/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "frontend/ParseNode-inl.h" #include "frontend/Parser.h" #include "jscntxtinlines.h" using namespace js; using namespace js::frontend; using mozilla::ArrayLength; using mozilla::IsFinite; #ifdef DEBUG void ParseNode::checkListConsistency() { MOZ_ASSERT(isArity(PN_LIST)); ParseNode** tail; uint32_t count = 0; if (pn_head) { ParseNode* last = pn_head; ParseNode* pn = last; while (pn) { last = pn; pn = pn->pn_next; count++; } tail = &last->pn_next; } else { tail = &pn_head; } MOZ_ASSERT(pn_tail == tail); MOZ_ASSERT(pn_count == count); } #endif /* Add |node| to |parser|'s free node list. */ void ParseNodeAllocator::freeNode(ParseNode* pn) { /* Catch back-to-back dup recycles. */ MOZ_ASSERT(pn != freelist); #ifdef DEBUG /* Poison the node, to catch attempts to use it without initializing it. */ memset(pn, 0xab, sizeof(*pn)); #endif pn->pn_next = freelist; freelist = pn; } namespace { /* * A work pool of ParseNodes. The work pool is a stack, chained together * by nodes' pn_next fields. We use this to avoid creating deep C++ stacks * when recycling deep parse trees. * * Since parse nodes are probably allocated in something close to the order * they appear in a depth-first traversal of the tree, making the work pool * a stack should give us pretty good locality. */ class NodeStack { public: NodeStack() : top(nullptr) { } bool empty() { return top == nullptr; } void push(ParseNode* pn) { pn->pn_next = top; top = pn; } /* Push the children of the PN_LIST node |pn| on the stack. */ void pushList(ParseNode* pn) { /* This clobbers pn->pn_head if the list is empty; should be okay. */ *pn->pn_tail = top; top = pn->pn_head; } ParseNode* pop() { MOZ_ASSERT(!empty()); ParseNode* hold = top; /* my kingdom for a prog1 */ top = top->pn_next; return hold; } private: ParseNode* top; }; } /* anonymous namespace */ enum class PushResult { Recyclable, CleanUpLater }; static PushResult PushCodeNodeChildren(ParseNode* node, NodeStack* stack) { MOZ_ASSERT(node->isArity(PN_CODE)); /* * Function nodes are linked into the function box tree, and may appear * on method lists. Both of those lists are singly-linked, so trying to * update them now could result in quadratic behavior when recycling * trees containing many functions; and the lists can be very long. So * we put off cleaning the lists up until just before function * analysis, when we call CleanFunctionList. * * In fact, we can't recycle the parse node yet, either: it may appear * on a method list, and reusing the node would corrupt that. Instead, * we clear its pn_funbox pointer to mark it as deleted; * CleanFunctionList recycles it as well. * * We do recycle the nodes around it, though, so we must clear pointers * to them to avoid leaving dangling references where someone can find * them. */ node->pn_funbox = nullptr; if (node->pn_body) stack->push(node->pn_body); node->pn_body = nullptr; return PushResult::CleanUpLater; } static PushResult PushNameNodeChildren(ParseNode* node, NodeStack* stack) { MOZ_ASSERT(node->isArity(PN_NAME)); if (node->pn_expr) stack->push(node->pn_expr); node->pn_expr = nullptr; return PushResult::Recyclable; } static PushResult PushScopeNodeChildren(ParseNode* node, NodeStack* stack) { MOZ_ASSERT(node->isArity(PN_SCOPE)); if (node->scopeBody()) stack->push(node->scopeBody()); node->setScopeBody(nullptr); return PushResult::Recyclable; } static PushResult PushListNodeChildren(ParseNode* node, NodeStack* stack) { MOZ_ASSERT(node->isArity(PN_LIST)); node->checkListConsistency(); stack->pushList(node); return PushResult::Recyclable; } static PushResult PushUnaryNodeChild(ParseNode* node, NodeStack* stack) { MOZ_ASSERT(node->isArity(PN_UNARY)); stack->push(node->pn_kid); return PushResult::Recyclable; } /* * Push the children of |pn| on |stack|. Return true if |pn| itself could be * safely recycled, or false if it must be cleaned later (pn_used and pn_defn * nodes, and all function nodes; see comments for CleanFunctionList in * SemanticAnalysis.cpp). Some callers want to free |pn|; others * (js::ParseNodeAllocator::prepareNodeForMutation) don't care about |pn|, and * just need to take care of its children. */ static PushResult PushNodeChildren(ParseNode* pn, NodeStack* stack) { switch (pn->getKind()) { // Trivial nodes that refer to no nodes, are referred to by nothing // but their parents, are never used, and are never a definition. case PNK_NOP: case PNK_STRING: case PNK_TEMPLATE_STRING: case PNK_REGEXP: case PNK_TRUE: case PNK_FALSE: case PNK_NULL: case PNK_RAW_UNDEFINED: case PNK_ELISION: case PNK_GENERATOR: case PNK_NUMBER: case PNK_BREAK: case PNK_CONTINUE: case PNK_DEBUGGER: case PNK_EXPORT_BATCH_SPEC: case PNK_OBJECT_PROPERTY_NAME: case PNK_POSHOLDER: MOZ_ASSERT(pn->isArity(PN_NULLARY)); return PushResult::Recyclable; // Nodes with a single non-null child. case PNK_TYPEOFNAME: case PNK_TYPEOFEXPR: case PNK_VOID: case PNK_NOT: case PNK_BITNOT: case PNK_THROW: case PNK_DELETENAME: case PNK_DELETEPROP: case PNK_DELETEELEM: case PNK_DELETEEXPR: case PNK_POS: case PNK_NEG: case PNK_PREINCREMENT: case PNK_POSTINCREMENT: case PNK_PREDECREMENT: case PNK_POSTDECREMENT: case PNK_COMPUTED_NAME: case PNK_ARRAYPUSH: case PNK_SPREAD: case PNK_MUTATEPROTO: case PNK_EXPORT: case PNK_SUPERBASE: return PushUnaryNodeChild(pn, stack); // Nodes with a single nullable child. case PNK_THIS: case PNK_SEMI: { MOZ_ASSERT(pn->isArity(PN_UNARY)); if (pn->pn_kid) stack->push(pn->pn_kid); return PushResult::Recyclable; } // Binary nodes with two non-null children. // All assignment and compound assignment nodes qualify. case PNK_ASSIGN: case PNK_ADDASSIGN: case PNK_SUBASSIGN: case PNK_BITORASSIGN: case PNK_BITXORASSIGN: case PNK_BITANDASSIGN: case PNK_LSHASSIGN: case PNK_RSHASSIGN: case PNK_URSHASSIGN: case PNK_MULASSIGN: case PNK_DIVASSIGN: case PNK_MODASSIGN: case PNK_POWASSIGN: // ...and a few others. case PNK_ELEM: case PNK_IMPORT_SPEC: case PNK_EXPORT_SPEC: case PNK_COLON: case PNK_SHORTHAND: case PNK_DOWHILE: case PNK_WHILE: case PNK_SWITCH: case PNK_CLASSMETHOD: case PNK_NEWTARGET: case PNK_SETTHIS: case PNK_FOR: case PNK_COMPREHENSIONFOR: case PNK_WITH: { MOZ_ASSERT(pn->isArity(PN_BINARY)); stack->push(pn->pn_left); stack->push(pn->pn_right); return PushResult::Recyclable; } // Default clauses are PNK_CASE but do not have case expressions. // Named class expressions do not have outer binding nodes. // So both are binary nodes with a possibly-null pn_left. case PNK_CASE: case PNK_CLASSNAMES: { MOZ_ASSERT(pn->isArity(PN_BINARY)); if (pn->pn_left) stack->push(pn->pn_left); stack->push(pn->pn_right); return PushResult::Recyclable; } // The child is an assignment of a PNK_GENERATOR node to the // '.generator' local, for a synthesized, prepended initial yield. case PNK_INITIALYIELD: { MOZ_ASSERT(pn->isArity(PN_UNARY)); MOZ_ASSERT(pn->pn_kid->isKind(PNK_ASSIGN) && pn->pn_kid->pn_left->isKind(PNK_NAME) && pn->pn_kid->pn_right->isKind(PNK_GENERATOR)); stack->push(pn->pn_kid); return PushResult::Recyclable; } // The child is the expression being yielded. case PNK_YIELD_STAR: case PNK_YIELD: case PNK_AWAIT: { MOZ_ASSERT(pn->isArity(PN_UNARY)); if (pn->pn_kid) stack->push(pn->pn_kid); return PushResult::Recyclable; } // A return node's child is what you'd expect: the return expression, // if any. case PNK_RETURN: { MOZ_ASSERT(pn->isArity(PN_UNARY)); if (pn->pn_kid) stack->push(pn->pn_kid); return PushResult::Recyclable; } // Import and export-from nodes have a list of specifiers on the left // and a module string on the right. case PNK_IMPORT: case PNK_EXPORT_FROM: { MOZ_ASSERT(pn->isArity(PN_BINARY)); MOZ_ASSERT_IF(pn->isKind(PNK_IMPORT), pn->pn_left->isKind(PNK_IMPORT_SPEC_LIST)); MOZ_ASSERT_IF(pn->isKind(PNK_EXPORT_FROM), pn->pn_left->isKind(PNK_EXPORT_SPEC_LIST)); MOZ_ASSERT(pn->pn_left->isArity(PN_LIST)); MOZ_ASSERT(pn->pn_right->isKind(PNK_STRING)); stack->pushList(pn->pn_left); stack->push(pn->pn_right); return PushResult::Recyclable; } case PNK_EXPORT_DEFAULT: { MOZ_ASSERT(pn->isArity(PN_BINARY)); MOZ_ASSERT_IF(pn->pn_right, pn->pn_right->isKind(PNK_NAME)); stack->push(pn->pn_left); if (pn->pn_right) stack->push(pn->pn_right); return PushResult::Recyclable; } // Ternary nodes with all children non-null. case PNK_CONDITIONAL: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); stack->push(pn->pn_kid1); stack->push(pn->pn_kid2); stack->push(pn->pn_kid3); return PushResult::Recyclable; } // For for-in and for-of, the first child is the left-hand side of the // 'in' or 'of' (a declaration or an assignment target). The second // child is always null, and the third child is the expression looped // over. For example, in |for (var p in obj)|, the first child is |var // p|, the second child is null, and the third child is |obj|. case PNK_FORIN: case PNK_FOROF: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); MOZ_ASSERT(!pn->pn_kid2); stack->push(pn->pn_kid1); stack->push(pn->pn_kid3); return PushResult::Recyclable; } // for (;;) nodes have one child per optional component of the loop head. case PNK_FORHEAD: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); if (pn->pn_kid1) stack->push(pn->pn_kid1); if (pn->pn_kid2) stack->push(pn->pn_kid2); if (pn->pn_kid3) stack->push(pn->pn_kid3); return PushResult::Recyclable; } // classes might have an optional node for the heritage, as well as the names case PNK_CLASS: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); if (pn->pn_kid1) stack->push(pn->pn_kid1); if (pn->pn_kid2) stack->push(pn->pn_kid2); stack->push(pn->pn_kid3); return PushResult::Recyclable; } // if-statement nodes have condition and consequent children and a // possibly-null alternative. case PNK_IF: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); stack->push(pn->pn_kid1); stack->push(pn->pn_kid2); if (pn->pn_kid3) stack->push(pn->pn_kid3); return PushResult::Recyclable; } // try-statements have statements to execute, and one or both of a // catch-list and a finally-block. case PNK_TRY: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); MOZ_ASSERT(pn->pn_kid2 || pn->pn_kid3); stack->push(pn->pn_kid1); if (pn->pn_kid2) stack->push(pn->pn_kid2); if (pn->pn_kid3) stack->push(pn->pn_kid3); return PushResult::Recyclable; } // A catch node has an (optional) first kid as catch-variable pattern, // the second kid as (optional) catch condition (which, records the // || in SpiderMonkey's |catch (e if )| extension), and // third kid as the statements in the catch block. case PNK_CATCH: { MOZ_ASSERT(pn->isArity(PN_TERNARY)); if (pn->pn_kid1) stack->push(pn->pn_kid1); if (pn->pn_kid2) stack->push(pn->pn_kid2); stack->push(pn->pn_kid3); return PushResult::Recyclable; } // List nodes with all non-null children. case PNK_OR: case PNK_AND: case PNK_BITOR: case PNK_BITXOR: case PNK_BITAND: case PNK_STRICTEQ: case PNK_EQ: case PNK_STRICTNE: case PNK_NE: case PNK_LT: case PNK_LE: case PNK_GT: case PNK_GE: case PNK_INSTANCEOF: case PNK_IN: case PNK_LSH: case PNK_RSH: case PNK_URSH: case PNK_ADD: case PNK_SUB: case PNK_STAR: case PNK_DIV: case PNK_MOD: case PNK_POW: case PNK_COMMA: case PNK_NEW: case PNK_CALL: case PNK_SUPERCALL: case PNK_GENEXP: case PNK_ARRAY: case PNK_OBJECT: case PNK_TEMPLATE_STRING_LIST: case PNK_TAGGED_TEMPLATE: case PNK_CALLSITEOBJ: case PNK_VAR: case PNK_CONST: case PNK_LET: case PNK_CATCHLIST: case PNK_STATEMENTLIST: case PNK_IMPORT_SPEC_LIST: case PNK_EXPORT_SPEC_LIST: case PNK_PARAMSBODY: case PNK_CLASSMETHODLIST: return PushListNodeChildren(pn, stack); // Array comprehension nodes are lists with a single child: // PNK_COMPREHENSIONFOR for comprehensions, PNK_LEXICALSCOPE for legacy // comprehensions. Probably this should be a non-list eventually. case PNK_ARRAYCOMP: { #ifdef DEBUG MOZ_ASSERT(pn->isKind(PNK_ARRAYCOMP)); MOZ_ASSERT(pn->isArity(PN_LIST)); MOZ_ASSERT(pn->pn_count == 1); MOZ_ASSERT(pn->pn_head->isKind(PNK_LEXICALSCOPE) || pn->pn_head->isKind(PNK_COMPREHENSIONFOR)); #endif return PushListNodeChildren(pn, stack); } case PNK_LABEL: case PNK_DOT: case PNK_NAME: return PushNameNodeChildren(pn, stack); case PNK_LEXICALSCOPE: return PushScopeNodeChildren(pn, stack); case PNK_FUNCTION: case PNK_MODULE: return PushCodeNodeChildren(pn, stack); case PNK_LIMIT: // invalid sentinel value MOZ_CRASH("invalid node kind"); } MOZ_CRASH("bad ParseNodeKind"); return PushResult::CleanUpLater; } /* * Prepare |pn| to be mutated in place into a new kind of node. Recycle all * |pn|'s recyclable children (but not |pn| itself!), and disconnect it from * metadata structures (the function box tree). */ void ParseNodeAllocator::prepareNodeForMutation(ParseNode* pn) { // Nothing to do for nullary nodes. if (pn->isArity(PN_NULLARY)) return; // Put |pn|'s children (but not |pn| itself) on a work stack. NodeStack stack; PushNodeChildren(pn, &stack); // For each node on the work stack, push its children on the work stack, // and free the node if we can. while (!stack.empty()) { pn = stack.pop(); if (PushNodeChildren(pn, &stack) == PushResult::Recyclable) freeNode(pn); } } /* * Return the nodes in the subtree |pn| to the parser's free node list, for * reallocation. */ ParseNode* ParseNodeAllocator::freeTree(ParseNode* pn) { if (!pn) return nullptr; ParseNode* savedNext = pn->pn_next; NodeStack stack; for (;;) { if (PushNodeChildren(pn, &stack) == PushResult::Recyclable) freeNode(pn); if (stack.empty()) break; pn = stack.pop(); } return savedNext; } /* * Allocate a ParseNode from parser's node freelist or, failing that, from * cx's temporary arena. */ void* ParseNodeAllocator::allocNode() { if (ParseNode* pn = freelist) { freelist = pn->pn_next; return pn; } LifoAlloc::AutoFallibleScope fallibleAllocator(&alloc); void* p = alloc.alloc(sizeof (ParseNode)); if (!p) ReportOutOfMemory(cx); return p; } ParseNode* ParseNode::appendOrCreateList(ParseNodeKind kind, JSOp op, ParseNode* left, ParseNode* right, FullParseHandler* handler, ParseContext* pc) { // The asm.js specification is written in ECMAScript grammar terms that // specify *only* a binary tree. It's a royal pain to implement the asm.js // spec to act upon n-ary lists as created below. So for asm.js, form a // binary tree of lists exactly as ECMAScript would by skipping the // following optimization. if (!pc->useAsmOrInsideUseAsm()) { // Left-associative trees of a given operator (e.g. |a + b + c|) are // binary trees in the spec: (+ (+ a b) c) in Lisp terms. Recursively // processing such a tree, exactly implemented that way, would blow the // the stack. We use a list node that uses O(1) stack to represent // such operations: (+ a b c). // // (**) is right-associative; per spec |a ** b ** c| parses as // (** a (** b c)). But we treat this the same way, creating a list // node: (** a b c). All consumers must understand that this must be // processed with a right fold, whereas the list (+ a b c) must be // processed with a left fold because (+) is left-associative. // if (left->isKind(kind) && left->isOp(op) && (CodeSpec[op].format & JOF_LEFTASSOC || (kind == PNK_POW && !left->pn_parens))) { ListNode* list = &left->as(); list->append(right); list->pn_pos.end = right->pn_pos.end; return list; } } ParseNode* list = handler->new_(kind, op, left); if (!list) return nullptr; list->append(right); return list; } #ifdef DEBUG static const char * const parseNodeNames[] = { #define STRINGIFY(name) #name, FOR_EACH_PARSE_NODE_KIND(STRINGIFY) #undef STRINGIFY }; void frontend::DumpParseTree(ParseNode* pn, int indent) { if (pn == nullptr) fprintf(stderr, "#NULL"); else pn->dump(indent); } static void IndentNewLine(int indent) { fputc('\n', stderr); for (int i = 0; i < indent; ++i) fputc(' ', stderr); } void ParseNode::dump() { dump(0); fputc('\n', stderr); } void ParseNode::dump(int indent) { switch (pn_arity) { case PN_NULLARY: ((NullaryNode*) this)->dump(); break; case PN_UNARY: ((UnaryNode*) this)->dump(indent); break; case PN_BINARY: ((BinaryNode*) this)->dump(indent); break; case PN_TERNARY: ((TernaryNode*) this)->dump(indent); break; case PN_CODE: ((CodeNode*) this)->dump(indent); break; case PN_LIST: ((ListNode*) this)->dump(indent); break; case PN_NAME: ((NameNode*) this)->dump(indent); break; case PN_SCOPE: ((LexicalScopeNode*) this)->dump(indent); break; default: fprintf(stderr, "#", (void*) this, unsigned(getKind()), unsigned(pn_arity)); break; } } void NullaryNode::dump() { switch (getKind()) { case PNK_TRUE: fprintf(stderr, "#true"); break; case PNK_FALSE: fprintf(stderr, "#false"); break; case PNK_NULL: fprintf(stderr, "#null"); break; case PNK_RAW_UNDEFINED: fprintf(stderr, "#undefined"); break; case PNK_NUMBER: { ToCStringBuf cbuf; const char* cstr = NumberToCString(nullptr, &cbuf, pn_dval); if (!IsFinite(pn_dval)) fputc('#', stderr); if (cstr) fprintf(stderr, "%s", cstr); else fprintf(stderr, "%g", pn_dval); break; } case PNK_STRING: pn_atom->dumpCharsNoNewline(); break; default: fprintf(stderr, "(%s)", parseNodeNames[getKind()]); } } void UnaryNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_kid, indent); fprintf(stderr, ")"); } void BinaryNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_left, indent); IndentNewLine(indent); DumpParseTree(pn_right, indent); fprintf(stderr, ")"); } void TernaryNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_kid1, indent); IndentNewLine(indent); DumpParseTree(pn_kid2, indent); IndentNewLine(indent); DumpParseTree(pn_kid3, indent); fprintf(stderr, ")"); } void CodeNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(pn_body, indent); fprintf(stderr, ")"); } void ListNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s [", name); if (pn_head != nullptr) { indent += strlen(name) + 3; DumpParseTree(pn_head, indent); ParseNode* pn = pn_head->pn_next; while (pn != nullptr) { IndentNewLine(indent); DumpParseTree(pn, indent); pn = pn->pn_next; } } fprintf(stderr, "])"); } template static void DumpName(const CharT* s, size_t len) { if (len == 0) fprintf(stderr, "#"); for (size_t i = 0; i < len; i++) { char16_t c = s[i]; if (c > 32 && c < 127) fputc(c, stderr); else if (c <= 255) fprintf(stderr, "\\x%02x", unsigned(c)); else fprintf(stderr, "\\u%04x", unsigned(c)); } } void NameNode::dump(int indent) { if (isKind(PNK_NAME) || isKind(PNK_DOT)) { if (isKind(PNK_DOT)) fprintf(stderr, "(."); if (!pn_atom) { fprintf(stderr, "#"); } else if (getOp() == JSOP_GETARG && pn_atom->length() == 0) { // Dump destructuring parameter. fprintf(stderr, "(# "); DumpParseTree(expr(), indent + 21); fputc(')', stderr); } else { JS::AutoCheckCannotGC nogc; if (pn_atom->hasLatin1Chars()) DumpName(pn_atom->latin1Chars(nogc), pn_atom->length()); else DumpName(pn_atom->twoByteChars(nogc), pn_atom->length()); } if (isKind(PNK_DOT)) { fputc(' ', stderr); if (as().isSuper()) fprintf(stderr, "super"); else DumpParseTree(expr(), indent + 2); fputc(')', stderr); } return; } const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s ", name); indent += strlen(name) + 2; DumpParseTree(expr(), indent); fprintf(stderr, ")"); } void LexicalScopeNode::dump(int indent) { const char* name = parseNodeNames[getKind()]; fprintf(stderr, "(%s [", name); int nameIndent = indent + strlen(name) + 3; if (!isEmptyScope()) { LexicalScope::Data* bindings = scopeBindings(); for (uint32_t i = 0; i < bindings->length; i++) { JSAtom* name = bindings->trailingNames[i].name(); JS::AutoCheckCannotGC nogc; if (name->hasLatin1Chars()) DumpName(name->latin1Chars(nogc), name->length()); else DumpName(name->twoByteChars(nogc), name->length()); if (i < bindings->length - 1) IndentNewLine(nameIndent); } } fprintf(stderr, "]"); indent += 2; IndentNewLine(indent); DumpParseTree(scopeBody(), indent); fprintf(stderr, ")"); } #endif ObjectBox::ObjectBox(JSObject* object, ObjectBox* traceLink) : object(object), traceLink(traceLink), emitLink(nullptr) { MOZ_ASSERT(!object->is()); MOZ_ASSERT(object->isTenured()); } ObjectBox::ObjectBox(JSFunction* function, ObjectBox* traceLink) : object(function), traceLink(traceLink), emitLink(nullptr) { MOZ_ASSERT(object->is()); MOZ_ASSERT(asFunctionBox()->function() == function); MOZ_ASSERT(object->isTenured()); } FunctionBox* ObjectBox::asFunctionBox() { MOZ_ASSERT(isFunctionBox()); return static_cast(this); } /* static */ void ObjectBox::TraceList(JSTracer* trc, ObjectBox* listHead) { for (ObjectBox* box = listHead; box; box = box->traceLink) box->trace(trc); } void ObjectBox::trace(JSTracer* trc) { TraceRoot(trc, &object, "parser.object"); } void FunctionBox::trace(JSTracer* trc) { ObjectBox::trace(trc); if (enclosingScope_) TraceRoot(trc, &enclosingScope_, "funbox-enclosingScope"); } bool js::frontend::IsAnonymousFunctionDefinition(ParseNode* pn) { // ES 2017 draft // 12.15.2 (ArrowFunction, AsyncArrowFunction). // 14.1.12 (FunctionExpression). // 14.4.8 (GeneratorExpression). // 14.6.8 (AsyncFunctionExpression) if (pn->isKind(PNK_FUNCTION) && !pn->pn_funbox->function()->explicitName()) return true; // 14.5.8 (ClassExpression) if (pn->is() && !pn->as().names()) return true; return false; }