/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef ds_PriorityQueue_h #define ds_PriorityQueue_h #include "js/Vector.h" namespace js { /* * Class which represents a heap based priority queue using a vector. * Inserting elements and removing the highest priority one are both O(log n). * * Template parameters are the same as for Vector, with the addition that P * must have a static priority(const T&) method which returns higher numbers * for higher priority elements. */ template <class T, class P, size_t MinInlineCapacity = 0, class AllocPolicy = TempAllocPolicy> class PriorityQueue { Vector<T, MinInlineCapacity, AllocPolicy> heap; PriorityQueue(const PriorityQueue&) = delete; PriorityQueue& operator=(const PriorityQueue&) = delete; public: explicit PriorityQueue(AllocPolicy ap = AllocPolicy()) : heap(ap) {} MOZ_MUST_USE bool reserve(size_t capacity) { return heap.reserve(capacity); } size_t length() const { return heap.length(); } bool empty() const { return heap.empty(); } T removeHighest() { T highest = heap[0]; T last = heap.popCopy(); if (!heap.empty()) { heap[0] = last; siftDown(0); } return highest; } MOZ_MUST_USE bool insert(const T& v) { if (!heap.append(v)) return false; siftUp(heap.length() - 1); return true; } void infallibleInsert(const T& v) { heap.infallibleAppend(v); siftUp(heap.length() - 1); } private: /* * Elements of the vector encode a binary tree: * * 0 * 1 2 * 3 4 5 6 * * The children of element N are (2N + 1) and (2N + 2). * The parent of element N is (N - 1) / 2. * * Each element has higher priority than its children. */ void siftDown(size_t n) { while (true) { size_t left = n * 2 + 1; size_t right = n * 2 + 2; if (left < heap.length()) { if (right < heap.length()) { if (P::priority(heap[n]) < P::priority(heap[right]) && P::priority(heap[left]) < P::priority(heap[right])) { swap(n, right); n = right; continue; } } if (P::priority(heap[n]) < P::priority(heap[left])) { swap(n, left); n = left; continue; } } break; } } void siftUp(size_t n) { while (n > 0) { size_t parent = (n - 1) / 2; if (P::priority(heap[parent]) > P::priority(heap[n])) break; swap(n, parent); n = parent; } } void swap(size_t a, size_t b) { T tmp = heap[a]; heap[a] = heap[b]; heap[b] = tmp; } }; } /* namespace js */ #endif /* ds_PriorityQueue_h */