(i), 0, 0, 0]); assertEqX4(m.load2(j), [x(i), y(i), 0, 0]); // Test loads with constant indexes (41) assertEqX4(m.loadCst1(), [y(40), 0, 0, 0]); assertEqX4(m.loadCst2(), [y(40), z(40), 0, 0]); // Test limit and OOB accesses assertEqX4(m.load1((SIZE - 1) << 2), [w(SIZE - 4), 0, 0, 0]); assertThrowsInstanceOf(() => m.load1(((SIZE - 1) << 2) + 1), RuntimeError); assertEqX4(m.load2((SIZE - 2) << 2), [z(SIZE - 4), w(SIZE - 4), 0, 0]); assertThrowsInstanceOf(() => m.load2(((SIZE - 2) << 2) + 1), RuntimeError); } // Partial stores function TestPartialStores(m, typedArray, typeName, x, y, z, w) { var val = SIMD[typeName](x, y, z, w); function Reset() { for (var i = 0; i < SIZE; i++) typedArray[i] = i + 1; } function CheckNotModified(low, high) { for (var i = low; i < high; i++) assertEq(typedArray[i], i + 1); } function TestStore1(i) { m.store1(i, val); CheckNotModified(0, i >> 2); assertEq(typedArray[i >> 2], x); CheckNotModified((i >> 2) + 1, SIZE); typedArray[i >> 2] = (i >> 2) + 1; } function TestStore2(i) { m.store2(i, val); CheckNotModified(0, i >> 2); assertEq(typedArray[i >> 2], x); assertEq(typedArray[(i >> 2) + 1], y); CheckNotModified((i >> 2) + 2, SIZE); typedArray[i >> 2] = (i >> 2) + 1; typedArray[(i >> 2) + 1] = (i >> 2) + 2; } function TestOOBStore(f) { assertThrowsInstanceOf(f, RuntimeError); CheckNotModified(0, SIZE); } Reset(); TestStore1(0); TestStore1(1 << 2); TestStore1(2 << 2); TestStore1(3 << 2); TestStore1(1337 << 2); var i = (SIZE - 1) << 2; TestStore1(i); TestOOBStore(() => m.store1(i + 1, val)); TestOOBStore(() => m.store1(-1, val)); TestStore2(0); TestStore2(1 << 2); TestStore2(2 << 2); TestStore2(3 << 2); TestStore2(1337 << 2); var i = (SIZE - 2) << 2; TestStore2(i); TestOOBStore(() => m.store2(i + 1, val)); TestOOBStore(() => m.store2(-1, val)); // Constant indexes (41) m.storeCst1(val); CheckNotModified(0, 41); assertEq(typedArray[41], x); CheckNotModified(42, SIZE); typedArray[41] = 42; m.storeCst2(val); CheckNotModified(0, 41); assertEq(typedArray[41], x); assertEq(typedArray[42], y); CheckNotModified(43, SIZE); typedArray[41] = 42; typedArray[42] = 43; } var f32 = new Float32Array(SIZE); var mFloat32x4 = asmLink(asmCompile('glob', 'ffi', 'heap', MakeCodeFor('Float32x4')), this, null, f32.buffer); TestPartialLoads(mFloat32x4, f32, (i) => i + 1, (i) => Math.fround(13.37), (i) => Math.fround(1/i), (i) => Math.fround(Math.sqrt(0x2000 - i))); TestPartialStores(mFloat32x4, f32, 'Float32x4', 42, -0, NaN, 0.1337); var i32 = new Int32Array(f32.buffer); var mInt32x4 = asmLink(asmCompile('glob', 'ffi', 'heap', MakeCodeFor('Int32x4')), this, null, i32.buffer); TestPartialLoads(mInt32x4, i32, (i) => i + 1 | 0, (i) => -i | 0, (i) => i * 2 | 0, (i) => 42); TestPartialStores(mInt32x4, i32, 'Int32x4', 42, -3, 13, 37); })(); } catch (e) { print('stack: ', e.stack); throw e }